BIODIVERSITY OF UNCULTURED Streptomyces INVOLVED IN BIOACTIVE SUBSTANCE PRODUCTION FROM SOIL IN THAILAND

Miss Sirinee Yodmuang

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science Program in Biochemistry Department of Biochemistry Faculty of Science Chulalongkorn University Academic Year 2008 Copyright of Chulalongkorn University ความหลากหลายทางชีวภาพของสเตรปโตมัยซีสที่เกี่ยวข้องกับการผลิตสารออกฤทธิ์ทางชีวภาพ จากดินในประเทศไทยโดยไม่อาศัยการเพาะเลี้ยงเชื้อ

นางสาวสิริณี ยอดเมือง

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาชีวเคมี ภาควิชาชีวเคมี คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2551 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

Thesis Title	BIODIVERSITY OF UNCULTURED Streptomyces INVOLVED IN
	BIOACTIVE SUBSTANCE PRODUCTION FROM SOIL IN THAILAND
Ву	Miss Sirinee Yodmuang
Field of Study	Biochemistry
Advisor	Assistant Professor Suchart Chanama, Ph.D.
Co-Advisor	Assistant Professor Manee Chanama, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

..... Dean of the Faculty of Science

(Professor Supot Hannongbua, Dr. rer. nat.)

THESIS COMMITTEE

..... Chairman

(Assistant Professor Teerapong Buaboocha, Ph.D.)

..... Advisor

(Assistant Professor Suchart Chanama, Ph.D.)

..... Co-Advisor

(Assistant Professor Manee Chanama, Ph.D.)

..... Examiner

(Assistant Professor Manchumas Prousoontorn, Ph.D.)

..... Examiner

(Associate Professor Siriporn Sittipraneed, Ph.D.)

สิริณี ยอดเมือง : ความหลากหลายทางชีวภาพของสเตรปโตมัยซีสที่เกี่ยวข้องกับการ ผลิตสารออกฤทธิ์ทางชีวภาพ จากดินในประเทศไทยโดยไม่อาศัยการเพาะเลี้ยงเชื้อ. (BIODIVERSITY OF UNCULTURED Streptomyces INVOLVED IN BIOACTIVE SUBSTANCE PRODUCTION FROM SOIL IN THAILAND) อ.ที่ปรึกษาวิทยานิพนธ์หลัก : ผศ.ดร.สชาติ ชะนะมา, อ.ที่ปรึกษาวิทยานิพนธ์ร่วม :

อ.ทบรกษาวทยานพนธหลก : ผค.ดร.ลุชาต ชะนะมา, อ.ทบรกษาวทยานพนธรว ผศ.ดร.มณี ชะนะมา, 181 หน้า.

สเตรปโตมัยซีส (Streptomyces) เป็นแบคทีเรียแกรมบวกที่มีเส้นใย มีนิวคลีโอไทด์ G-C มาก มี ้ความสามารถในการสร้างสารออกฤทธิ์ทางชีวภาพหลายชนิด และพบมากในดิน การศึกษาในครั้งนี้ได้มี จุดมุ่งหมายเพื่อตรวจหาความหลากหลายทางพันธุกรรมของสเตรปโตมัยซีสจากตัวอย่างดินในประเทศไทยโดย ใช้เทคนิคแบบไม่อาศัยการเลี้ยงเชื้อ จากการสร้างแบบจำลองแบบแผนการตัดลำดับเบสของ 16S rDNA ด้วย เอ็นไซม์ตัดจำเพาะ 33 ชนิด ด้วยโปรแกรม NEBcutter [สเตรปโตมัยซีส (70 ชนิด), แอคติโนมัยซีส (6 ชนิด) และแบคทีเรียอื่น ๆ (3 ชนิด)] จากฐานข้อมูลสาธารณะ Ribosomal Database Project (RDP) และ National Center for biotechnology Information (NCBI) เพื่อทำให้เกิดแบบจำลองแบบแผนข้อมูล Restriction Fragment Length Polymorphism (RFLP) จากนั้นทำการวิเคราะห์แบบจำลอง RFLP โดยการคำนวณ restriction distance ด้วยวิธีของ Nei-Li และการสร้างแผนภูมิต้นไม้ด้วยวิธี neighbor-joining โดยใช้โปรแกรม PAUP พบว่าจำนวนของแบบแผน RFLP OTUs ที่ได้จากเอ็นไซม์ *Msp*I มีค่าเฉลี่ยจำนวนตำแหน่งที่ถูกตัดใน 16S rDNA ของแบคที่เรียอยู่ในระดับสูง (10.50) และมีความสอดคล้องกันระหว่างวงศ์วานวิวัฒนาการและการ ้สร้างสารออกฤทธิ์ทางชีวภาพ ดังนั้นจึงได้เลือกเอ็นไซม์ *Msp*I สำหรับการวิเคราะห์ RFLP ของ 16S rDNA ของ สเตรปโตมัยซีสจากดินเพื่อตรวจหาความหลากหลายของสเตรปโตมัยซีสดังกล่าว จากการสกัดดีเอ็นเอจากดิน ้ตัวอย่าง ทำการเพิ่มจำนวน 16S rDNA ด้วยวิธี nested-Polymerase Chain Reaction (nested-PCR) โดยใช้ ใพรเมอร์ชนิด universal primers และไพรเมอร์ที่มีความจำเพาะต่อสเตรปโตมัยซีส ในปฏิกิริยา PCR รอบแรก และรอบที่สองตามลำดับ ทำให้ได้ชิ้นดีเอ็นเอของ 16S rDNA ที่มีขนาดประมาณ 1,000 เบส และได้ทำการโคลน เข้าไปใน T/A cloning vecter เพื่อสร้าง clone library หลังจากนั้นก็นำไปทำการวิเคราะห์ความหลากหลายโดย วิธี Restriction Fragment Length Polymorphism (RFLP) ผลการทดลองพบว่าชิ้นดีเอ็นเอของ 16S rDNA ที่ ้ได้จาก 100 โคลนของสเตรปโตมัยซีสในดินในพื้นที่ต่าง ๆ ของประเทศไทย [ภูเขา (MT), ป่าชายเลน (MG), และ ทุ่งนา (PD)] แสดงแบบแผน RFLP จำนวน 16 OTUs ซึ่งเมื่อนำมาเปรียบเทียบกับแบบจำลองแบบแผน RFLP ์ ที่สร้างขึ้นมาดังกล่าวข้างต้นพบว่าแบบแผน RFLP หรือ OTUs ที่พบมากที่สุดคือชนิด 'a' (77%) ซึ่งมีแบบแผน RFLP ตรงกับ OTU ของ Streptomyces ที่สร้างสารออกฤทธิ์ทางชีวภาพ ได้แก่ S. venezuelae และ S. fridae ซึ่งสร้างสารปฏิชีวนะ และ 3 OTUs [i, m, และ f] ซึ่งให้แบบแผนตรงกับ S. *lavendulae* (growth promotant) , Micromonospora olivasterospora (antibacterial), และ Thermomonospora chromogena ตามลำดับ

