รายการอ้างอิง

ภาษาไทย

- จิตรา ตระกูลน่าเลื่อมใส. 2541. **ผลของอุณหภูมิต่อการตกกระของผลกล้วยไข่**. วิทยานิพนธ์ ปริญญามหาบัณฑิต สาขาพืชสวน ภาควิชาพืชสวน คณะวิทยาศาสตร์ มหาวิทยาลัย เกษตรศาสตร์
- จริงแท้ ศิริพานิช. 2544. **สรีรวิทยาและเทคโนโลยีหลังการเก็บเกี่ยวผักและผลไม้**. กรุงเทพฯ: ภาควิชาพืชสวน คณะเกษตร มหาวิทยาลัยเกษตรศาสตร์ สำนักพิมพ์มหาวิทยาลัย เกษตรศาสตร์.
- เฉลิมชัย วงศ์อารี. 2538. ผลของสภาพบรรยากาศดัดแปลงที่มีต่อการเก็บรักษากล้วยไข่ เพื่อการส่งออก. วิทยานิพนธ์ปริญญามหาบัณฑิต สาขาพืชสวน ภาควิชาพืชสวน คณะวิทยาศาสตร์ มหาวิทยาลัยเกษตรศาสตร์.
- นิพนธ์ วิสารทานนท์. 2531. โรคของผลไม้ระยะหลังเก็บเกี่ยวและการป้องกันกำจัด. ใน

 เทคโนโลยีหลังการเก็บเกี่ยวผักและผลไม้เพื่อการส่งออก, กรุงเทพฯ: ศูนย์ถ่ายทอด

 เทคโนโลยีสำนักงานปลัดกระทรวงวิทยาศาสตร์โรงพิมพ์ชุมนุมเทคโนโลยีและการพลังงาน

 สหกรณ์การเกษตรแห่งประเทศไทย. (เอกสารรวมเล่มประกอบการอบรม/ลัมมนา).
- เบญจมาศ ศิลาย้อย. 2534. **กล้วย**. กรุงเทพฯ: ภาควิชาพืชสวน คณะเกษตร มหาวิทยาลัย เกษตรศาสตร์ บริษัท ประชาชน จำกัด.
- ประสาร ฉลาดคิด. 2536. **อิทธิพลของเอนไซม์หลังการเก็บเกี่ยวต่อการหลุดจากก้านผล** ของกล**้วยหอมทอง** *Musa* (AAA GROUP, GROS MICHEL). วิทยานิพนธ์ปริญญา มหาบัณฑิต หลักสูตรเทคโนโลยีชีวภาพ คณะวิทยาศาสตร์ มหาวิทยาลัยเกษตรศาสตร์.
- พูนสุข ไชยตระกูลทรัพย์. 2525. **การศึกษาความเสียหายของผลกล้วย** (<u>Musa</u> sp.) ซึ่งเกิด จากอุณหภูมิต่ำ. วิทยานิพนธ์ปริญญามหาบัณฑิต สาขาพืชสวน ภาควิชาพืชสวน คณะวิทยาศาสตร์ มหาวิทยาลัยเกษตรศาสตร์.

- รุจิรา เชื้อหอม. 2541. **ผลของสภาพบรรยากาศดัดแปลงที่มีต่อการตกกระของกล้วยไข่**.
 วิทยานิพนธ์ปริญญามหาบัณฑิต สาขาพืชสวน ภาควิชาพืชสวน คณะวิทยาศาสตร์
 มหาวิทยาลัยเกษตรศาสตร์.
- ส่งเสริมการเกษตร, กรม. 2543. **สถิติการส่งออกและนำเข้าสินค้าพืชสวน**. กรุงเทพฯ:
- สถาบันวิจัยและพัฒนาแห่งมหาวิทยาลัยเกษตรศาสตร์, ฝ่ายปฏิบัติการวิจัยและเรือนปลูกพืช ทดลอง, งานวิจัยพืชผลหลังเก็บเกี่ยว. เอกสารประกอบการอบรมภาคปฏิบัติ. วิทยา การหลังการเก็บเกี่ยวพืชสวน. รุ่นที่ 10. นครปฐม: มหาวิทยาลัยเกษตรศาสตร์(18-21 เมษายน 2544 ณ ฝ่ายปฏิบัติการวิจัยและเรือนปลูกพืชทดลองมหาวิทยาลัย เกษตรศาสตร์ วิทยาเขตกำแพงแสน นครปฐม).
- สณทรรศ์ นันทะไชย. 2541. งานวิจัยและพัฒนากล้วย...บทบาทของกรมวิชาการเกษตร อดีต ปัจจุบัน อนาคต. ใน การสัมนาและนิทรรศการกล้วยครบวงจร. (เนื่องในวโรกาส ศาสตราจารย์ ดร.สมเด็จพระเจ้าลูกเธอเจ้าฟ้าจุฬาภรณวลัยลักษณ์ อัครราชกุมารี เสด็จเป็นองค์ประธานเปิดพิธี วันที่ 15-17 มกราคม พ.ศ. 2541 ณ สำนักพิพิธภัณฑ์ และวัฒนธรรมการเกษตร).
- สมชาย เล่ห์เหลี่ยม. 2539. **สรีรวิทยา คุณภาพ และอายุการเก็บรักษาของผลกล้วยหอมใน**กลุ่มคาเวนดิชที่เก็บเกี่ยวเมื่ออายุต่างกัน. วิทยานิพนธ์ปริญญามหาบัณฑิต สาขาพืช
 สวน ภาควิชาพืชสวน คณะวิทยาศาสตร์ มหาวิทยาลัยเกษตรศาสตร์.
- สายชล เกตุษา. 2541. การตกกระของกล้วยไข่และการควบคุมการสุก. ใน การสัมนาและ นิทรรศการกล้วยครบวงจร. (เนื่องในวโรกาส ศาสตราจารย์ ดร.สมเด็จพระเจ้าลูกเธอ เจ้าฟ้าจุฬาภรณวลัยลักษณ์ อัครราชกุมารี เสด็จเป็นองค์ประธานเปิดพิธี วันที่ 15-17 มกราคม พ.ศ. 2541 ณ สำนักพิพิธภัณฑ์และวัฒนธรรมการเกษตร).
- ส่งเสริมการเกษตร, กรม. 2543. สถิติการส่งออกและนำเข้าสินค้าพืชสวน. กรุงเทพฯ: กองแผนงาน กรมส่งเสริมการเกษตร.

- อัญชลี ใจดี. 2543. บทบาทของกรดแอบไซสิกจากภายนอกต่อการปรับตัวทางสรีรวิทยา บางประการในถั่วเหลือง Glycine max (L.) Merrill พันธุ์ สจ.5 และ มข.35 ที่ปลูก ในภาวะเค็ม. วิทยานิพนธ์ปริญญามหาบัณฑิต ภาควิชาพฤกษศาสตร์ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย.
- อภิวรา ประยูรวงศ์. 2542. ผลของอุณหภูมิและความชื้นสัมพัทธ์ที่มีต่อการสุกและการหลุด ร่วงของกล้วยไข่. วิทยานิพนธ์ปริญญามหาบัณฑิต สาขาพืชสวน ภาควิชาพืชสวน คณะวิทยาศาสตร์ มหาวิทยาลัยเกษตรศาสตร์.
- Norman F. Childers. 2522. **ธาตุอาหารไม้ผลเศรษฐกิจบางชนิด**. แปลโดยสำนักงาน คณะกรรมการการวิจัยแห่งชาติสาขาเกษตรศาสตร์และชีววิทยา.

ภาษาอังกฤษ

- Abdullah, H.; Lizada, M.C.C.; Tan, S.C.; Pantastico, Er.B.; and Tongdee, S.C. 1990.

 Storage of Banana. In Hassan, A. and Pantastico, Er.B. (ed.), Banana, 65-84.

 Kuala Lampur: ASEAN Food Handling Bureau.
- Armstrong, J.W. 1982. Development of a Hot-Water Immersion Quarantine Treatment for Hawaiian-Grown'Brazilian' Bananas. J. Econ. Entomol. 75: 787-790.
- Asif, M.H.; Dhawan P.; and Nath P. 2000. A Simple Procedure for the Isolation of High Quality RNA from Ripening Banana Fruit. Plant Molecular Biology Reporter.

 18: 109-115.
- Biggs, M.S.; Woodson, W.R.; and Handa, A.K. 1988. Biochemical basis of high-temperature inhibition of ethylene biosynthesis in ripening tomato fruits.

 Physiologia Plantarum. 72: 572-578.

