
C H A P T E R  I 
IN T R O D U C T IO N

Two-phase gas/liquid flow is important in a variety of chemical 
engineering applications, such as the simultaneous transport of gas and oil in 
horizontal pipelines or in vertical wells, condensate return lines flashing into 
steam, vapor-liquid feed lines entering distillation columns and refrigerant- 
return lines, that must maintain a specific vapor-liquid ratio for efficient 
operation. The major complexity in two-phase flows results from the growth 
and collapse of the gas-liquid interfaces that can give rise to various flow 
regimes. The linear velocities of gas and liquid phases in each flow regime are 
dictated by the system’s thermohydraulic behavior. In fact, the liquid in a two- 
phase flow can be accelerated to velocities approaching or exceeding vapor 
velocities. Such high velocities can cause “erosion corrosion” in equipment 
and piping systems. In this study, bubble and slug flow patterns were produced 
by varying the inlet air and water flow rates. The superficial gas velocities 
ranged from 0.0029 to 0.7042 m/s, while the superficial liquid velocity was 
varied from 0 to 0.1470 m/s have been tested. The resulting flow types were 
observed and filmed with a camcorder. Once a sufficient range of inlet 
conditions has been observed, flow pattern maps of bubble and slug flow 
could be created for the vertical tube systems. Moreover this thesis also 
investigated relation between rise velocity of single slug and the slug length, 
void fraction at different air and water flow rate, rise velocity of continuously 
generated slugs, and air-lift pump operation within slug flow.
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The followings are some background about two-phase flow in a
vertical tube.

1.1 F lo w  R e g im e s

For vertical pipes, there are four main regimes, shown in Figure 1.1,
and which occur successively at ever-increasing gas flow rates:
(a) Bubble flow: There is a continuous liquid phase, and the gas phase is 

dispersed as bubble within the liquid continuum. The bubble travel with a 
complex motion within the flow may be coalescing and are generally of 
non-uniform size.

(b) Slug  flow: This flow regime occurs when the bubble size tends toward that 
of the channel diameter, and characteristic bullet-shaped bubbles are 
fonned.

(c) Annular flow: This configuration is characterized by liquid travailing as a 
film on the Channel walls, and gases flowing through the center. Part of 
the liquid can be carried as droplets in the central gas core.

(d) M ist flow: in which the velocity of the continuous gas phase is so high that 
it reaches as far as the tube wall and entrains the liquid in the form of 
droplets.
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(a) {b) (c) (d)
F ig u r e  1.1 Two-phase flow regimes in a vertical tube: (a) bubble, (b) slug, (c) 
annular, and (d) mist flow. In each case, the gas is shown in white, and the 
liquid is shaded or black.

1.2  B u b b le  F lo w

Figure 1.2 shows gas bubbles and liquid in upwards co-current flow. 
Consider the plane A-A, drawn so that it lies entirely in the liquid. If U] is 
the mean upwards liquid velocity across A-A, continuity requires that:

บ ิ’ ( 1 )

(Over a relatively shot vertical span, the pressure varies little and the gas 
bubbles have an essentially constant volume.) Thus, the gas bubbles just 
below A-A are rising relative to a liquid that is already moving at a velocity 
บิ], so that the velocity of the gas bubbles is:

V 1 1 =  บ ิ , * บ ิ » = บ ิ- O  บ ิ , .  (2)
in which u b is the bubble velocity rising into a stagnant liquid. But the total
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volumetric flow rate of gas is:
G = sA vg (3)

So that the void fraction is given by:
G_
sA

G +L -
A +l J " or G

G +L + Ul A (4)

This relation for the void fraction holds within certain limits for G and/or L 
negative -  that is, for downflow  of one or both phases.