ภาควิชา	ชีวเคมี	ลายมือชื่อนิสิต
สาขาวิชา	ชีวเคมี	ลายมือชื่อ อ.ที่ปรึกษาวิทยานิพนธ์หลัก
ปีการศึกษา	2551	ลายมือชื่อ อ.ที่ปรึกษาวิทยานิพนธ์ร่วม

4872509923 : MAJOR BIOCHEMISTRY

KEYWORDS : *Streptomyces* / 16S rDNA / uncultured soil *Streptomyces* / biodiverstiy / PCR-RFLP

SIRINEE YODMUANG : BIODIVERSITY OF UNCULTURED Streptomyces INVOLVED IN BIOACTIVE SUBSTANCE PRODUCTION FROM SOIL IN THAILAND. ADVISOR : ASST. PROF. SUCHART CHANAMA, Ph. D.; CO-ADVISOR : ASST. PROF. MANEE CHANAMA, Ph. D., 181 pp.

Streptomyces, gram-positive filamentous bacteria and G-C rich nucleotide, have capability of producing several bioactive compounds and predominantly exhibit in soil. This study is aimed to investigate the genetic diversity of Streptomyces in soil samples in Thailand by using cultureindependent method with total genomic DNA extraction and purification from soil. The 16S rDNA was then amplified by nested Polymerase Chain Reaction (nested-PCR) technique using universal primers and Streptomyces specific primers for the first and second PCR reactions respectively. The PCR product about 1 kb was obtained and cloned into T/A cloning vector to make clone library. The biodiversity of 16S rRNA genes was determined by Restriction Fragment Length Polymorphism (RFLP). Based on in silico restriction endonuclease digestion of seventy-nine 16S rDNA sequence data [Streptomyces (70 species), Actinomyces (6 species), and outgroup bacteria (3 species)] derived from public sequences databases (RDP and NCBI) using NEBcutter program with 33 restriction endonucleases and calculation of restriction distance using Nei-Li method and construct of Neighbor-joining tree using PAUP program various tpes of RFLP patterns were elucidated. It was found that a number of OTUs of RFLP patterns derived from Mspl (isoschizomer of Hpall) yielded high level of average restriction site per species (10.50), and good correlation between the phylogenetic distribution and the production of bioactive compounds. The Mspl enzyme was, therefore, selected for the analysis of 16S rDNA gene isolate and amplified from soil in different locations of Thailand (mountain, mangrove forest, and paddy field) in order to investigate the biodiversity of such Streptomyces as describe previously. The results showed that 100 clones of 16S rDNA of such soils revealed RFLP patterns of 16 OTUs. Comparison of the RFLP patterns from soils to simulated RFLP patterns (digested with Mspl) showed that dominant OTU type was 'a' type. The 'a' type of RFLP pattern contains several important bioactive producing Strepomyces such as S. venezuelae and S. fridae which are antibiotic producers. Three OTUs (i, m, and f type) were found to match S. lavendulae (growth promotant), Micromonospora olivasterospora (antibacterial), and Thermomonospora chromogena, respectively.

Department :	Biochemistry	Student's Signature
Field of Study :	Biochemistry	Advisor's Signature
Academic Year	2008	Co-Advisor's Signature
Academic Teal	2000	

ACKNOWLEDGEMENTS

I express my sincere thanks to my adviser Assistant Professor Suchart Chanama, Ph. D. of the Department of Biochemistry, Faculty of Science, Chulalongkorn University and co-advisor Assistant Professor Manee Chanama, Ph. D. from Department of Microbiology, Faculty of Public Health, Mahidol University for giving me the opportunity to work with this fascinating subject, their kindness suggestion, guidance, and providing the facilities for this study during these years.

I wish to express my thanks to Dr. Sorawit Paothongsuk, Department of Marine Science for valuable comments on molecular technique used to investigate the bacterial community and collecting soil samples.

I wish to thanks Dr. Jessada Denduangborupant, Department of Biology for valuable suggestion on phylogenetic tree reconstruction and program used.

I extend my thanks to all colleagues in the *Streptomyces* research group in the Laboratory of Biochemistry Department for creating such a friendly and stimulating atmosphere and for soil samples collection. I would also like to thank all people involved in that study.