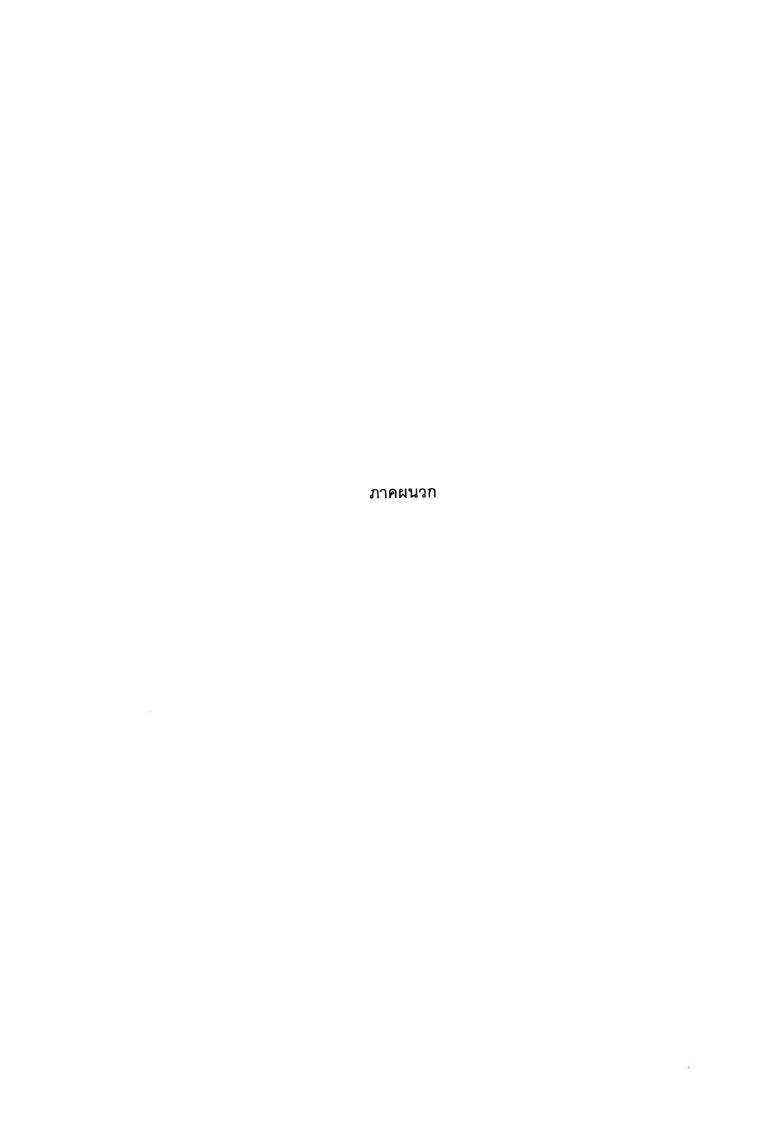
- Blackbourn, H.D.; Jeger, M.J.; John, P.; and Thompson, A.K. 1990. Inhibition of degreening in the peel of bananas ripened at tropical temperatures. III. Changes in plastid ultrastructure and chlorophyll-protein complexes accompanying ripening in bananas and plantains. Ann. appl. Biol. 117: 147-161.
- Cano, M.P.; Ancos, B.; Lobo, M.G. and Santos, M. 1997. Improvement of frozen banana (*Musa cavendishii*, cv. Enana) colour by blanching: relationship between browning,phenols and polyphenol oxidase and peroxidase activities. Z Lebensm Unters Forsch A. 204: 60-65.
- Chan, H.T.JR. 1986. Effects of Heat treatments on the Ethylene Forming Enzyme System in Papayas._J. of Food Sci. 51(3): 581-583.
- Conway, W.S. 1999. Straegy for Combining Heat Treatment, Calcium Infiltration, and Biological Control to Reduce Postharvest Decay of 'Gala' Apples. HortScience. 34(3): 700-704.
- Couey, H.M. 1989. Heat Treatment for Control of Postharvest Diseaes and Insect Pests of Fruits. HortScience. 24(2): 198-201.
- Dentener, P.R., et al. 1997. Postharvest disinfestation of lightbrown apple moth and longtailed mealybug on persimmons using heat and cold. Postharvest Biology and Technology. 12: 255-264.
- Griffiths, L.A. 1959. Detection and Identification of the Polyphenoloxidase Substrate of the Banana. Nature. 184: 58-59.
- Hassan, A.; Rahman, A.S.A.; Punan, M.S. and Fatt L.P. 1987. Research and Development in Postharvest Handling Technology of Banana in Malaysia.

 ASEANFood Journal. 3(3 & 4): 92-94.

- Jacobi, K.K.; Wong, L.S. 1992. Quality of 'Kensington' mango (*Mangifera indica* Linn.) following hot water and xapour-heat treatments. **Postharvest Biology** and Technology. 1: 349-359.
- John, P., and Marchal, J. 1995. Ripening and Biochemistry of the fruit. In S. Gowen (ed.), Bananas and Plantains, 434-467. London: Chapman and Hall.
- Kader, A.A. 1982. Proper units for firmness and abscission force data. **HortScience**. 17(5): 707.
- Ketsa, S. 2000. Prestorage Heat Treatment and Poststorage Quality of Mango Fruit. HortScience. 35(2): 247-249.
- Ketsa, S.; Chidtragool, S.; Klein, J.D.; and Lurie, S. 1999. Ethylene synthesis in mango fruit following heat treatment. Postharvest Biology and Technology. 15: 65-72.
- Lay-Yee, M.; Ball, S.; Forbes, S.K.; and Woolf, A.B. 1997. Hot-water treatment for insect disinfestation and reduction of chilling injury of 'Fuyu' persimmon. Postharvest Biology and Technology. 10: 81-87.
- Lazan, H.; Ali, Z.M.; Chick, C.Z.C.; and Chaplin, G.R. 1986. Polyphenol Oxidase and Associated Ripening Changes in Mangoes and the Effect of Heat Treatment.

 ASEAN Food Journal. 2(3&4): 113-116.
- Li, Q. and Guy, C.L. 2001. Evidence for Non-Circadian Light/Dark-Regulated Expression of HSP70s in Spinach Leaves. Plant Physiology. 125: 1633-1642.
- Lizada, M.C.C.; Pantastico, Er.B.; Shukor, A.R.Abd.; and Sabari, S.D. 1990. Ripening of Banana. In Hassan, A. and Pantastico, Er.B. (ed.), Banana, 65-84. Kuala Lampur: ASEAN Food Handling Bureau.

- Loesecke, H.W.V. 1950. Bananas. New York: Interscience Publishers.inc.
- Lui, J. and Shono, M. 1999. Characterization of Mitochondria-Located Small Heat Shock Protein from Tomato (*Lycopersicon esculentum*). Plant Cell Physiol. 40(12): 1279-1304.
- Lurie, S. 1998. Review Postharvest heat treatments. Postharvest Biology and Technology. 14: 257-269.
- Lurie, S.; Handros, A.; Fallik, E.; and Shapira, R. 1996. Reversible Inhibition of Tomato Fruit Gene Expression at High Temperature. Plant Physiology. 110: 1207-1214.
- McCollum, T.G.; Aquino, S.D.; and McDonald, R.E. 1993. Heat Treatment Inhibits Mango Chilling Injury. HortScience. 28(3): 197-198.
- Montgomery, M.W.; Sgarbieri, V.C. 1975. Isoenzymes of banana polyphenol oxidase.


 Biochemistry. 14: 1245-1249.
- Murata, T. 1969. Physiological and Biochemical Studies of Chilling Injury in Bananas.

 Physiologia Plantarum. 22: 401-411.
- Palmer, J.K. 1971. The Banana. In Hulm, A.C. (ed.), The Biochemistry of Fruits and their Products, 65-105. London: Academic Press.
- Pantastico, Er.B.; Azizan, M.Ali.; Abdullah, H.; Acedo, A.L.; Dasuki, I.M.; and Kosiyachinda, S. 1990. Phisiological Disorders of Banana Fruit. In Hassan, A. and Pantastico, Er.B. (ed.), Banana, 85-103. Kuala Lampur: ASEAN Food Handling Bureau.

- Reyes, M.E.; Nishijima, W. and Paull, R.E. 1998. Control of crown rot in 'Santa Catarina Prata' and 'Williams' banana with hot water treatments. Postharvest Biology and Technology. 14(1): 71-75.
- Ritenour, M.A., Kochhar, S. and Schrader, L.E. 2001. Characterization of Heat Shock
 Protein Expression in Apple Peel under Field and Laboratory Conditions.

 J. Amer. Soc. Hort. Sci. 126(5): 564-570.
- Sabehat, A.; Weiss, D.; and Lurie, S. 1996. The Correlation between Heat-Shock Protein Accumulation and Persistence and Chilling Tolerance in Tomato Fruit. Plant Physiology. 110: 513-527.
- Simmonds, N.W. 1982. Bananas. London: Longman Group Limited.
- Sung, D.; Kaplan, F.; and Guy, C.L. 2001. Minireview Plant Hsp70 molecular chaperones: Protein structure, gene family, expression and function. Physiologia Plantarum. 113: 443-451.
- Tan, S.C.; Ng, K.L.; Ali, A.M.; Othman, O. and Wade, N.L. 1987. Changes in the Activities of Alcohol and Lactate Dehydrogenases During Modified Atmosphere Storage and Ripening in Air of Banana Fruit. ASEAN Food Journal. 3(3&4): 138-143.
- Turner, D.W. 1997. Bananas and Plantains. In S.K. Mitra (ed.), Postharvest Physiology and Storage of Tropical and Subtropical Fruits, 47-83. CAB INTERNATIONAL.
- Wang, C.Y. 1994. Combined treatment of heat shock and low temperature conditioning reduces chilling injury in zucchini squash. Postharvest Biology and Technology. 4: 65-73.

