Chapter 3

The Case of Function Fields of
Positive Characteristics

The main theme of this chapter is the concept of uniform distribution of sequences
in Fg[&] , the ring of polynomials over a finite field Fg, and Fg((:r-1)), the field of
formal Laurent power series over Fg.

In Section 1, we introduce the definitions of these concepts given by L. Carlitz([2])
and J.H. Hodges([6]). In Section 2, we introduce three criteria for the uniform dis-
tributivity of sequences in Fg[®] and Fg((:r-1)). These criteria were proved by L.
Carlitz([2]) and A. Dijksma([4]).

In Section 3, we give and prove some basic properties of uniform distribution in
Fg[e] and Fg((x-1)). J.H. Hodges([7]) stated and proved a theorem showing a relation
between uniform distribution modulo 1 and uniform distribution modulo M. A simple
proof of this theorem is given here.

In Section 4, we introduce the sequence (Zn)™:Lin Fgle] which plays the same role
as the sequence of non-negative integers. The sequence LT was first constructed
by H.G. Meiyer and A. Dijksma [12]. There were several results concerning the

sequence (ZNn)™=Lin [5] and [19]. In this Section, we extend some of these results,
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The last section covers the concept of uniform distribution modulo 1in Fg((a;_1))

in the multidimensional case.

3.1 Introduction

Let § = Fg[®] denote the ring of polynomials over a finite field Fg of  elements,
where § —pr for some prime number P and positive integer r.
L et Fg(x) denote the field of fractions of FQ[x]. Define the real-valued valuation

M0 on Fa(x) by

/O)T 0.
f(x) = 0.

Let = Fg((x-l)) be the completion of Fg(x) with respect to MOO- Now
consists of all the expressions @ = YYn=-00Cixi (ci € Fg) Ifa has the representation
and cm 0, then we define degct = M, moreover, we define dego = —o00. Note that
for @ G &/ we have laloo = qdega. The integral part of a is defined as [a] = YYiLo °ixi
and the fractional part as ((a)) = Y"7=-00 °ixil

Obviously, we have [+ P] = [a]+ [13 and ((a+ /7)) = ((a)) + ((13)) for all a, /3 €
Ifa and p are elements of wesay a = p(modi) ifa = p+ A forsomed eh If
a € $anda= AB-1forsome A and B 72 0in  then @ iscalled rational, otherwise

a is called irrational.

Definition 3.1.1 (L. Carlitz [3]). Let (ttn)“ 1 be a sequence in Then this
sequence is said to be uniformly distributed modulo 1(abbreviated u.d.mod 1) in
if and only if

Jimojf-\{ <N :deg(((a, - P))) <-k}1= 13-
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for all positive integers k and all /3€ §".

Remark 3.1.2. Let k be a positive integer. For each a, 36 we define
a~ 3 ifandonlyif deg(((a —/?)) < —k.

This is an equivalence relation on which partitions <& into qk equivalence classes.

Definition 3.1.3 (J.H. Hodges [6]). Let (4 , ) 1be asequence ofelements in <>
Let M ¢ § be apolynomial of degree M ~ 1. Then the sequence (A,)EL1 is said to
be uniformly distributed modulo M (abbreviated u.d.mod M) in § if and only if

-l < N :An=B (mod M)\ = = for all £7¢<&.

i qm

Furthermore, we say that Lis uniformly distributed (abbreviated u.d.) in $ if

{An)"=tis u.d.mod M for every M € $ of positive degree.
Remark 3.1.4. Let M 6 $ be a polynomial of degree m ~ 1. For each A, B E <F,
A~ B ifandonlyif A= B(modM).

This is an equivalence relation on <F which partitions <@ into (Mequivalence classes.

3.2 Criteria

In the classical case, Weyl criterion make use of the exponential function ofcomplex
numbers. We therefore start this section by defining an analogous function on
Let fil, /iz,... 1/r be a fixed basis for the vector space Fq over Fp . For given a =

XTil-o0 CIXI £  (set C-1 = 0 if X-1 does not appear in the expression for @), W rite
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c_1=aifii+ 2124 vee+ Ohr with (I G Fp for 12 j A r. We define the exponential
function e :$' — C by e(a) = € nfai. This definition of the function e(a) is taken
from L. Carlitz [3]. It is easy to see that for @, (36  e(a+ (3) = e(a) -e(/?) and
if a=/3(mod 1), then e(a) = e(P).