I also thank all the people in the Department of Biochemistry doing the work that made this study possible. The stuffs of the department is thanked for the inspiring working atmosphere and friends that I have during all the years.

I wish to thank my father, my mother and my sisters for their love, encouragement, always supportive on educational and financial during these years and for their patience during the last months of hard work.

This study was financially supported by the Nan Project, Faculty of Science, Chulalongkorn University.

CONTENTS

Page

v vi vii ix xiii xvii
vi vii ix xiii xvii
vii ix xiii xvii
ix xiii xvii
xiii xvii
xvii
1
3
3
6
es 10
16
26
28
29
29
33
33
h
39
41
41
45
48

vii

CHAPTER	Page
3.7 Cloning of 16S rDNA library	52
3.8 Restriction endonuclease digestion and analysis	54
IV RESULTS	57
4.1 Frequency of bioactive Streptomyces and Actinomyces	57
4.2 Phylogenetic tree reconstruction from sequence data	60
4.3 In silico endonuclease digestion and Restriction Fragment Length	
Polymorphism (RFLP) analysis	63
4.4 Choice of restriction enzyme to investigate streptomyces diversity	
from soil	108
4.5 Genomic DNA extraction from bacterial culture	117
4.6 PCR amplification of 16S rDNA from model organisms	119
4.7 Soil DNA extraction	122
4.8 PCR amplification of soil DNA	125
4.9 Nested PCR amplification of 16S rDNA (StrepBF region)	128
4.10 16S rDNA library construction	130
4.11 Analysis of species diversity in a model bacterial community by	
RFLP	135
4.12 Restriction fragment analysis of 16S rDNA	138
V DISCUSSION AND CONCLUSION	145
REFERENCES	150
APPENDICES	163
APPENDIX A	164
APPENDIX B	171
APPENDIX C	172
BIOGRAPHY	181

LIST OF TABLES

Table		Page
1	Secondary metabolite from genus Streptomyces	4
2	16S rDNA sequences of Streptomycetes, Actinomycetes and outgroup	
	bacteria used in this study	34
3	Restriction enzyme used for in silico endonuclease digestion	40
4	Soil sample from forest mountain used in RFLP analysis	42
5	Soil sample from mangrove forest used in RFLP analysis	43
6	Soil sample from paddy field used in RFLP analysis	43
7	Bacterial cultivation condition	44
8	PCR primers	48
9	PCR reaction set up	50
10	Restriction digestion reaction	54
11	Frequency of bioactive Stretpomycetes and Actinomycetes	58
12	List of groups of microorganisms according to similar RFLP pattern	
	after digested with Bfal	75
13	List of groups of microorganisms according to similar RFLP pattern	
	after digested with <i>Dpn</i> I	76
14	List of groups of microorganisms according to similar RFLP pattern	
	after digested with <i>BstU</i> I	77
15	List of groups of microorganisms according to similar RFLP pattern	
	after digested with <i>Hha</i> l	78
16	List of groups of microorganisms according to similar RFLP pattern	
	after digested with <i>M</i> sel	79
17	List of groups of microorganisms according to similar RFLP pattern	
	after digested with <i>Nla</i> III	80
18	List of groups of microorganisms according to similar RFLP pattern	
	after digested with <i>Rsa</i> l	81

Table		Page
19	List of groups of microorganisms according to similar RFLP pattern	
	after digested with <i>Taq</i> I	82
20	List of groups of microorganisms according to similar RFLP pattern	
	after digested with <i>Alu</i> I	83
21	List of groups of microorganisms according to similar RFLP pattern	
	after digested with HaeIII	84
22	List of groups of microorganisms according to similar RFLP pattern	
	after digested with <i>Mn</i> II	85
23	List of groups of microorganisms according to similar RFLP pattern	
	after digested with <i>Hpa</i> ll	86
24	List of groups of microorganisms according to similar RFLP pattern	
	after digested with Acil	87
25	List of groups of microorganisms according to similar RFLP pattern	
	after digested with <i>Aat</i> II	88
26	List of groups of microorganisms according to similar RFLP pattern	
	after digested with Acc65I	89
27	List of groups of microorganisms according to similar RFLP pattern	
	after digested with Agel	90
28	List of groups of microorganisms according to similar RFLP pattern	
	after digested with Apal	91
29	List of groups of microorganisms according to similar RFLP pattern	
	after digested with <i>Bmg</i> BI	92
30	List of groups of microorganisms according to similar RFLP pattern	
	after digested with BseYI	93
31	List of groups of microorganisms according to similar RFLP pattern	
	after digested with <i>Bsp</i> EI	94
32	List of groups of microorganisms according to similar RFLP pattern	
	after digested with <i>Bsr</i> GI	95

Table		Page
33	List of groups of microorganisms according to similar RFLP pattern	
	after digested with BssSI	96
34	List of groups of microorganisms according to similar RFLP pattern	
	after digested with <i>Eag</i> I	97
35	List of groups of microorganisms according to similar RFLP pattern	
	after digested with <i>Eco</i> RI	98
36	List of groups of microorganisms according to similar RFLP pattern	
	after digested with <i>Eco</i> RV	99
37	List of groups of microorganisms according to similar RFLP pattern	
	after digested with Fspl	100
38	List of groups of microorganisms according to similar RFLP pattern	
	after digested with Nael	101
39	List of groups of microorganisms according to similar RFLP pattern	
	after digested with <i>Pst</i> I	102
40	List of groups of microorganisms according to similar RFLP pattern	
	after digested with Sacl	103
41	List of groups of microorganisms according to similar RFLP pattern	
	after digested with SacII	104
42	List of groups of microorganisms according to similar RFLP pattern	
	after digested with SnaBI	105
43	List of groups of microorganisms according to similar RFLP pattern	
	after digested with Sspl	106
44	List of groups of microorganisms according to similar RFLP pattern	
	after digested with Smal	107
45	Average of restriction sited per microorganism of restriction	
	enzyme	108
46	Concentration and purity of DNA from Strepmyces venezuelae and S.	
	narbonensis	117