- Whitaker, B.D. 1994. A reassessment of heat treatment as a means of reducing chilling injury in tomato fruit. Postharvest Biology and Technology. 4: 75-83.
- Wild, B.L.; and Hood, C.W. 1989. Hot Dip Treatments Reduce Chilling Injury in Longterm Storage of 'Valencia' Oranges. HortScience. 24(1): 109-110.
- Woolf, A.B., Bowen, J.H. and Ferguson, I.B. 1999. Preharvest exposure to the sun influences postharvest responses of 'Hass' avocado fruit. Postharvest Biology and Technology. 15(2): 143-153.
- Yang, S.F. 1985. Biosynthesis and action of ethylene. HortScience. 20(1): 41.45.

1. ระบบการวัดสี

การวัดสีด้วย color chart หรือแผ่นเทียบสีมาตรฐานนั้นเหมาะสำหรับการวัดสีผลิตผล เช่น ผัก ผลไม้ และดอกไม้ แต่เนื่องจากแต่ละคนมีความสามารถในการรับรู้สีได้แตกต่างกัน ทำ ให้สีที่เทียบได้แตกต่างกันไป ดังนั้นองค์กรนานาชาติที่เกี่ยวข้องกับเรื่องแสงและสี เข่น The Commission Internationale de I Eclavinge (The CIE) จึงได้ประดิษฐ์ระบบ Y x y color space (color space หมายถึง วิธีที่ใช้ในการแสดงสีของวัตถุหรือแหล่งของแสง โดยการใช้ เครื่องหมายบางอย่าง เช่น ตัวเลข เป็นต้น) หรือที่เรียกระบบ CIE ขึ้นมาใช้ในปี 1931 เพื่อให้ สามารถวัดสีได้โดยเครื่องมือหรืออุปกรณ์แทนการใช้คน

ระบบ Y x y color space ประกอบไปด้วยค่า 4 ค่า ค่าแรกคือค่า Y เป็นค่าความสว่าง ซึ่ง มีค่าระหว่าง 0-100 (สีดำมีค่าเท่ากับ 0 และสีขาวมีค่าเท่ากับ 100) นั่นหมายความว่าค่าความ สว่างยิ่งมาก ค่าของ Y ก็ยิ่งมาก แต่ถ้าความสว่างน้อย ค่าของ Y ก็จะน้อย สำหรับ 3 ค่าที่เหลือ นั้นเป็นค่าที่แทนสีของแสง 3 สีด้วยกัน คือ x แทนแสงสีแดง y แทนแสงสีเขียว และ z แทนแสงสี น้ำเงิน ซึ่งมีพื้นฐานมาจากการนำแสงทั้ง 3 สีในสัดส่วนต่างๆ กันมาฉายลงบนฉากสีขาว จะเกิด เป็นสีต่างๆ กันที่ตาคนสามารถมองเห็นได้ ดังนั้นจึงกำหนดค่า x y และ z รวมกันมีค่าเท่ากับ 1 อย่างไรก็ตามวิธีการนี้แม้จะได้ค่าของแสงทั้ง 3 สีออกมาแล้ว ก็ยังเป็นการยากที่จะจินตนาการได้ ว่า เมื่อนำแสงทั้ง 3 สีมาผสมกันในสัดส่วนต่างๆ นั้นแล้ว สีที่ได้ควรเป็นสีอะไร เพื่อแก้ไขปัญหา ดังกล่าวจึงได้เกิดระบบ L a b color space ขึ้นมาใช้ในปี 1976

ระบบ Lab color space จะคล้ายกับระบบ Y x y color space โดยที่ระบบนี้จะมีค่า L เป็นค่าความสว่าง ซึ่งมีค่าระหว่าง 0-100 (0 เท่ากับสีดำ และ 100 เท่ากับสีขาว) และแทนที่ ระบบนี้จะมีค่า x y z ก็จะมีเพียงค่า a และ b เท่านั้น ซึ่งค่า a จะแสดงถึงปริมาณสีแดงและสี เขียว ถ้าค่า a เป็นบวกแสดงว่ามีสีแดงผสมอยู่ และถ้าค่าเป็นบวกมากก็แสดงว่ามีสีเขียวผสมอยู่ มาก แต่ถ้าค่า a เป็นฉบก็แสดงว่ามีสีเขียวผสมอยู่ และถ้าค่าเป็นฉบมากก็แสดงว่ามีสีเขียวผสมอยู่มาก ในทำนองเดียวกันค่า b จะแสดงถึงปริมาณของสี่เหลืองหรือสีน้ำเงิน ถ้าค่า b เป็นบวกแสดงว่ามีสีน้ำเงินผสมอยู่ ตัวอย่างเช่น ถ้าอ่านค่า Lab ของผลมะนาวได้เท่ากับ 61.91, -24.99 และ +31.25 ตามลำดับ ค่า a บอกให้เราทราบว่า ผลมะนาวมีสีเขียวผสมอยู่ ค่า b ที่เป็นบวกแสดงว่าผลมะนาวมีสีเขียวผสมอยู่ด้วย และมีสี เหลืองผสมมากกว่าสีเขียว นั่นหมายความว่าผิวผลมะนาวน่าจะมีสีเขียวอ่อน เป็นต้น หลักการ ดังกล่าวนี้ใช้หลักการเดียวกับการผสมสีของแม่สีทางวาดเขียนซึ่งประกอบด้วย สีแดง สีเหลือง และสีเขียว ด้วยเหตุนี้เองระบบ Lab color space จึงเป็นระบบที่เข้าใจได้ง่ายกว่าระบบ Y x y color space

เราสามารถเปลี่ยนค่าจากระบบ Y x y color space มาเป็นระบบ L a b color space ได้ จากสูตร ดังนี้

L =
$$10\sqrt{L}$$
 $a = \frac{17.5(1.02x - y)}{\sqrt{y}}$ $b = \frac{7.0(y - 0.847z)}{\sqrt{y}}$

จากนั้นนำค่า a และ b มาพิจารณาการเปลี่ยนแปลงสีของเปลือกกล้วย จากสีเขียวเป็นสี เหลือง โดยพิจารณาจากค่า Hue (Hue = arc tan (a/b)) ที่เปลี่ยนจากลบไปบวก (งานวิจัยพืชผล หลังเก็บเกี่ยว, 2544)

2. การเตรียมสารเคมีที่ใช้ในการวิเคราะห์ปริมาณเอนไซม์ PPO

2.1 เตรียมสารละลาย 0.05 M Potassium Phosphate (KPi) buffer pH 7

สารเคมี	ปริมาตรที่ใช้ (มิลลิลิตร)
1 M K₂HPO₄	30.75
1 M KH₂PO₄	19.25

ละลาย stock solution แต่ละชนิดในน้ำกลั่น ปรับปริมาตรสุดท้ายเป็น 1 ลิตร ปรับ pH ให้เป็น 7.0

2.2 เตรียมสารละลาย 0.2 M KPi buffer pH 7

สารเคมี	ปริมาตรที่ใช้ (มิลลิลิตร)
1 M K ₂ HPO ₄	123
1 M KH ₂ PO ₄	77

ละลาย stock solution แต่ละชนิดในน้ำกลั่น ปรับปริมาตรสุดท้ายเป็น 1 ลิตร ปรับ pH ให้เป็น 7.0

2.3 เตรียม PPO extraction buffer

ขึ้ง Polyvinyl Pyrrolidone (PVPP) 6.25 กรัม แขวนลอยใน 0.05 M KPi buffer pH 7 100 มิลลิลิตร

3. สูตรของสารละลายที่ใช้ในการศึกษา HSPs gene

สารละลาย	ส่วนประกอบ
RNA extraction buffer	100 mM Tris-Cl pH 8.2
	1.4 M NaCl
	20 mM EDTA pH 8.0
	2% CTAB
RNA loading dye	50% glycerol
	10 mM Sodium phosphate pH 7.0
	0.25% bromophenol blue
	0.25% xylene cyanol FF
Formaldehyde gel (150 ml)	1.5 g agarose in 105 ml water
	30 ml formaldehyde
	15 ml MOPS
10x MOPS	0.2 M MOPS
	0.05 M sodium acetate
	0.01 M EDTA
Denaturing buffer (for RNA)	1 µl 10x MOPS
for total volume 20 µl	3.5 µl 37% formaldehyde
	10 µl 40% formamide
	5.5 µl RNA sample
Primary wash buffer	0.5x SSC pH 7.0
	0.4% SDS
	6 M urea

