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ABSTRACT

4272013063: POLYMER SCIENCE PROGRAM
Srisuda Thitinun: Sol-Gel Processing of Spirosilicates and
Their Polymers.
Thesis Advisors: Prof. Alexander M. Jameison, and
Assoc. Prof. Sujitra Wongkasemjit, 72 pp.
ISBN 974-13-0722-5
Keywords: Spirosilicates/ Sol-gel transition/ Siloxane/ Xerogel

The sol-gel transition of tetra-coordinated spirosilicate via hydrolysis
and condensation under acidic and basic condition is examined to study the
effect of catalyst, time dependence, temperature and the properties of obtained
gel. The main advantage of this process is the low temperature employed,
giving the formation of solid network with a high specific surface area. FTIR
spectroscopy and TGA analysis were used to characterize the formation of
siloxane bonds (Si-O-S1). It is found that spirosilicate can be hydrolyzed under
both acid and hase catalyzed conditions, and the condensation rate to silicates
IS shown to be at a minimum at 1% HCL of 1M, which is the iso-electric point
of silica. The prepared xerogel has a low-density and is amorphous material
with surface area of 538 m2g. Besides the catalyst media, the type of
precursor also has a strong influence on the gel formation.  The
aminospirosilicate, six-membered ring, containing methylene and amino
groups as substituents, was chosen for this study. The resulting xerogel
determined by the fact that to obtain the Si-O-Si bonds, a higher concentration
of solvent and higher temperature are more favorable, due to the length and
branching of alkyl portion.
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