Table		Page
47	OD 260/280 and OD 260/230 ratio of soil samples after purified	122
48	Single or pooled samples according to soil pH range	130
49	Summary of RFLP analysis	144

LIST OF FIGURES

Figure		Page
1	Example of bioactive substances from Streptomyces	5
2	Life cycle of Streptomyces	9
3	Bacterial and Eukaryotic ribosome	11
4	Secondary and tertiary structure of rRNA	12
5	Map of 16S rDNA sequcne of Strepotmyces ambofaciens	15
6	Principal of PCR	18
7	DGGE and TGGE principle	20
8	Principle of Restriction Fragment Length Polymorphism (RFLP)	22
9	Principle of T-RFLP	23
10	Full-cycle rRNA approach - strategies for characterizing microbial	
	communities without the need for cultivation	25
11	Map of 16S rDNA sequcne of Strepotmyces ambofaciens	48
12	Thermal cycling condition for amplification of eubacterial 16S rDNA	
	approximate size 1.5 kb (a) and amplification of Streptomyces 16S	
	rDNA approximate size 1 kb (b)	51
13	Flow diagram to analyze bioactive producing streptomyces from soil	56
14	Phylogenitic tree of streptomycetes, Actinomycetes, and outgroup	
	bateria based on 16S rDNA sequences (StrepBF region \sim 1 kb) and	
	bioactivity of the species	61
15	Bootstrap tree with a 100 replication of data set of streptomycetes,	
	Actinomycetes, and outgroup bateria based on 16S rDNA sequence	
	(StrepBF region \sim 1 kb). The bootstrap value more than 50% were	
	shown	62
16	2% agarose gel simulated RFLP pattern form insilico digestion fo 16S	
	rDNA StrepBF region from sigle restriction enzyme digestion. 33	
	enzymes were used: Bfal, Dpnl, BstUl, Hhal, Msel, Nlalll, Rsal, Taql,	
	Alul, Haelll, Mnll, Hpall, and Acil	64

xiii

Figure		Page
17	Phylogenetic relationships among Streptomycetes, Actinomycetes,	
	and outgroup bacteria, based on restriction fragment analysis which	
	each of 4 cutter restriction enzyme (Bfal, Dpnl, BstUl, Hhal, Msel,	
	Nlalll, Rsal, Taql, Alul, Haelll, Mnll, Hpall, and Acil)	110
18	Genomic DNA from Streptomyces Venezuelae (lane 2 and 3) and	
	S. narbonensis (lane 4 and 5)	118
19	1% agarose gel electrophoresis of PCR product (1.5 kb). Lane M :100	
	bp ladder, lane 2 : S. narbonensis, Lane 2 and lane3 : S. venezuelae,	
	Lane 4 :S. lividansnv was a negative control using double distilled	
	water instead of DNA.	119
20	1% agarose gel electrophoresis of PCR product (1 kb). Lane M :100	
	bp ladder, lane 2 : S. narbonensis, Lane 2 and lane3 : S. venezuelae,	
	Lane 4 : S. lividansnv was a negative control using double distilled	
	water instead of DNA	120
21	1% agarose gel electrophoresis of PCR product using fD1+rP2 (1.5	
	kb) and StrepB+StrepF (1 kb) of bacterial culture	121
22	1% agarose gel elctrophoresis of crude soil DNA from Doi Phuka	
	National Park of Nan province	123
23	1% agarose gel electrophoresis of purified soil DNA from Doi Phuka	
	National Park of Nan province	123
24	1% agarose gel elctrophoresis of Crude soil DNA from Kao Keaw	
	National Park of Chonburi province (D01- D06), paddy field (I01-I02,	
	H01-H02, and G01-G04), and mangrove forest (F01-F03, and E01-	
	E04)	124
25	1% agarose gel elctrophoresis of purified soil DNA from paddy field	
	(I01-I02, H01-H02, and G01-G04), mangrove forest (F01-F03, and	
	E01-E04), and Kao Keaw National Park of Chonburi province (D01-	
	D06)	124

Figure

Figure		Page
26	1% agarose gel elctrophoresis of PCR product amplified from purified	
	soil DNA from Doi Phuka National Park of Nan province. Lanes 1-15	
	were samples A01-A15	125
27	1% agarose gel elctrophoresis of PCR product amplified from purified	
	soil DNA from Doi Phuka National Park of Nan province with addition	
	of 5% DMSO to the PCR reaction	126
28	1% agarose gel elctrophoresis of PCR product amplified from purified	
	soil DNA from paddy field and mangrove forest	127
29	1% agarose gel elctrophoresis of PCR product amplified from purified	
	soil DNA from Kao Keaw National Park of Chonburi province	127
30	1% agarose gel elctrophoresis of PCR product amplified from nested	
	PCR, first amplification product was used as a template from Doi	
	Phuka National Park of Nan province	128
31	1% agarose gel elctrophoresis of PCR product amplified from nested	
	PCR, first amplification product was used as a template. Soil DNA	
	samples were from paddy field and mangrove forest	129
32	1% agarose gel elctrophoresis of PCR product amplified from nested	
	PCR, first amplification product was used as a template. Soil DNA	
	samples were from Kao Keaw National park of Chonburi province	129
33	1% agarose gel elctrophoresis of purified pooled or single PCR	131
	product to be ligated with TA cloning vector	
34	1 % agarose gel electropheresis of boiled colony PCR from samples	
	SA01	132
35	1 % agarose gel electropheresis of boiled colony PCR from samples	
	PA02	132
36	1 % agarose gel electropheresis of boiled colony PCR from samples	
	SD04 and SD05	133
37	1 % agarose gel electropheresis of boiled colony PCR from samples	
	SE01 and SI01	133