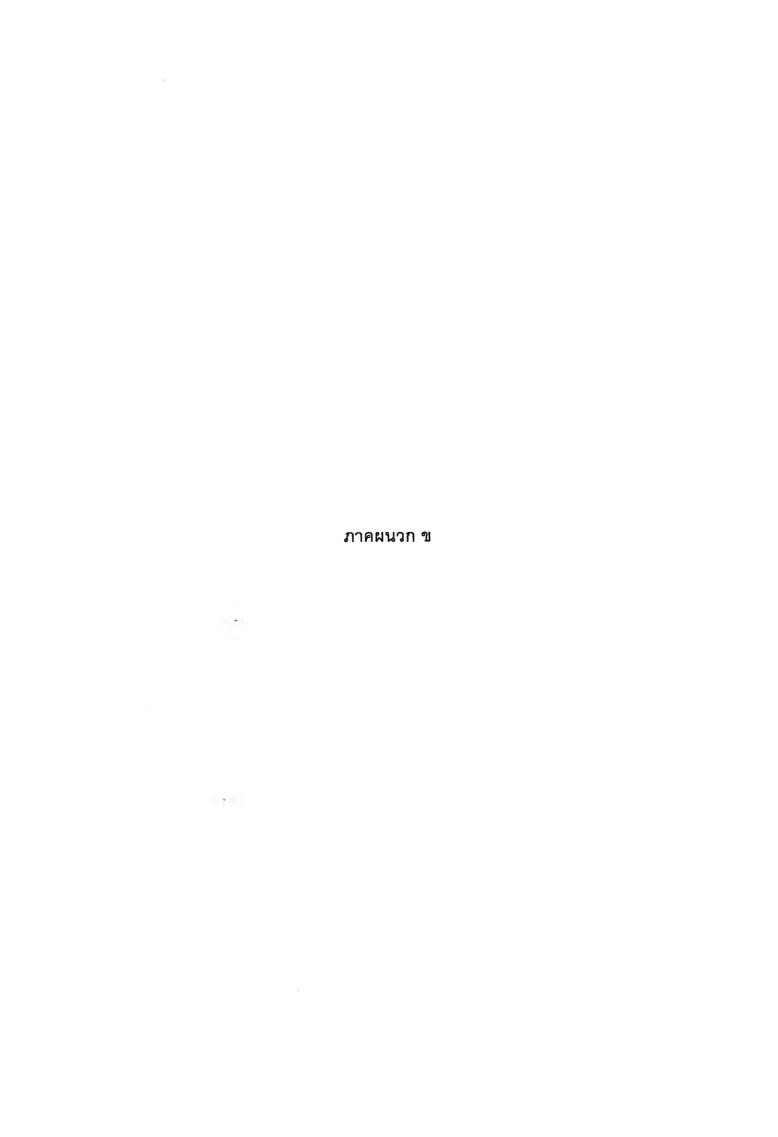
- 4. การวิเคราะห์ปริมาณเอนไซม์ PPO (ดัดแปลงจาก Montgomery และ Sgarbiery, 1975)
 - 4.1 ชั่งน้ำหนักเปลือกกล้วยประมาณ 1.5 กรัม บดใน liquid nitrogen ให้ละเอียดด้วยโกร่ง เติม extraction buffer 6 มิลลิลิตร บดให้เข้ากันเป็นเนื้อเดียว
 - 4.2 ถ่ายตัวอย่างลงในหลอด centrifuge screw cap ขนาด 15 มิลลิลิตร นำไปเหวี่ยงด้วย เครื่อง centrifuge ที่ความเร็ว 12,000 g อุณหภูมิ 4°C g เป็นเวลา 10 นาที
 - 4.3 นำเอนไซม์ที่อยู่ในส่วนของสารละลายมาวัดค่าการดูดกลืนแสงด้วยเครื่อง

 Spectrophotometer ที่ความยาวคลื่น 415 นาโนเมตร โดยทำการวัดแบบ kinetic ทุกๆ

 15 วินาที ระหว่าง 0- 60 วินาที เทียบระหว่าง Reference cuvette และ Sample

 cuvette โดยในแต่ละ cuvette มีส่วนประกอบ ดังนี้

Reference cuvette	2.9 ml 0.05 M KPi buffer pH 7
	0.1 ml สารละลายเอนไซม์
Sample cuvette	2.9 ml 0.2 M KPi buffer
	10 mM pyrrocatechol
	0.1 ml สารละลายเอนไซม์


5. วิธีการวิเคราะห์ปริมาณ total protein

การวิเคราะห์ปริมาณ total protein สามารถหาได้จาก reaction mixture ที่ประกอบด้วย สารละลายตัวอย่าง (ที่ใช้ในการวิเคราะห์ปริมาณเอนไซม์) 50 µl สารตรวจสอบโปรตีน (ซุดตรวจสอบ total protein ของบริษัท Clinaq) 50 µl H₂O 100 µl

Mix ให้เข้ากัน ตั้งทิ้งไว้ให้เกิดปฏิกิริยา 5 นาที จากนั้นนำไปวัดค่าการดูดกลืนแสงที่ความ ยาวคลื่น 595 นาในเมตร เทียบกับค่าของสารละลายโปรตีนมาตรฐาน

6. วิธีการสกัด RNA (ดัดแปลงจาก Asif และคณะ, 2000)

- 6.1 เติม 2-mercaptoethanol 10 µl ลงใน RNA extraction buffer 10 ml นำไปอุ่นใน water bath ที่อุณหภูมิ 65°C
- 6.2 บดตัวอย่างเปลือกกล้วยประมาณ 5 กรัม กับในโตรเจนเหลวให้ละเอียดเป็นผงสีขาว ตักใส่หลอด centrifuge ที่บรรจุสารละลายในข้อ 6.1
- 6.3 อุ่นต่อที่อุณหภูมิ 65°C เป็นเวลา 1 ชั่วโมง Vortex เบาๆทุกๆ 15 นาที
- 6.4 ปั่นตกตะกอนที่ 12,000 g เป็นเวลา 15 นาที ที่อุณหภูมิห้อง
- 6.5 เก็บชั้นของเหลวทำให้เย็นที่อุณหภูมิห้อง เติม chloroform ในสัดส่วนที่เท่ากัน เขย่า แรงๆ จนสารละลายทั้ง 2 ชั้น กลายเป็น emulsion (ปล่อยลมออกจากหลอดเป็นระยะๆ)
- 6.6 ปั่นตกตะกอนที่ 12,000 g เป็นเวลา 15 นาที ที่อุณหภูมิห้อง
- 6.7 เก็บชั้นของเหลวนำมาสกัดด้วย chloroform อีกครั้งเหมือนในข้อ 4.5 และปั่นตกตะกอน เหมือนในข้อ 6.6
- 6.8 เก็บขั้นของเหลวเติม 10 M LiCl จนได้ความเข้มข้นสุดท้ายเท่ากับ 3 M
- 6.9 เก็บที่อุณหภูมิ 4°C เป็นเวลาข้ามคืน
- 6.10 ปั่นตกตะกอน RNA ที่ 17,000 g เป็นเวลา 20 นาที ที่อุณหภูมิ 4°C
- 6.11 ละลายตะกอน RNA ด้วย DEPC treated water
- 6.12 สกัดอีกครั้งด้วย phenol, phenol:chloroform (1:1) และ chloroform:isoamyl alcohol (24:1) ตามลำดับ
- 6.13 เก็บขั้นของเหลวเติม 1/30 volume ของ 3 M Sodium acetate pH 5.2 และ 0.1 volume ของ 100% ethanol ผสมให้เข้ากัน เก็บในน้ำแข็ง 30 นาที
- 6.14 ปั่นตกตะกอนด้วย microfuge เป็นเวลา 25 นาที
- 6.15 เก็บชั้นของเหลวเติม 3 M Sodium acetate pH 5.2 จนได้ความเข้มข้นสุดท้ายเท่ากับ
 - 0.3 M และเดิม 3 volume ของ 100% ethanol เก็บที่อุณหภูมิ -70°C เป็นเวลาข้ามคืน
- 6.16 ปั่นตกตะกอน RNA ด้วย microfuge เป็นเวลา 20 นาที ที่อุณหภูมิ 4°C
- 6.17 ล้างตะกอน RNA ด้วย 70% ethanol ในสัดส่วนที่เท่ากัน นำไปปั่นเหมือนในข้อ 4.17
- 6.18 เท ethanol ทิ้ง ทิ้งไว้ให้แห้งหรือนำไปปั่นด้วย vacuum dry ละลายตะกอน RNA ด้วย 20 µl DEPC treated water
- 6.19 น้ำสารละลายไปวัดค่าการดูดกลืนแสงด้วยเครื่อง Spectrophotometer ที่ความยาวคลื่น 260 นาโนเมตร แล้วนำมาคำนวณหาปริมาณ RNA