The following theorem was first proved by L. Carlitz [2]. Here, we present another

proof.
Theorem 3.2.1. Leta Gt andM 6 apolynomial of degree m 1. The sum

it deg(((a)) < -m,
X e(Aa) =
A£$,deg(A)<m if deg(((a))) > -m.

Proof. Case 1. If deg(((a))) < —mM, then for every A G $ such that degH < m, the
coefficient of x-1 of Aa is 0 and hence e(Aa) = 1; therefore

o R A= L2
Case 2. deg(((a))) > —M. Let $ = {i e $ :deg(H) < m}. Since for every A G ',
Aa = A{[a] + ((a))) — A[a\ + A((a)), the coefficient of x-1 in Ad is equal to the

coefficient of x-1 of A((a)). Let
-k
(@) = x Cixi' ¢-k ~m -
i=—00
Thus for any A = am_iXm_1+ aM 22+ .+ cqx+ a0 G Wk, the coefficient of X1
of H((a)) is
om—c—m + &7 2CMH + o0+ cuc

Note that for fixed a G Wq,

H(*m=L ..« =) eawe Forz 0 Lo, 1Ja amAr~h. Tult—=c-x}1—o



Therefore, for fixed flgF,,
{A GT : the coefficient of X"L of Aa is a}l

= [{K GHuel®m-) +A€Fg,1—0,1, m 1 @ Qm.iCc mT ere-hQkLc—f}!

Moreover, for each b\ GFp,

(6 GFg :b=bifil\ + 622+ vev+ brfjr for some 62,... ,br GFp}| = pr 1.

Hence,

AE<i> deg A<M

=" "I (the sum of all roots of the polynomial Xp—1)

:an—y—l.O

O

This last theorem is the main tool in the proof of the following criterion for the

uniform distributivity of sequences in

Theorem 3.2.2 (L.Carlitz [3]). The sequence (a,)* 1 of elements o/$* is u.d.mod
Lin ifand only if

for all C ¢ <h\{o}.
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As to the criteria for the uniform distributivity of sequences in § Lwe have

Theorem 3.2.3 (A.Dijksma [4]). The sequence (j4n)aLj of elements of s s
.d.mod M in Q if and only if

for all C e 4>\{0} With deg(C) < deg(M).

Theorem 3.2.4 (A.Dijksma [4]). The sequence (An)EL: of elements o/<B> is u.d.
in$ if and only if

for all rational a ¢ 4>\{0} such that deg(a) < —1.

Corollary 3.2.5 (A.Dijksma [4]). If the sequence of elements of  has the
property that for some M ¢ & of degree m ~ 1 the sequence (M -1Qn)EL1 is u.d.mod
1in  then the sequence ([« ])"=1is u.d.mod M in <,

3.3 Basic Properties

As in the classical case, we give and prove some basic properties of uniform distribu-
tion of sequences in § and € . The property (3) in the following theorem was stated

and proved by J.H. Hodges [6]. However, we give another proof of this property.

Theorem 3.3.1. Let («,)* 1 be u.d.mod Lin  and (A,)~=t be u.d.mod M in %
where With deg(M) > 0.

(1) If Aed4>\o} anda e $ then (Aan+ ogeL1is u.d.mod 1in

()If A,Ke§ andgcd(K,M) =1, then (KAn+ A)%L1is u.d.mod M in <



(3) If F G & with deg(-F) > 0 and F\M, then (An)nLj is u.d.mod F ins.
4) If « GFe\{0} , A Gs$ and is u.d. in < then (aAn+ A)ET1 s u.d.

in <.