Figure		Page	
38	1 % agarose gel electropheresis of boiled colony PCR from samples		
	SE04 and PF01	134	
39	1 % agarose gel electropheresis of boiled colony PCR from samples		
	PH01 and PG01	134	
40	Boiled single colony PCR obtained directly from culture plate (NS		
	media) using Streptomyces specific primer (StrepB+StrepF)	135	
41	3 % agarose gel electrophoresis of digested product from S.		
	venezuelae (1), S. narbonensis (2) and S. lividans (3) in 1X TBE.		
	Electropheresed was 80 Volt 2 hr. on 20 x 20 cm size of agarose	136	
42	2% agarose gel electrophoresis of digested product from S.		
	venezuelae (1), S. narbonensis (2) and S. lividans (3) in 1X TBE.		
	Electropheresed was 30 Volt 20 hr. on 20 x 20 cm size of agarose	137	
43	Restriction fragment length polymorphism patterns of 10 clones from		
	16S rDNA library (pooled or single PCR products from forest mountain		
	sample in Nan province) after digestion by <i>Msp</i> 1	139	
44	Restriction fragment length polymorphism patterns of 10 clones from		
	16S rDNA library (pooled or single PCR products from forest mountain		
	sample in Chonburi province) after digestion by <i>Msp</i> 1	140	
45	Restriction fragment length polymorphism patterns of 10 clones from		
	16S rDNA library (pooled or single PCR products from mangrove		
	forest sample) after digestion by <i>Msp</i> I	141	
46	Restriction fragment length polymorphism patterns of 10 clones from		
	16S rDNA library (pooled or single PCR products from paddy field		
	sample) after digestion by <i>Msp</i> 1	142	
47	Scaled illustration summarized the restriction patterns of 16S rDNA		
	digested with Mspl among 100 clones from different soil		
	samples	143	

LIST OF ABBREVIATIONS

16S rDNA	16S ribosomal RNA gene
μg	microgram
μΙ	microliter
μΜ	micromolar
bp	base pair
cm	centimeter
dNTPs	deoxynucleotide triphosphates (dATP, dTTP, dGTP, dCTP)
DGGE	denaturing gradient gel electrophoresis
DNA	deoxyribonucleic acid
kb	kilobase pair
min	minute
ml	milliliter
ng	nanogram
OD260	optical density at 260 nanometer
OTU	Operational taxonomic unit
PCR	polymerase chain reaction
RDP	Ribosomal Database Project
RFLP	restriction fragment length polymorphism
RNA	ribonucleic acid
rRNA	ribosomal ribonucleic acid
SSU	small subunit
TAE	tris acetate EDTA
tRNA	transfer ribonucleic acid
Tris	This (hydroxymethyl) aminomethane

CHAPTER I

INTRODUCTION

Members of genus Streptomyces are Gram-positive filamentas bacteria in the class Actinobacteria (Anzai et al., 2008). They are ubiquitous in nature and important members of soil microbial community (Inbar et al., 2005). They are known to be producers of many secondary metabolites, which have different biological activities such as antibacterial, antifungal, antiparasitic, antitumor, and immunosuppressive actions (Anderson and Wellington, 2001). Currently, about 10,000 antibiotics have been discovered from microorganisms. It has been estimated that approximately two thirds of these naturally occurring antibiotics were isolated form actinomycetes mainly from the genus Streptomyces (Kieser, 2000; Anzai et al., 2008). It has been reported that Streptomyces species such as Streptomyces hygroscopicus, S. griseus, S. fridae, and S. lavendulae produce many biologically active secondary metabolites (Kieser et al., 2000; Strol, 1997). There are also many Streptomyces species that have not yet been shown to produce bioactive compounds (Buchanan et al., 1974). However, it has been estimated that only 0.001-15 % of the environmental microbial population can be cultured by standard techniques because culture techniques fail to reproduce in artificial media the niches of many microorganisms found in high-diversity environments such as soil (Gich et al., 2000; Rintala et al., 2001). Thus, the recent development of molecular biology techniques, which do not rely on cultivation methods, allows microbial ecologists to reveal inhabitants of natural microbial communities which have not yet been cultured (Trevors and Elsas, 1995; Paul, 2007). This approach involves examining variations in 16S rRNA or 16S rRNA-encoding DNA (rDNA) within a naturally occurring prokaryotic community (Malo et al., 1991; Moyer et al., 1994; Urakawa et al., 1999). PCR-based methods are culture-independent and potentially more sensitive than culturing, and thus, can provide better tools for exposure assessment (Jurgens, 2002).