ตารางที่ 1 ANOVA ของน้ำหนักสด (Fresh weight, %) ของผลกล้วยหอมทองที่ได้รับการแช่น้ำ ร้อนที่อุณหภูมิและช่วงเวลาต่างๆ เก็บรักษาไว้ที่อุณหภูมิห้อง

	Sı	Sum of Squares		in Square	F	Sig.	
DAY_0	Between Groups	.000	9	.000	191		
	Within Groups	.000	30	.000			
	Total	.000	39				
DAY_3	Between Groups	3.414	9	.379	3.179	.008*	
	Within Groups	3.580	30	.119			
	Total	6.995	39				
DAY_6	Between Groups	8.945	9	.994	4.898	.000*	
	Within Groups	6.087	30	.203			
	Total	15.032	39				
DAY_8	Between Groups	14.477	9	1.609	4.701	.001*	
	Within Groups	10.265	30	.342			
	Total	24.742	39				
DAY_10	Between Groups	13.496	9	1.500	3.187	.009*	
	Within Groups	13.173	28	.470			
	Total	26.669	37				
DAY_12	Between Groups	10.273	9	1.141	1.262	.324	
	Within Groups	15.380	17	.905			
	Total	25.653	26				
DAY_14	Between Groups	13.738	9	1.526	1.214	.374	
	Within Groups	13.826	11	1.257			
	Total	27.564	20				
DAY_16	Between Groups	9.201	2	4.601	31.119	.001*	
	Within Groups	.887	6	.148			
	Total	10.089	8				

^{*} ค่าเฉลี่ยมีความแตกต่างกันอย่างมีนัยสำคัญที่ระดับความเชื่อมั่น 95%

ตารางที่ 2 ANOVA ของปริมาณเอทิลีน (Ethylene, nl./kg.h.) ของผลกล้วยหอมทองที่ได้รับการแช่ น้ำร้อนที่อุณหภูมิและช่วงเวลาต่างๆ เก็บรักษาไว้ที่อุณหภูมิห้อง

		Sum of Squares	df	Mean Square	F	Sig.
DAY_0	Between Groups	1.3E+11	9	1.461E+10	12.944	.000*
	Within Groups	1.4E+10	12	1128571928		
	Total	1.5E+11	21			
DAY_3	Between Groups	7.4E+09	9	820709677	115.469	.000*
	Within Groups	1.4E+08	20	7107601.238		
	Total	7.5E+09	29			
DAY_6	Between Groups	2.5E+09	9	280217681	7.504	.000*
	Within Groups	6.0E+08	16	37341131.3		
	Total	3.1E+09	25			
DAY_8	Between Groups	2.6E+09	9	288785382	6.042	.001*
	Within Groups	7.2E+08	15	47796535.8		
	Total	3.3E+09	24			
DAY_10	Between Groups	5.6E+10	9	6264873007	79.214	.000*
	Within Groups	1.3E+09	17	79088287.9		
	Total	5.8E+10	26			
DAY_12	Between Groups	3.0E+10	9	3387728403	123.576	.000*
	Within Groups	3.3E+10	12	27414073.2		
	Total	9.5E+09	21			
DAY_14	Between Groups	1.1E+09	9	1051741309	2.760	.218
	Within Groups	1.1E+10	3	381119790		
	Total		12			
DAY_16	Between Groups	4.1E+09	3	1375205976	70.646	.001*
	Within Groups	7.8E+07	4	19466031.0		
	Total	4.2E+09	7			

^{*} ค่าเฉลี่ยมีความแตกต่างกันอย่างมีนัยสำคัญที่ระดับความเชื่อมั่น 95%

ตารางที่ 3 ANOVA ของความสว่าง (L value) ของผลกล้วยหอมทองที่ได้รับการแช่น้ำร้อนที่ อุณหภูมิและช่วงเวลาต่างๆ เก็บรักษาไว้ที่อุณหภูมิห้อง

	S	um of Squares	df	Mean Square	F	Sig.
DAY_0	Between Groups	9.390	Ş	1.043	1.000	.461
	Within Groups	31.299	30	1.043		
	Total	40.688	39)		
DAY_3	Between Groups	163.264	Ç	18.140	1.462	.207
	Within Groups	372.334	30	12.411		
	Total	535.598	39)		
DAY_6	Between Groups	190.295	Ş	21.144	1.306	.275
	Within Groups	485.676	30	16.189		
	Total	675.971	39)		
DAY_8	Between Groups	3086.504	Ş	342.945	12.272	.000*
	Within Groups	670.689	24	27.945		
	Total	3757.193	33	}		
DAY_10	Between Groups	6611.225	Ç	734.581	77.098	.000*
	Within Groups	171.502	18	9.528		
	Total	6782.726	27	,		
DAY_12	Between Groups	5163.201	(573.689	32.126	.000*
	Within Groups	214.288	12	17.857		
	Total	5377.489	21			
DAY_14	Between Groups	3175.681	Ś	352.853	263.025	.000*
	Within Groups	17,440	13	1.342		
	Total	3193.120	22)		
DAY_16	Between Groups	1551.056	S	172.340	31.826	.031*
	Within Groups	10.830	2	5.415		
	Total	1561.886	11			

^{*} ค่าเฉลี่ยมีความแตกต่างกันอย่างมีนัยสำคัญที่ระดับความเชื่อมั้น 95%

ตารางที่ 4 ANOVA ของการเปลี่ยนสี (Hue value) ของผลกล้วยหอมทองที่ได้รับการแช่น้ำร้อนที่ อุณหภูมิและช่วงเวลาต่างๆ เก็บรักษาไว้ที่อุณหภูมิห้อง

	<u> </u>	Sum of Squares	df	M	ean Square	F	Sig.
DAY_0	Between Groups	1.211E-06		9	1.346E-07	1.000	.461
	Within Groups	4.037E-06		30	1.346E-07		
	Total	5.248E-06		39			
DAY_3	Between Groups	8.130E-02		9	9.033E-03	485.656	.000*
	Within Groups	5.580E-04		30	1.860E-05		
	Total	8.186E-02		39			
DAY_6	Between Groups	.103		9	1.140E-02	612.059	.000*
	Within Groups	5.590E-04		30	1.863E-05		
	Total	.103		39			
DAY_8	Between Groups	.531		9	5.899E-02	1386.242	.000*
	Within Groups	1.021E-03		24	4.256E-05		
	Total	.532		33			
DAY_10	Between Groups	1.353		9	.150	69.149	.000*
	Within Groups	3.914E-02		18	2.174E-03		
	Total	1.392		27			
DAY_12	Between Groups	.956		9	.106	26.691	.000*
	Within Groups	4.775E-02		12	3.979E-03		
	Total	1.004		21			
DAY_14	Between Groups	.452		9	5.017E-02	51.320	.000*
	Within Groups	1.271E-02		13	9.776E-04		
	Total	.464		22			
DAY_16	Between Groups	.679		9	7.546E-02	2.344	.335
	Within Groups	6.438E-02		2	3.219E-02		
	Total	.744		11			

^{*} ค่าเฉลี่ยมีความแตกต่างกันอย่างมีนัยสำคัญที่ระดับความเชื่อมั่น 95%

ตารางที่ 5 ANOVA ของปริมาณ Total chlorophyll (µg/gram fresh weight) ของผลกล้วยหอม ทองที่ได้จับการแช่น้ำรัอนที่อุณหภูมิและช่วงเวลาต่างๆ เก็บรักษาไว้ที่อุณหภูมิห้อง

		Sum of Squares	df	Mean Square	F	Sig.
DAY_0	Between Groups	65.865	(7.318	.498	.862
	Within Groups	381.965	20	14.691		
	Total	447.830	3	5		
DAY_3	Between Groups	165.722	(18.414	1.294	.300
	Within Groups	284.616	20	14.231		
	Total	450.337	29)		
DAY_6	Between Groups	397.244	Ç	9 44.138	5.539	.000*
	Within Groups	191.255	24	7.969		
	Total	588.500	33	3		
DAY_8	Between Groups	1713.325	Ç	190.369	10.135	.000*
	Within Groups	319.315	1	18.783		
	Total	2032.641	26	6		
DAY_10	Between Groups	2188.773	Ć	243.197	38.190	.000*
	Within Groups	108.258	17	6.368		
	Total	2297.031	26	3		
DAY_12	Between Groups	1565.195	(173.911	20.822	.000*
	Within Groups	100.229	12	8.352		
	Total	1665.425	2			
DAY_14	Between Groups	748.728	Ć	83.192	21.370	.000*
	Within Groups	38.929	1(3.893		
	Total	787.658	19)		
DAY_16	Between Groups	471.961	2	235.980	66.119	.000*
	Within Groups	21.414	(3.569		
	Total	493.375	8	3		