Proof. (1) Let A G <h\{0} and & £ For each CG qwith C A 0, we have, by

| Y, e(C[“»+")) = J|Y <CA\« + Cé))

=V Y 'e(Ca)
fu

= e yy e(CAan) —t0as N —o
n=

|
since (a,)"L1lisu.d.mod 1in By Theorem 3.2.2, (Aan+ lisu.d.mod 1in
(2) Let A,K G ¢ and (K,M)= 1. LetCG$ with ¢~ o and deg(C) < deg(M).
since (K,M) = 1 and deg(C') < deg(M), CK ~ o(mod M). write CK = MD + R
where R, D G $ with deg(-R) < deg(M) and R 0. Now, by Theorem 3.2.3, we have

I Y e(CM-\KA>+A)=jfY <CM-'KA,) =(CM~'A)

=gf C MY e

eCM 'A)Ye(DA,).e(RM-'A,)

= (IM-'A.) - Oas 40)

since (An)Alisu.d.mod M in $, by Theorem 3.2.3, (KAn+ A)r 1 isu.d.mod M in
3.
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(3) Let F G& deg (F) »~ 1 and F\MM. Then M — FD for some D G § with
D~ 0. Let CG$ with C"-Oand deg(C) < deg (F). Since (An)EL1be u.d.mod M

in <L, by Theorem 3.2.3, we obtain

i *f e(CF-'Ay)

L £

L e{(CD)M~"Ar) 0asN ->o0

=1
By Theorem 3.2.3, (v4,)"Llisu.d.mod F in §

(4) Let a GFg\{0},a »~ 0 and yl G<L Let (An)lbe u.d. in 4. To show that
(aAn+ A™=1 be u.d. in & let M G e with deg (M) > 0. Then (a, M) = 1. By
Theorem 3.3.1(2), (@An+A)%LLisu.d.mod M in <L Since M is arbitrary, (@An+A)£L1
isu.d. in <

Now, we give and prove the following theorem similar to the result in the classical

case (see Theorem 2.1.5(ii)).

Theorem 3.3.2. Let be u.d.mod 1in <& Let (/3,)EL1 be a sequence in |f
lig (((an—7,)) exists, then (pnjnLx 75 u-dmod 1 in <.

Proof. Let CG$ with G 0 and deg (C) = k. Let lip (((an—12,) = — .
Then |((a, —3 )+ 7 o—P0as —>oo. Therefore there is an m € Z+ depending on
k such that |((an — 3 ))+ 7 00< q~k~| for every integer "\, m.

since |((an- 6 )+ 700 = qoegue -3 )7)ndeg (<%, - ;2.0 1) < =K - 1 for every
integer A M,

Thus deg (C(((pn-an))- ) = deg (-C(((0:n-/?,))+ 7)) = deg (C((0;n- AD)+ 7) <

—1 for every integer "™ 7 .
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This implies that  e(C(((/3n —an)) —7)) = 1 for every integer ~ 711 Now, let N be

any sufficient large natural number. Then
ATS(M)

=V &1 (CA)+w &> (CA
=JJT, eCA)+JIE e(CK+(A-<)- +7)

= A+ JXy (AT (A=) T+ )
=2 MAn)+NE ¢ )-eC( - * 1)0(A - «)- 7)(CT)

Since (a)*Tx is u.d.mod 1 in

6(CA,) + £ e(C*"J -*0 38 w

=1 =771

Since C is arbitrary, by Theorem 3.2.2, (3 )*=l be u.d.mod 1 in

J.H. Hodges [7] discovered and proved a relation between u.d.mod 1 and u.d.mod
M analogous to the one in the classical case (see Theorem 2.4.8 in Chapter 2). Here,

we present an easier proof.

Theorem 3.3.3. Let (cin)» 1 be asequence in  Then the following statements are

equivalent:
(1) (an)tT1 is u.d.mod 1in

(2) ((Manp=1is u.d.mod M for all M £ & ofpositive degree.
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*
(1) For each Me 4>t positive degree, ’ﬁmlE e(CM~ [Man]) =0for il C €

qWithe /o and deg((7) < deg(M).
. . 1 * -
(4) Foreach A ¢ & with A" 0, we havenl O A eV(Aan) = 0.

Proof. By Theorem 3.3.1 and Corollary 3.2.5 , we have (1) = (2).

By Theorem 3.2.3, we have (2) = (3).

To show that (3) =% (4), let A e & and A 0. Let deg (y4) = M and let
B = xm+l+ A. Then deg (*4) < deg (B). By (3), we have

*=tL N * e{AB~1[Ban])

=N WNE e(AB-\Ban- dBan)))
=jfe N e(Aa )-e(-AB~\(Ban)))

=NwoN  etA(*n) de3(-AB~\(Ba )< -1).

By Theorem 3.2.2 twe have (4) 3 (1).