As a result, these techniques are now widely applied to characterize microbial community in different environments (Moyer et al., 1994; Moran et al., 1995; Atalan, 2001; Rintala et al., 2002; Inbar et al., 2005). One of these techniques, sequencing, allow us to determine which microorganisms are present in the community, but they are time-consuming. Hybridization and probing are faster, but require a sufficient knowledge of the community to choose the appropriate target sequences. In this study, another molecular biology technique, the restriction fragment length polymorphism (RFLP) based on 16S rRNA gene, is applied to soil sample. Even faster than hybridization and probing, PCR-RFLP of 16S rRNA gene has been used in the analysis of bacterial diversity in environmental community (Moyer et al. 1994; Jurgen, 2000). The 16S rRNA gene contains information which makes it an excellent biomarker of microorganisms. For example, each 16S rRNA gene contains both highly conserved regions found in all living microorganisms and variable regions that are unique to particular microorganisms or closely related group of microorganisms. Analysis of variable regions leads to a specific RFLP pattern, which in turn can be used to define an operational taxonomic unit (OTUs). Although RFLP gives little or no information about the type of microorganisms present in the sample, it can be used for a quick assessment of genotypic comparison from different environment condition.

Since little known about the information on the relationship between the microbial taxonomy, e.g., RFLP data based on 16S rDNA and the bioactive compounds produced. This would be useful for the utilization of industrial microorganisms. Thus, objective of this study was to investigate biodiversity of uncultured bioactive producing soil Streptomyces in Thailand by using Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR- RFLP). A computer-simulated fragments pattern of seventy-nine16S rDNA sequences was initially used to predict the pattern of digested fragments and useful for selection of enzymes used in vivo experiment.

CHAPTER II

LITERATURE REVIEW

2.1 General Information of Streptomyces

Members of genus *Streptomyces* are Gram-positive, filamentous bacteria that undergo morphological differentiation during their life cycle. They normally occur as spores, but in the presence of sufficient moisture and nutrients, the spores can germinate and form vegetative mycelium. In response to environmental signals, such as a shortage of nutrients or water, the process of differentiation is set in motion, and spores resistant to desiccation and starvation are formed again. At the same time, the production of pigments, antibiotics and other secondary metabolites is initiated (Kieser, 2000). It is known that many antibiotics and biologically active secondary metabolites were produced by many members of in this genus. Table 1 describes a range of useful *Streptomyces* antibiotics. The example of various bioactive substances from *Streptomyces* shown in Figure 1 indicated high diversity of structures.

Species	Antibiotic name	Bioactivity
S. albidoflavus	3-phenylpropionic acid	Antifungal
S. alboniger	puromycin	Antibacterial
S. ambofaciens	Spiramycin	Antibacterial
S. avermitilis	Avermectin	Antiparasitic
S. bambergiensis	Bambermycins	Growth promotant
S. coelicolor	Actinorhodin	Antibacterial
S. graminofaciens	Streptogramins	Antibacterial
S. halstedii	Vicenistatin	Antitumor
S. hygroscopicus	Bialophos	Herbisidal
S. hygroscopicus	FK506	Immuno suppressant
S. hygroscopicus	Rapamycin	Antihelminthic
S. kanamyceticus	Kanamycin	Antibacterial
S. lavendulae	StreptotricinA-F,X	Antibacterial
S. lividans	Actinorhodin	Antibacterial
S. narbonensis	Josamycin	Antibacterial
S. natalensis	Natamycin	Antifungal
S. peucetius	Daunorubicin	Antitumor
S. peucetius subsp. caesius	Doxorubicin	Antitumor
S. rimosus	Oxytetracycline,rimocidin	Antibacterial
S. spectabilis	Spectinomycin	Antibacterial
S. tendae	Nikkomycin	Antifungal,insecticidal
S. tsukubaensis	Tacrolimus (FK506)	Immunosuppressant
S. venezuelae	chloramphenical	Antibacterial
S. viridochromogenes	Phosphinothricin	Herbiside

 Table 1 Secondary metabolites from genus Streptomyces (Kieser et al., 2000)

Figure 1 Example of bioactive substances from Streptomyces (Behal, 2002)

2.2 Biology and Ecology of Streptomycetes

2.2.1 Taxonomy

The genus *Streptomyces* was proposed by Waksman & Henrici (1943) (Kampfer, 2006) and classified in the family Streptomycetaceae on the basis of morphology and subsequently cell wall chemotype. A nontaxonomic name for the genus was streptomycetes.

The taxonomy of Streptomyces species are as follows (Buchanan, 1974; Anderson and Wellington, 2001)

Kingdom: Monera

Domain: Eubacteria

Phylum: Actinobacteria

Class: Actinobacteria

Subclass: Actinobacteridae

Order: Actinomycetales

Family: Streptomycetaceae

Genus: Streptomyces

The development of numerical taxonomic systems, which utilized phenotypic intergeneric relationships within traits helped to resolve the the family Streptomycetaceae and resulted in the reclassification of six additional genera (Actinopycnidium, Actinosporangium, Chainia, Elytrosporangium, Kitasatoa and Microellobosporia) to the Streptomyces genus. These early numerical systems utilized phenotypic characters, which were fundamentally changed by the incorporation of molecular biological characteristics into classification systems and thus enabled considerable advances for genus delimitation within the Actinobacteria. Prior to this, the genera Streptomyces and Streptoverticillium were two distinct genera; both have cellwall type 1 are lysed by the same phages and are phylogenetically closely related. Immunodiffusion studies linked members of the genus Streptoverticillium closely to the Streptomyces lavendulae species group and also found similarities using physiological tests. Observed differences in DNA ± RNA pairing; this and the morphological trait of

producing whorls were the only detectable differences between the two genera. concluded from 16S and 23S rRNA comparisons that the genus Streptoverticillium should be regarded as a synonym of *Streptomyces*. *Kitasatosporia* was also included in the genus *Streptomyces*, despite having differences in cell wall composition, on the basis of 16S rRNA similarities (Wellington et al., 1992). This was revoked by Zhang et al. (1997), who demonstrated that members of the genus *Kitasatosporia* always formed a stable monophyletic clade away from streptomycetes when sequences from the entire 16S rRNA genes were compared (Kampfer, 2006). *Kineosporia* and *Sporichthya* are both rare and share many chemotaxonomic similarities with members of the genus *Streptomyces*, which led to their incorporation into the genus. The *Kineosporia* and *Sporichthya* have since been reinstated as independent genera on the bases of ribosomal sequencing: *Sporichthya* is a genus of the family Sporichthyaceae of the suborder Frankineae and the Kineosporia are grouped with the Kineococcus. These changes resulted in the genus *Streptomyces* being the sole member of the family Streptomycetaceae.