^{*} ค่าเฉลี่ยมีความแตกต่างกันอย่างมีนัยสำคัญที่ระดับความเชื่อมั่น 95%

114

	Su	df M	lean Square	F	Sig.	
DAY_0	Between Groups	.000	9	.000		
	Within Groups	.000	30	.000		
	Total	.000	39			
DAY_3	Between Groups	.000	9	.000		4
	Within Groups	.000	29	.000		
	Total	.000	38			
DAY_6	Between Groups	22.350	9	2.483	1.433	.222
	Within Groups	48.531	28	1.733		
	Total	70.881	37			
DAY_8	Between Groups	3441.318	9	382.369	582.328	.000
	Within Groups	12.476	19	.657		
	Total	3453.794	28			
DAY_10	Between Groups	9908.282	9	1100.920	188.773	.000.
	Within Groups	99.144	17	5.832		
	Total	10007.426	26			
DAY_12	Ectween Groups	7255.506	9	806.167	122.649	.000
	Within Groups	72.303	11	6.573		
	Total	7327.809	20			
DAY_14	Between Groups	8612.408	9	956.934	553.273	.000
	Within Groups	19.025	11	1.730		
	Total	8631.434	20			
DAY_16	Between Groups	3988.801	9	443.200		
	Within Groups	.000	0			
	Total	4021.386	9			

^{*} ค่าเฉลี่ยมีความแตกต่างกันอย่างมีนัยสำคัญที่ระดับความเชื่อมั่น 95%

ตารางที่ 7 ANOVA ของปริมาณของแข็งที่ละลายในน้ำ (Total Soluble Solids, °Brix) ของผล กล้วยหอมทองที่ได้รับการแช่น้ำร้อนที่อุณหภูมิและช่วงเวลาต่างๆ เก็บรักษาไว้ที่อุณหภูมิห้อง

	Su	ım of Squares	df	M	lean Square	F	Sig.
DAY_0	Between Groups	.315		9	3.500E-02	.631	.762
	Within Groups	1.665		30	5.550E-02		
	Total	1.980		39			
DAY_3	Between Groups	6.883		9	.765	3.910	.003*
	Within Groups	5.085		26	.196		
	Total	11.968		35			
DAY_6	Between Groups	6.925		9	.769	4.822	.001*
	Within Groups	4.628		29	.160		
	Total	11.552		38			
DAY_8	Between Groups	343.863		9	38.207	23.672	.000*
	Within Groups	32.280		20	1.614		
	Total	376.143		29			
DAY_10	Between Groups	1117.486		9	124.165	231.543	.000*
	Within Groups	8.580		16	.536		
	Total	1126.066		25			
DAY_12	Between Groups	1532.158		9	170.240	90.531	.000*
	Within Groups	20.685		11	1.880		
	Total	1552.843		20			
DAY_14	Between Groups	1157.264		9	128.585	46.815	.000*
	Within Groups	24.720		9	2.747		
	Total	1181.984		18			
DAY_16	Between Groups	688.005		9	76.445	ō	- 1
	Within Groups	.000		0	- 5		
	Total	705.060		9			

^{*} ค่าเฉลี่ยมีความแตกต่างกันอย่างมีนัยสำคัญที่ระดับความเชื่อมั้น 95%

ตารางที่ 8 ANOVA ของน้ำหนักสด (Fresh weight, %) ของผลกล้วยหอมทองที่ได้รับการแช่น้ำ ร้อนที่อุณหภูมิและช่วงเวลาต่างๆ เก็บรักษาไว้ที่อุณหภูมิ 14°C 1, 2 และ 3 สัปดาห์ แล้วนำไปไว้ที่ อุณหภูมิห้อง

		Sum of Squares	df	M	ean Square	F	Sig.
DAY_0_0	Between Groups	.000	-	2	.000	1-	5-1
	Within Groups	.000		3	.000		
	Total	.000		5			
DAY_0_1	Between Groups	8.738		2	4.369	6.307	.084
	Within Groups	2.078		3	.693		
	Total	10.816		5			
DAY_3_1	Between Groups	13.654		2	6.827	3.825	.149
	Within Groups	5.354		3	1.785		
	Total	19.007		5			
DAY_6_1	Between Groups	16.149		2	8.075	10.096	.047*
	Within Groups	2.399		3	.800		
	Total	18.549		5			
DAY_8_1	Between Groups	19.810		2	9.905	11.643	.039*
	Within Groups	2.552		3	.851		
	Total	22.362		5			
DAY_10_1	Between Groups	22.459		2	11.229	12.024	.037*
	Within Groups	2.802		3	.934		
	Total	25.260		5			
DAY_0_2	Between Groups	12.212		2	6.106	4.759	.117
	Within Groups	3.849		3	1.283		
	Total	16.062		5			
DAY_3_2	Between Groups	9.524		2	4.762	2.669	.216
	Within Groups	5.354		3	1.785		
	Total	14.878		5			
DAY_6_2	Between Groups	8.372		2	4.186	2.417	.237
	Within Groups	5.195		3	1.732		
	Total	13.567		5			
DAY_8_2	Between Groups	6.381		2	3.191	1.402	.372
	Within Groups	6.829		3	2.276		
	Total	13.211		5			

		Sum of Squares	df	Me	ean Square	F	Sig.
DAY_10_2	Between Groups	5.5 i 9		2	2.759	.806	.524
	Within Groups	10.266		3	3.422		
	Total	15.785		5			
DAY_0_3	Between Groups	19.687		2	9.843	.799	.527
	Within Groups	36.980		3	12.327		
	Total	56.667		5			
DAY_3_3	Between Groups	19.224		2	9.612	.688	.568
	Within Groups	41.936		3	13.979		
	Total	61.159		5			
DAY_6_3	Between Groups	17.826		2	8.913	.494	.652
	Within Groups	54.109		3	18.036		
	Total	71.935		5			

^{*} ค่าเฉลี่ยมีความแตกต่างกันอย่างมีนัยสำคัญที่ระดับความเชื่อมั่น 95%

ตารางที่ 9 ANOVA ของปริมาณเอทิลีน (Ethylene, nl./kg.h.) ของผลกล้วยหอมทองที่ได้รับการแช่ น้ำร้อนที่อุณหภูมิและช่วงเวลาต่างๆ เก็บรักษาไว้ที่อุณหภูมิ 14°C 1, 2 และ 3 สัปดาห์ แล้วนำไป ไว้ที่อุณหภูมิห้อง

		Sum of Squares	df	1	Mean Square	F	Sig.
DAY_0_0	Between Groups	516.759		2	258.380	24.523	.014*
	Within Groups	31.608		3	10.536		
	Total	548.367		5			
DAY_0_1	Between Groups	89.765		2	44.882	7.427	.045*
	Within Groups	24.171		4	6.043		
	Total	113.936		6			
DAY_3_1	Between Groups	94.951		2	47.475	8.887	.055
	Within Groups	16.027		3	5.342		
	Total	110.978		5			
DAY_6_1	Between Groups	172.558		2	86.279	116.096	.001*
	Within Groups	2.229		3	.743		
	Total	174.787		5			
DAY_8_1	Between Groups	213.722		2	106.861	17.453	.022*
	Within Groups	18.368		3	6.123		
	Total	232.090	-	- 5			
DAY_10_1	Between Groups	5.403		2	2.701	.758	.541
	Within Groups	10.692		3	3.564		
	Total	16.095		5			
DAY_0_2	Between Groups	133.998		2	66.999	99.287	.002*
	Within Groups	2.024		3	.675		
	Total	136.022		5			
DAY_3_2	Between Groups	3.224		2	1.612	.334	.740
	Within Groups	14.483		3	4.828		
	Total	17.707		5			
DAY_6_2	Between Groups	249.505		2	124.752	30.086	.010*
	Within Groups	12.439		3	4.146		
	Total	261.944		5			
DAY_8_2	Between Groups	18.444		2	9.222	.380	.706
	Within Groups	97.125		4	24.281		
	Total	115.569		6			

		Sum of Squares	df	١	Mean Square	F	Sig.
DAY_10_2	Between Groups	480.826		2	240.413	13.985	.030*
	Within Groups	51.572		3	17.191		
	Total	532.398		5			
DAY_0_3	Between Groups	140.116		2	70.058	11.628	.039*
	Within Groups	18.075		3	6.025		
	Total	158.191		5			
DAY_3_3	Between Groups	6.975		2	3.488	.332	.730
	Within Groups	62.955		6	10.492		
	Total	69.930		8			
DAY_6_3	Between Groups	109.594		2	54.797	3.849	.148
	Within Groups	42.709		3	14.236		
	Total	152.303		5			

^{*} ค่าเฉลี่ยมีความแตกต่างกันอย่างมีนัยสำคัญที่ระดับความเชื่อมั่น 95%

ตารางที่ 10ANOVA ของค่าความสว่าง (L value) ของผลกล้วยหอมทองที่ได้รับการแช่น้ำร้อนที่ อุณหภูมิและช่วงเวลาต่างๆ เก็บรักษาไว้ที่อุณหภูมิ 14°C 1, 2 และ 3 สัปดาห์ แล้วนำไปไว้ที่ อุณหภูมิห้อง