3.4 The Sequence @zn)™1

Let T beaone-to-onecorrespondence between Fg and the set {0,1,2,..., q—l} such
that r(0) = 0. Weextend the domain and range of T to 4 and the set ofnonnegative

integers by defining

r(anxn+ an_ixa 1+ ...+ UNX+ a0)= r(a,)<j” + r(an_ijgn_1+ ...+ r(ai)q + r(a0).
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We observe that now r s a one-to-one correspondence between $ and Z+ {0}.
We can now order § = {Z\,Z2,...} by setting Zn —T-1( —1) for all positive
integers . J.H. Hodges [s] showed that the sequence (Zn)%Ll is u.d. in §. H.G.
Meijer and A. Dijksma [12] proved that the sequence (Zna)m isu.dmod 1in if
and only if @ is an irrational element of They also showed that the sequence
([Znaq)~=t is wu.d. in $ if and only if either @ s irrational or a is a nonzero
rational in 47 with deg(a) < o.

Theorem 2.1.11 is a famous result of Van der Corput. It states that the sequence
of real numbers is u.d.mod 1 if the sequence (XNth—X )11 is u.d.mod 1 for
all integers N > 1. This result has been generalized to sequences of elements other
than real numbers; see for example Chapter 4 in [s].

Also, A. Dijksma [5] showed that, if the sequence (g(Zn+ B) — 1 s
u.d.mod 1in < for all B e ®\ {0}, then ( (z,))r=tisu.d.mod Lin 42 see Theorem
3.4.2. Moreover, using Theorem 3.4.2, he proved a necessary and sufficient condition
for the uniform distributivity modulo 1in «i' of the sequence (/(Zn))ff=x, where f{Y)
is a polynomial over  of degree K with 0 < k < p\ see Theorem 3.4.4.

Additionally, W.A. Webb [19] proved a similar result for uniform distribution
modulo M in §, see Theorem 3.4.9.

In this section, we give and prove a slight extension of Theorem 3.4.4 and a new
theorem, see Theorem 3.4.5 and 3.4.6. Finally, we prove a theorem similar to Theorem

3.4.9 in the case of uniform distribution modulo 1 in <&.

Lemma 3.4.1 (A. Dijksma [5]). Letu be a complex-valued function defined on <
Let N and be positive integers such that gs< N. If N = ags+ b where a and b are



integers such thato ~ b~ gs—1, then

gs(N +q'-b)-1- £>(Z,,) <E HZn)\2+E £ c(nys(n Ty

h=2 fc=I

Theorem 3.4.2 (A. Dijksma [5]). Leig:4 —s' ¢e afunction and put gB{Zn) =
g(Zn+ B) —g(Zn) where B ¢ < If the sequence {gB{Zn))"L1 is u.d.mod Lin < /or
all B e 4>\{0}; then the sequence (g(Zn))*=L is u.d.mod 1 in <.

Lemma 3.4.3 (A. Dijksma [5]). //a € s is irrational and D ¢ s with o / o,
then the sequence (a[znD _1])*L1 is u.d.mod 1 in 2.

Theorem 3.4.4 (A. Dijksma [5]). Lei f(Y) be a polynomial over 4 of degree k
with 0 < k < p. Then the sequence ( I is u.d.mod 1 in &' if and only
If f(Y) —f (o) has at least one irrational coefficient.

Theorem 3.4.5. Let f(Y) = Ef=0a*~ be a polynomial over 4 of degree k > o.
Suppose that o1 is rational for all | ~ p. Then the sequence (f(Zn))*LLis u.d. mod 1
if and only if f(Y) —f (0) has at least one irrational coefficient.

Proof. First, assume C1 is the only irrational coefficient of f(Y) —a0. Then we may
write T(Y) = g[Y) +aiY + ao where g(Y) is a polynomial over <€ having rational
coefficients only. Let D be the least common multiple of the denominators of these
coefficients of (Y). Put deg(D) = d. Let A be a positive integer and let a and b be

two integers such that N = agd+ band 0 < bh< qd—1. Then, we write

=aqO-+l

where 1= Enie(f(Zn)) and c2= E"=a~+1 e(f(Zn)).