On the basis of 16S rRNA/DNA sequence comparisons, members of the genus *Streptomyces* form a separate line of descent, and (Stackebrandt et al., 1993) proposed the emendation of the family Streptomycetaceae in the suborder Streptomycinae and the order Actinomycetales. The intrageneric phylogenetic relationships of many of the 346 recognized species in Bergey's Manual of Systematic Bacteriology inferred from the 350 complete 16S rRNA sequences, however, are clearly restricted by the limited resolving power of the method to discriminate between related species and are often in contrast with a morphologically and physiologically based classification. Though about 350 almost complete 16S rRNA sequences are available to date, the high degree of conservation within 16S rRNA genes causes problems for resolving phylogenetic relationships at the intergeneric level. Notably, the different methods used for grouping of the *Streptomyces* species often lead to contradictory results. All 376 *Streptomyces* species with valid names (as of December 9, 2003; taken from the List of Bacterial Names with Standing in Nomenclature); and some additional species with

names not validly published (but included in taxonomic studies) are given with their grouping according to different studies.

Strains are widely distributed and abundant in soil, including composts. A few species are pathogenic for animals and man, and others are phytopathogens. The type species is *Streptomyces* albus (Kieser, 2000; Rintala et al., 2001). They are particularly active in the degradation of recalcitrant macromolecules such as lignin and cellulose (Inbar et al., 2005).

2.2.2 Morphology

Member of genus *Streptomyces* undergo a complex life cycle (Figure 2), which has been studied most intensively for strain "*S. coelicolor*" A2(3). *Streptomyces* colonies are multicellular, differentiated organisms exhibiting temporal and spatial control of gene expression, morphogenesis, metabolism and the flux of metabolites (Kieser et al., 2000). They may produce a wide variety of pigments responsible for the color of the vegetative and aerial mycelia. In addition, colored diffusible pigments may also be formed. Note that the production of pigments largely depends on the medium composition and cultivation conditions. Many strains produce one or more antibiotics. The metabolism is oxidative and chemoorganotrophic. The catalase reaction is positive, and generally, nitrates are reduced to nitrites. Most representatives can degrade polymeric substrates like casein, gelatin,hypoxanthine, starch and also cellulose. In addition, a wide range of organic compounds is used as sole sources of carbon for energy and growth (Kampfer, 2006). The optimum temperature for most species is 25–35°C; however, several thermophilic and psychrophilic species are known. The optimum pH range for growth is 6.5–8.0.

The surface of the conidial wall often has convoluted projections which, together with the shape and the arrangement of the spore-bearing structures, are characteristic of each species and were often used for the separation of *Streptomyces* species. They can be distinguished from other actinomycetes by their cell wall type which is characterized as Type I sensu. The presence of LL-diaminopimelic acid (LL-A2pm) and

glycine and the absence of characteristic sugars are typical of this cell wall type. In addition to these traits the acyl type of the muramyl residues in the cell-wall peptidoglycans is acetyl (Anderson and Wellington, 2001; Kampfer, 2006).

Genus members lack mycolic acids, contain major amounts of saturated, isoand anteiso-fatty acids, possess either hexa- or octahydrogenated menaquinones with nine isoprene units as the predominant isoprenolog, and have complex polar lipid patterns that typically contain diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, and phosphatidylinositol mannosides. In addition to these traits, the acyl type of the muramyl residues in the cell-wall peptidoglycans is acetyl (Kieser et al, 2000).

Figure 2 Life cycle of *Streptomyces coelicolor* A3(2). Under favourable conditions, one or two germ tubes emerge form a spore and grow by tip extension and branch formation to give rise to a substrate mycelium. After about two days, aerial mycelium grow up in a process that involves the action of a large number of *bld* genes. The apical compartment of individual aerial hyphae form a spiral syncytium that contains many tens of genomes. When aerial growth stops, multiple septa subdivide the apical compartment into unigenomic pre-spore compartments. These subsequently change in shape; wall thinkening occurs and grey spore pigment is deposited, to generate dessication-resistant spores (Kieser et al, 2000).