		Sum of Squares	df	Mea	an Square	F	Sig.
DAY_0_0	Between Groups	6.955		2	3.478	.500	.622
	Within Groups	62.597		9	6.955		
	Total	69.553		11			
DAY_0_1	Between Groups	6.955		2	3.478	.500	.622
	Within Groups	62.597		9	6.955		
	Total	69.553		11			
DAY_3_1	Between Groups	6.955		2	3.478	1.000	.405
	Within Groups	31.299		9	3.478		
	Total	38.254		11			
DAY_6_1	Between Groups	14.373		2	7.186	.201	.822
	Within Groups	250.231		7	35.747		
	Total	264.603		9			
DAY_8_1	Between Groups	73.030		2	36.515	8.167	.015*
	Within Groups	31.299		7	4.471		
	Total	104.329		9			
DAY_10_1	Between Groups	3.450		2	1.725	1.204	.344
	Within Groups	12.894		9	1.433		
	Total	16.344		11			
DAY_0_2	Between Groups	24.332		2	12.166	.178	.840
	Within Groups	613.933		9	68.215		
	Total	638.265		11			
DAY_3_2	Between Groups	27.821		2	13.911	1.500	.274
	Within Groups	83.463		9	9.274		
	Tota	111.284		11			
DAY_6_2	Between Groups	11.212		2	5.606	.424	.668
	Within Groups	105.778		8	13.222		
	Tota	116.989		10			
DAY_8_2	Between Groups	53.101		2	26.550	.461	.646
	Within Groups	460.799		8	57.600		
	Tota	I 513.900		10			

		Sum of Squares	df	М	ean Square	F	Sig.
DAY_10_2	Between Groups	1.297		2	.649	1.000	.405
	Within Groups	5.838		9	.649		
	Total	7.135		11			
DAY_0_3	Between Groups	10.600		2	5.300	.235	.795
	Within Groups	202.937		9	22.549		
	Total	213.537		11			
DAY_3_3	Between Groups	23.685		2	11.843	11.866	.003*
	Within Groups	8.982		9	.998		
	Total	32.667		11			
DAY_6_3	Between Groups	.809		2	.405	.730	.508
	Within Groups	4.988		9	.554		
	Total	5.798		11			

^{*} ค่าเฉลี่ยมีความแตกต่างกันอย่างมีนัยสำคัญที่ระดับความเชื่อมั่น 95%

ตารางที่ 11 ANOVA ของการเปลี่ยนสี (Hue value) ของผลกล้วยหอมทองที่ได้รับการแช่น้ำร้อนที่ อุณหภูมิและช่วงเวลาต่างๆ เก็บรักษาไว้ที่อุณหภูมิ 14°C 1, 2 และ 3 สัปดาห์ แล้วนำไปไว้ที่ อุณหภูมิห้อง

	;	Sum of Squares	df	Mean Square.	F	Sig.
DAY_0_0	Between Groups	8.971E-07	2	4.485E-07	.500	.622
	Within Groups	8.074E-06	9	8.971E-07		
	Total	8.971E-06	11			
DAY_0_1	Between Groups	8.971E-07	2	4.485E-07	.500	.622
	Within Groups	8.074E-06	9	8.971E-07		
	Total	8.971E-06	11			
DAY_3_1	Between Groups	3.588E-06	2	1.794E-06	1.000	.405
	Within Groups	1.615E-05	9	1.794E-06		
	Total	1.974E-05	11			
DAY_6_1	Between Groups	2.039E-06	2	1.019E-06	.699	.525
	Within Groups	1.166E-05	8	1.458E-06		
	Total	1.370E-05	10			
DAY_8_1	Between Groups	4.304E-04	2	2.152E-04	2.110	.177
	Within Groups	9.180E-04	9	1.020E-04		
	Total	1.348E-03	11			
DAY_10_1	Between Groups	4.822E-03	2	2.411E-03	1.498	.275
	Within Groups	1.449E-02	9	1.610E-03		
	Total	1.931E-02	11			
DAY_0_2	Between Groups	1.765E-04	2	8.825E-05	.432	.662
	Within Groups	1.839E-03	9	2.043E-04		
	Totai	2.015E-03	11			
DAY_3_2	Between Groups	2.691E-06	2	1.346E -06	.600	.569
	Within Groups	2.018E-05	9	2.243E-06		
	Total	2.288E-05	11			
DAY_6_2	Between Groups	3.964E-03	2	1.982E-03	1.749	.234
	Within Groups	9.064E-03	8	1.133E-03		
	Total	1.303E-02	10			
DAY_8_2	Between Groups	2.233E-02	2	1.116E-02	2.075	.188
	Within Groups	4.305E-02	8	5.381E-03		
	Total	6.538E-02	10			

		Sum of Squares	df	M	lean Square	F	Sig.
DAY_10_2	Between Groups	3.625E-04		2	1.813E-04	1.000	.405
	Within Groups	1.631E-03		9	1.813E-04		
	Total	1.994E-03		11			
DAY_0_3	Between Groups	2.264E-03		2	1.132E-03	1.018	.399
	Within Groups	1.001E-02		9	1.112E-03		
	Tota	1.227E-02		11			
DAY_3_3	Between Groups	6.680E-04		2	3.340E-04	.590	.574
	Within Groups	5.095E-03		9	5.661E-04		
	Tota	5.7 63 E-03		11			
DAY_6_3	Between Groups	3.392E-03		2	1.696E-03	1.495	.275
	Within Groups	1.021E-02		9	1.134E-03		
	Tota	1.360E-02		11			

^{*} ค่าเฉลี่ยมีความแตกต่างกันอย่างมีนัยสำคัญที่ระดับความเชื่อมั่น 95%

ตารางที่ 12 ANOVA ของปริมาณ Total chlorophyll (µg/gram fresh weight) ของผลกล้วยหอม ทองที่ได้รับการแช่น้ำร้อนที่อุณหภูมิและช่วงเวลาต่างๆ เก็บรักษาไว้ที่อุณหภูมิ 14°C 1, 2 และ 3 สัปดาห์ แล้วนำไปไว้ที่อุณหภูมิห้อง

		Sum of Squares	df	Mean Square	F	Sig.
DAY_0_0	Between Groups	4.408	2	2.204	.684	.535
	Within Groups	22.557	7	3.222		
	Total	26.965	9			
DAY_0_1	Between Groups	1.980	2	.990	.034	.967
	Within Groups	263.465	9	29.274		
	Total	265.445	11			
DAY_3_1	Between Groups	58.199	2	29.099	1.034	.411
	Within Groups	168.931	6	28.155		
	Total	227.130	8			
DAY_6_1	Between Groups	5.074	2	2.537	.099	.907
	Within Groups	179.649	7	25.664		
	Total	184.723	9			
DAY_8_1	Between Groups	15.167	2	7.584	.216	.811
	Within Groups	245.883	7	35.126		
	Total	261.051	9			
DAY_10_1	Between Groups	.680	2	.340	1.424	.290
	Within Groups	2.150	9	.239		
	Total	2.830	11			
DAY_0_2	Between Groups	64.811	2	32.405	.686	.535
	Within Groups	330.714	7	47.245		
	Total	395.525	9			
DAY_3_2	Between Groups	63.410	2	31.705	.841	.462
	Within Groups	339.225	9	37.692		
	Total	402.635	11			
DAY_6_2	Between Groups	26.403	2	13.201	1.239	.340
	Within Groups	85.258	8	10.657		
	Total	111.661	10			
DAY_8_2	Between Groups	77.318	2	38.659	.972	.431
	Within Groups	238.540	6	39.757		
	Total	315.858	8			

		Sum of Squares	df	Mean Square	F	Sig.
DAY_10_2	Between Groups	5.001	2	2.501	1.309	.322
	Within Groups	15.277	8	1.910		
	Total	20.278	10			
DAY_0_3	Between Groups	12.272	2	6.136	.107	.900
	Within Groups	343.314	6	57.219		
	Total	355.586	8			
DAY_3_3	Between Groups	48.364	2	24.182	1.285	.328
	Within Groups	150.506	8	18.813		
	Total	198.870	10			
DAY_6_3	Between Groups	4.663	2	2.331	5.627	.026*
	Within Groups	3.729	9	.414		
_	Total	8.392	11			

^{*} ค่าเฉลี่ยมีความแตกต่างกันอย่างมีนัยสำคัญที่ระดับความเชื่อมั่น 95%

ตารางที่ 13 ANOVA ของความแน่นเนื้อ (Firmness, Newton) ของผลกล้วยหอมทองที่ได้รับการ แช่น้ำร้อนที่อุณหภูมิและช่วงเวลาต่างๆ เก็บรักษาไว้ที่อุณหภูมิ 14°C 1, 2 และ 3 สัปดาห์ แล้ว นำไปไว้ที่อุณหภูมิห้อง