Here 2= 0(N), (N —>00) and

aqd a=1 (foH)<
Hi = ~~e(g(Zn) + a\Zn+ ao) = y~1 e(g(Zi) + auz/ + ao).
=1 fo=0 1=kqd+ 1

Note that, for any non-negative integer k and any integer | such that kqd+ 1< 1<
(k + 1)qd, we can write Zi = AD + ¢ where 4,c  $ and deg(C) < d, so that
D[ZiD~I\= D[A+CD~I1= DA —Zi —C\ this implies that

{Zi :kgd+ 1< I < (k+1)qd} = {Zn+Zj :1<j < qd} = {D[ZnD -N+Zj :1 < | < qd},

Thus,

a—L  (fotl)gd g
Hi=~ q-d E e({D[ZnD -1+ Zj) + ai{D[ZnD~1)+23) + a0).

It follows from the definition of D that g(DA + B) = g{B)(mod 1) and hence
e(g(DA + B)) —e(g(B)) forall A and B in$.

Consequently,

Hi-qd 1e(g(Zj) +ouizj + o)
J: =

By Lemma 3.4.3, the sequence {@.iD[ZnD~I]f™=lisu.d.mod 1in  thus Hi = 0(N).

| e{a\D[ZnD~1]).

Hence

jfe iE etf(z») =0 1
Let A be an arbitrary non-zero element of <. Then (*) also holds for Af(Z,,)
instead of f(Zn). Hence, by Theorem 3.2.2, the sequence {f(ZNn)}™=1 is uniformly

distributed modulo 1 in
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We now proceed by inductionon M 6 {1,2,.. .p—1}. Let p( ) be the statement
“it h(Y) = Y2i=oPiYI(Pi  $'k > 0, and Piis rational for all | > p) and m is the
largest integral value of | such that Pi isirrational then the sequence (h(Zn))%L1 is
u.d. mod 1in By the method of the first step, we see that p(I) is true. Now,
letm 6 {1,2,...,p —2} and assume that p(m) is true. Let h(Y) = E2=10fliY1
(Pie k>0, andPiisrational for all | > p) where m+1 isthe largest integral value
of I'such that Piis irrational. Put for an arbitrary B £ §, hB(Y) = h(Y + B)—h(Y).
Then hB(Y) is a polynomial satisfying the condition of the induction hypothesis
provided that B 0. Hence the sequence (NB(Zn))*L1is u.d.mod 1in  for all
B A~ 0in 4 By Theorem 3.4.2, this implies that (N(Zn))?LI1 is u.d.mod 1 in <!
Thus, p(m) is true form =1,2,... ,p — 1L

Conversely, suppose f(Y) —/ (0) has rational coefficients only. Let D be the least
common multiple of the denominators of these coefficients.

Then e(Df(Zn)) = e(Df(0)) for all Zne <& Using Theorem 3.2.2, since

4 Y'e(D/(Zn)) =
the sequence ( / isnotu.dmod 1in <. This completes the proof. [

Theorem 3.4.6. Let f(Y) = Y%=oaiY| be a polynomial over  such that ap is
irrational. 1f there isj € {2,3,...,p —1} such that (Xj is irrational, then (f(zn))tL1
is u.d.mod 1in

Proof. Let j* be the maximum of j € {2,3,... P — 1} such that ttj is irrational,
Let fs(Y) =f(Y +B) - f(Y) for B € $and B | Q Now, for each B e <G
fB(Y) = EfolfiiYlwith Pp-1 irrational. Thus, by Theorem 3.4.4, the sequence
(f(Zn+B) - f(z,)eLi = (fB(Zn))tL1 is u.d.mod 1 in  for every B € $\{0}.
Hence, by Theorem 3.4.2, (/(Zn))EL1is u.d.mod 1 in 4>,
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Lemma 3.4.7. Let () be a complex valued function such that ()= 0if >N,
Then

where ftz denotes the real part of ZE C.

Proof. Substitute H = y/N in Lemma 2.1.10.

Theorem 3.4.8 (W.A. Webb [19]). Let (Bn)ff=1 he a sequence in 4. If
(Bn+k — Bn)nL1 is u.d.mod M (respectively u.d.) in  for all integers k > 0, then
(Bn)tL1 is u.d.mod M (respectively u.d.) in 4.

Using Lemma 3.4.7, we prove a result similar to Theorem 3.4.8 for the case of

u.d.mod 1.