Concerning the pressure gradient in the upwards vertical direction, 
note that the density of the liquid, which occupies a fraction ( l -ธ) of the total 
volume, is much greater than that of the gas. Also, for the relatively low liquid 
velocities likely to be encountered in the bubble-flow regime, friction is 
negligible. Therefore, the pressure gradient is given fairy accurately by 
considering only the hydrostatic effect:

dp
dz P ig i1 -£ ) (5)



1.3 S lu g  F lo w

The general situation is shown in Figure 1.3(a), in which the gas (air) 
and liquid (water) are traveling upwards together at individual volumetric flow 
rates G and L respectively, in a tube of internal diameter D. In general, there 
will be an upward liquid velocity นLm across a plane A—A just ahead of a gas 
slug. By applying continuity and considering the gas to be incompressible over 
short distances, the total upwards volumetric flow rate of liquid across A—A 
must be the com bin ed  gas and liquid flow rates entering at the bottom, namely, 
G  + L. The m ean  liquid velocity at A-A is therefore บLm = (G  + L)/A, where A 
is the cross-sectional area of the tube.

Next, consider Figure 1.3(b), which shows a somewhat different 
situation —that of a single bubble, which is moving steadily upwards with a 
rise velocity ub in an otherwise stagna n t liquid. For liquids such as water and 
light oils that are not very viscous, the situation is one of p o ten tia l flow in the 
liquid. Under these circumstances, Davies and Taylor [2] used an approxim ate  
analytical solution that gave a specific value for c in the equation:

บ» = c J g D  (6)
in which g is the gravitational acceleration and c = 0.33. Experimental 
evidence shown that constant should be c = 0.35. The situation of Figure 1.3
(a) is now shown enlarged, in Figure 1.3(c). The slug is no longer rising in a 
stagnant liquid, as in Figure 1.3(b), but in a liquid whose mean velocity just 
ahead of it is บLm. Further, near the k‘nose” o  of the slug—at the center of the 
tube, where the velocity is the highest—the liquid velocity will be somewhat 
larger, namely, about \ .2 บLm , as shown by Nicklin, et al. [1], provided that 
the Reynolds number between slugs exceeds 8,000. Therefore, the actual rise 
velocity of the slug will be

Us. = 1 . 2 ^ - ^  + Ub = 1 .2 Ĉ 2 +  c J g D  (7)
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Now, by conservation of the gas, we must have
G = Us A ร (8)

in which ธ is the void  fraction (the fraction of the total volume that is occupied 
by the gas). Hence, eliminating บs between equations (7) and (8), we obtain

£ , 2 £ ^ / ^  , 9 )

(a) (b ) (c)
F ig u r e  1.3  Two-phase flow in a vertical tube: (a) gas and liquid ascending,

(b) bubble rising in stagnant liquid, (c) bubble rising in moving liquid.
If G and L  are known, equation (9) gives the void fraction, which is 

very important in determining the pressure drop in a tube of height H. Also 
note that the weight of the liquid, which occupies a fraction (1 — ธ) of the 
total volume, is much greater than that of the gas. Therefore, the pressure drop 
is given to a first approximation by

p \ -  p j  = pigH {\ -  s) (10)
A secondary correction to (10) would include the wall friction on the liquid 
"pistons’" between successive gas slugs.
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1.4  G a s-L ift  P u m p  O p e ra tio n

Figure 1.4 shows a gas-lift pump, in which the buoyant action of a 
volumetric flow rate G of gas serves to lift a volumetric flow rate L of liquid 
from a height H() in a reservoir to a height H  in a vertical pipe of diameter D  
and cross-sectional area ,4, in which slug flow may be assumed. Neglect liquid 
friction in both the supply pipe and in the vertical pipe.
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F ig u r e  1.4  Gas-lift pump.
From hydrostatics, the pressure at the base of the column is obtained in two
ways:

pLgH 0 =  p ,g H  (1 - e )
which gives:

H  ท
£  =  1 -  : ( 1 1 )

From equation (6) and (7) with L = 0:
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—  = 1.2 — + Ut = 1.2 — + c JgD  sA A A ^
G
7

( \G -1.2
น

G
A " 7

-  c 'Ig D

7 7
( 12)

Substitute equation (11) in equation (12). It gives superficial velocity of gas, 
which then suffices to achieve the desired liquid flow rate.
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