		Sum of Squares	df	Mean Square	F	Sig.
DAY_0_0	Between Groups	.000	2	.000	.000	1.000
	Within Groups	1.263E-29	9	1.404E-30		
	Total	1.263E-29	11			
DAY_0_1	Between Groups	13.590	2	6.795	1.000	.405
	Within Groups	61.156	9	6.795		
	Total	74.746	11			
DAY_3_1	Between Groups	2.301	2	1.150	1.225	.350
	Within Groups	6.573	7	.939		
	Total	8.874	9			
DAY_6_1	Between Groups	2.529	2	1.265	.417	.675
	Within Groups	21.245	7	3.035		
	Total	23.774	9			
DAY_8_1	Between Groups	169.907	2	84.953	1.465	.294
	Within Groups	405.955	7	57.994		
	Total	575.862	9			
DAY_10_1	Between Groups	.973	2	.487	.835	.465
	Within Groups	5.241	9	.582		
	Total	6.214	11			
DAY_0_2	Between Groups	7.935E-02	2	3.967E-02	1.000	.405
	Within Groups	.357	9	3.967E-02		
	Total	.436	11			
DAY_3_2	Between Groups	.000	2	.000	.000	1.000
	Within Groups	1.263E-29	9	1.404E-30		
	Total	1.263E-29	11			
DAY_6_2	Between Groups	63.052	2	31.526	.757	.500
	Within Groups	333.286	8	41.661		
	Total	396.338	10			
DAY_8_2	Between Groups	91.531	2	45.765	.621	.569
	Within Groups	441.896	6	73.649		
	Total	533.426	8	}		

		Sum of Squares	df	Mean Square	F	Sig.
DAY_10_2	Between Groups	1.766	2	.883	7.931	.013*
	Within Groups	.891	8	.111		
	Total	2.657	10			
DAY_0_3	Between Groups	40.141	2	20.070	1.000	.422
	Within Groups	120.422	6	20.070		
	Total	160.563	8			
DAY_3_3	Between Groups	1388.292	2	694.146	39.015	.000*
	Within Groups	142.336	8	17.792		
	Total	1530.628	10			
DAY_6_3	Between Groups	5.468	2	2.734	4.222	.051
	Within Groups	5.828	9	.648		
	Total	11.296	11			

^{*} ค่าเฉลี่ยมีความแตกต่างกันอย่างมีนัยสำคัญที่ระดับความเชื่อมั่น 95%

ตารางที่ 14 ANOVA ของปริมาณของแข็งที่ละลายในน้ำ (Total Soluble Solids, °Brix) ของผล กล้วยหอมทองที่ได้รับการแช่น้ำร้อนที่อุณหภูมิและช่วงเวลาต่างๆ เก็บรักษาไว้ที่อุณหภูมิ 14°C 1, 2 และ 3 สัปดาห์ แล้วนำไปไว้ที่อุณหภูมิห้อง

		Sum of Squares	df N	Mean Square	F	Sig.
DAY_0_0	Between Groups	.000	2	.000	100	- T
	Within Groups	.000	9	.000		
	Total	.000	11			
DAY_0_1	Between Groups	1.395	2	.697	1.632	.249
	Within Groups	3.847	9	.427		
	Total	5.242	11			
DAY_3_1	Between Groups	.721	2	.361	1.076	.391
	Within Groups	2.347	7	.335		
	Total	3.069	9			
DAY_6_1	Between Groups	1.254	2	.627	1.170	.364
	Within Groups	3.750	7	.536		
	Total	5.004	9			
DAY_8_1	Between Groups	7.314	2	3.657	1.145	.371
	Within Groups	22.350	7	3.193		
	Tota	29.664	9			
DAY_10_1	Between Groups	13.020	2	6.510	4.062	.055
	Within Groups	14.423	9	1.603		
	Tota	27.443	11			
DAY_0_2	Between Groups	.645	2	.322	.279	.763
	Within Groups	10.418	9	1.158		
	Tota	11.063	11			
DAY_3_2	Between Groups	3.660	2	1.830	4.946	.036*
	Within Groups	3.330	9	.370		
	Tota	6.990	11			
DAY_6_2	Between Groups	.856	2	.428	.159	.855
	Within Groups	21.480	8	2.685		
	Tota	22.336	10			
DAY_8_2	Between Groups	.795	2	.397	2.013	.214
	Within Groups	1.185	6	.197		
	Tota	1.980	8			

		Sum of Squares	df	Mean Square	F	Sig.
DAY_10_2	Between Groups	.447	2	.224	.210	.815
	Within Groups	8.520	8	1.065		
	Total	8.967	10)		
DAY_0_3	Between Groups	4.460	2	2.230	.861	.469
	Within Groups	15.540	6	2.590		
	Total	20.000	8	,		
DAY_3_3	Between Groups	139.955	2	69.978	12.861	.003*
	Within Groups	43.530	8	5.441		
	Total	183.485	10)		
DAY_6_3	Between Groups	10.185	2	5.092	2.363	.150
	Within Groups	19.395	9	2.155		
	Total	29.580	11			

^{*} ค่าเฉลี่ยมีความแตกต่างกันอย่างมีนัยสำคัญที่ระดับความเชื่อมั่น 95%

ตารางที่ 15 ANOVA ของปริมาณเอนไซม์ polyphenol oxidase (units/mg. protein) ของผล กล้วยหอมทองที่ได้รับการแช่น้ำร้อนที่อุณหภูมิและช่วงเวลาต่างๆ เก็บรักษาไว้ที่อุณหภูมิ 14°C 1, 2 และ 3 สัปดาห์ แล้วนำไปไว้ที่อุณหภูมิห้อง

		Sum of Squares	df	Mean Square	F	Sig.
DAY_0_0	Between Groups	155.545	2	77.773	.134	.878
	Within Groups	2908.737	5	581.747		
	Total	3064.282	7			
DAY_0_1	Between Groups	15021.913	2	7510.956	17.732	.002*
	Within Groups	2965.074	7	423.582		
	Total	17986.987	9			
DAY_3_1	Between Groups	32.043	2	16.022	.039	.962
	Within Groups	2038.922	5	407.784		
	Total	2070.965	7			
DAY_6_1	Between Groups	4458.452	2	2229.226	.730	.520
	Within Groups	18323.328	6	3053.888		
	Total	22781.780	8			
DAY_8_1	Between Groups	4130.793	2	2065.397	2.562	.146
	Within Groups	5642.491	7	806.070		
	Total	9773.284	9			
DAY_10_1	Between Groups	3657.489	2	1828.745	4.423	.066
	Within Groups	2480.811	6	413.469		
	Total	6138.300	8			
DAY_0_2	Between Groups	45.804	2	22.902	.019	.981
	Within Groups	8246.183	7	1178.026		
	Total	8291.987	9			
DAY_3_2	Between Groups	3871.271	2	1935.635	7.529	.012*
	Within Groups	2313.926	9	257.103		
	Total	6185.197	11			
DAY_6_2	Between Groups	4208.775	2	2104.388	2.702	.127
	Within Groups	6231.678	8	778.960		
	Total	10440.453	10			
DAY_8_2	Between Groups	11453.260	2	5726.630	8.527	.018*
	Within Groups	4029.490	6	671.582		
	Total	15482.750	8			

		Sum of Squares	df Mean Square		F	Sig.
DAY_10_2	Between Groups	5261.234	2	2630.617	2.523	.135
	Within Groups	9385.041	9	1042.782		
	Total	14646.274	11			
DAY_0_3	Between Groups	3232.272	2	1616.136	2.638	.140
	Within Groups	4288.363	7	612.623		
	Total	7520.635	9			
DAY_3_3	Between Groups	1800.992	2	900.496	.317	.742
	Within Groups	14202.194	5	2840.439		
	Total	16003.186	7			
DAY_6_3	Between Groups	44445.839	2	22222.919	43.694	.000*
	Within Groups	4577.478	9	508.609		
	Total	49023.316	11			

^{*} ค่าเฉลี่ยมีความแตกต่างกันอย่างมีนัยสำคัญที่ระดับความเชื่อมั่น 95%

ประวัติผู้เขียนวิทยานิพนธ์

นางสาวจินตนา จันทร์เจริญฤทธิ์ เกิดเมื่อวันที่ 17 มกราคม พ.ศ.2521 ที่จังหวัด กรุงเทพมหานคร สำเร็จการศึกษาปริญญาวิทยาศาสตรบัณฑิต สาขาพฤกษศาสตร์ จาก ภาควิชาพฤกษศาสตร์ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย เมื่อปีการศึกษา 2541 และ ศึกษาต่อในหลักสูตรวิทยาศาสตรมหาบัณฑิต คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย เมื่อ ปี พ.ศ.2542