Theorem 3.4.9. Let (a,)+ 1 be asequence in If (an+k- a,)* 1is u.d.mod 1in
for all integers k > 0, then (a,)e=1is u.d.mod 1 in <

Proof. Let C E and C7" 0. Let N be any sufficient large positive integer. Apply
Lemma 3.4.7 with () =e(Can)for1< < N. Then

(3.4.1)

Also, for each integer k > 0,

y: () ( +k)=~ e(Can)e(—Can+k)

= o(N), (342)



37

since (On+k—a,,)":1 is u.d.mod 1 in Now, by Lemma 3.4.7, (3.4.1) and (3.4.2),

y/N 2 AT 2
N+ v —L U k

Since
2

| y
NS sy, LT

we have
1 *

1
Nbow ¥ e ) = R

Hence, ()" isu.d.mod 1in

3.5 The Multidimensional Case

Definition 3.5.1 (L. Carlitz [3]). Let M be a positive integer. Let (f2n)°L1 =
(C 1), 2(),... LIm( ))®L1 be a sequence in (<h')m. The sequence (fin)EL1 is said

to be u.d.mod 1in (<L)m if and only if

N 7 £ < N tdeg((( oo )=2) < —Kj forallj = 1,2, m}| = ¢-(fitfor-+iem)



for all (Pi,..., Pm) & (&)rend all kl,..., kmGz+

Proposition 3.5.2 (L. Carlitz [3]). A sequence (Qn)™.1= (( ;1( ), :2( ),... m(n)))” i
is u.d.mod 1in (U)m ifand only if for every (A\,..., Am) e (m\{(0.,..., 0)},

fim RllTZ\_(:_l_ (AU + ... + Am m( ) = 0.

Proposition 3.5.3. The sequence ((;!( ),3( ),..., & ()™ Lis udmod 1 in

(L)m if and only if the sequence (AiU)i(n) + ... + Am m( )) = is u.d.mod 1 in
for every (Al,...,Am) € (©m({(0,... ,0)}.

Proof. (=") Assume that the sequence (( :( ), ;2( ),...,Un( ) ) ) is u.dmod 1
in (©)m. Let (Ai,...,.Am) £ ($)m{(0,..., 0)}. To show that (AU)i( )+ ... +

m( )M isudmod Lin  letc £$and 0 Then (CAi,..,CAm)
(0,..., 0). By the assumption and Theorem 35.2 ,

Y_Ale(C(AiUi(n) t.. tAm m( )= \[1 e(CAIVi(n) + «1e+ CAm m( )) = o(N).
Hence, by Theorem 3.2.2 , the sequence (AIUI( )+ ... + Am m( ) ) isu.dmod 1
in ¢,

(<=) Assume that (AUJI( )+ ... + Am@n( )) = is u.d.mod 1 in € for every

(Ai,..,Am) e (« {( ...,0} Let (Ai...,Am) e ($r\{(0,...,0)}. Then
(AIUJI( )+ ...+ Am m( ) ) isUdmod Lin <. By Theorem 3.2.2, we have

'ile(C(Aiu>i( )+ ...+ Am@n( ))) = o(N) forall Cg$withcro. (¥

Choose C =1 in (¥), we have (1), 2( ). 5, ()))Lis udmod Lin ($)m
by Theorem 35.2. O
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Proposition 3.5.4. If the sequence (( '( ), 2 ),--., wm(w)))"=i is u.d.mod 1 in
(&)™ then (3j( ))"Lisu.d.mod Lin forall; = 1,2,... Im, whereas the converse

need not hold.

Proposition 355, If&,... Eme andl,£i,... £mare lingarly independent over
then the sequence (Zni, ZJ4z,..., Zn'm)*L1is u.d.mod 1 in (8')mwhere (Zn)™L
i the sequence defined in section 4.

Proof. we prove this theorm by using Theorem 3.5.3. Let (Al ..., Am) G ($")ym\{(0,...

We want to show that (A \Z + ...+ AmZnEm)n=Llis u.d.mod 1 in «P. Consider
A\ZnI\+ ...+ AmZnQm = Zn(Ai£,i + ... + AmQm). Since (M4i,...,Am) A 0 and
1>£1de1e,£m are linearly independent, jifi+... + Am™m is irrational. Thus, by The-
orem 3.4.4, (A\ZnM+ o+ AmZn*m)-i = (Zn(AVM + o+ AmEm))ET1is u.d.mod 1

in [
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