2.3 The use of molecular data to study biodiversity of soil Streptomyces

2.3.1 Ribosomal RNA

There is no consistent way to classify and relate microorganisms, both prokaryotes and eukaryotes, other than the use of modern methods of molecular phylogenetic analysis. The use of macromolecular sequence comparisons to define phylogenetic relationships is now well established (Woese, 1987; Anderson and Wellington, 2001). Protein sequences were most often used for phylogenetic determinations in the past as techniques for studying nucleic acid sequences were not available. Studies comparing cytochrome c, ribonucleases, globins, etc., have been rewarding, although they have proven most useful with higher eukaryotes. Among microbes, phylogenetic and biochemical diversity is such that even the identification of homologous proteins is not a straightforward task. Because they are required by all cells for protein synthesis, the nucleic acid elements of the translation apparatus - the proteinsynthesizing machinery - seem best suited for broad phylogenetic analysis. The translation of mRNAs into proteins using ribosomes and the tRNAs is an ancient mechanism. The similar architecture of the ribosomes and tRNAs in the three primary kingdoms - Archaea, Bacteria and Eucarya - means that the translation apparatus emerged largely in its modern form before the phylogenetic radiation of the three kingdoms. Thus, phylogenetic analysis of the components of the translation apparatus allow, in principle, the relationships among organisms to be traced nearly to the time of the origin of life on the earth. However, tRNAs are not very useful for phylogenetic characterizations because they are too constrained in structure. The tRNA structure is tightly locked up in a complex tertiary organization. Almost every residue in a tRNA molecule has contact with at least one other residue, and the tight interlocking of the molecule imposes conformational constraints on all residues. Another major problem is the limited number of mutable residues in homologous tRNAs. The small number of changes in compared molecules means that the statistical error in a calculated evolutionary distance is great. We are therefore left with rRNAs as the most useful tools for molecular data used to investigate diversity of strepomyces (Hugenholtz and Pace,

1996; Jurgens, 2002). Figure 3 and Figure 4 show bacterial ribosome and its structure, respectively.

Figure 3 Bacterial ribosome (70S) consisted of 2 subunits: large subunit (50S) and small subunit (30S). The large subunit consisted of 23S rRNA (2,900 nts) and 5S rRNA (120 nts) and 34 proteins. The small subunit consited of 16S rRNA (1,500 nts) and 21 proteins. Compared to eukaryotic ribosome (80S); large subunit (60S) consisted of 28S rRNA (4,700 nts), 5.8S rRNA (160 nts), and 5S rRNA (120 nts) and 49 proteins. For the small subunit (40S) consisted of 18S rRNA (1,900 nts) and 33 proteins (http://www.newsciencepress.com).

Figure 4 Secondary and tertiary structure of 16S rRNA from small subunit (a) and (c) respectively, and those of 5S rRNA and 23S rRNA (b) and (d) respectively (http://www.newsciencepress.com).

There are several explicit reasons for focusing on the ribosomal RNAs:

- the rRNAs, as key elements of the protein-synthesizing machinery, are of profound importance to all organisms.

- the rRNAs are ancient molecules and extremely conserved in overall structure. Thus, homologous forms of rRNA are readily identified by their sizes alone.

- the conserved nature of rRNA structure extends to the nucleotide sequence level. Some segments of rRNA sequences do not vary among the biological kingdoms (domains), whereas others vary to greater or lesser extents (Gutell et al., 1994; Van de Peer et al., 1996). The conserved sequences and secondary structure allow disparate sequences to be aligned, so that only homologous sequences are used in phylogenetic analysis. The highly conserved regions also provide convenient hybridization targets for cloning rRNA genes and sequencing techniques.

- in general, rRNAs are essential and conserved across all phylogenetic domains, thus "universal" tracts of sequences can be identified. In addition, it is possible to identify sequence motifs of increasing phylogenetic resolution and recognize "signature" sequences for the domains Archaea, Bacteria, and Eucarya and their subdivisions (Gutell et al., 1994).

- rRNA constitutes a significant component of cellular mass, and is generally recovered easily from all types of organisms (Tiedje et al., 1999).

- rRNA sequences are sufficiently long to provide statistically significant comparisons (Jurgens, 2002).

- rRNA genes seem to be free from artifacts of lateral transfer between phylogenetically distant organisms. Thus, relationships established by rRNA sequence comparisons represent true evolutionary relationships (Stackebrandt et al., 1993).

Taken together, these features indicate that rRNAs may be uniquely suitable for establishing phylogenetic relationships among very different organisms (Gutell et al., 1994).

Of the three ribosomal RNAs (5S, 16S/18S and 23S/28S), the 5S is too small
 (~ 120 nucleotides) to be used indiscriminately for phylogenetic inferences. One might expect that the 23S/28S rRNA (23S rRNA in most prokaryotes, containing approximately

2,900 nucleotides) would provide about twice the phylogenetic information compared with the 16S/18S rRNA (16S rRNA, containing approximately 1,500 nucleotides). This is true within limits - the average rate of sequence change (as reflected in frequency of differences between corresponding sequences from a pair of organisms) of 23S rRNA is significantly faster than that of 16S rRNA. Thus, for close relationships, the larger molecule can be quite valuable although it has not proved to be as proportionately useful in the deepest branches of the tree. Generally, when both sequences are available for a set of organisms, the phylogenies inferred by each rRNA tend to be similar. As 16S and 23S rRNAs are not functionally independent, it is not surprising that they give congruent pictures. We should also take into account the fact that the number of currently available complete 23S rRNA sequences in the databases is rather poor in comparison to the number of 16S rRNA sequences. Therefore, small subunit (SSU) rRNA has served as the "gold standard" in elucidating bacterial phylogeny in recent years, and the new edition of both Bergey's Manual of Systematic Bacteriology and "Brock Biology of Microorganisms" (Jurgens, 2002) base their respective phylogenetic relationships among microorganisms upon the small subunit (SSU) rRNA tree.

More than 5,000 of 16S rDNA sequences deposited in the public database are available at Ribosomal Database Project (RDP) http://rdp.cme.msu.edu and from National Center for Biotechnology Information (NCBI) at http://www.ncbi.nlm.nih.gov. An important resource fro the phylogenetic studies is the Ribosomal Database Project which provides aligned rRNA sequences and a variety of sevices related to phylogenetic analysis of rRNAs, such as the calculation of phylogenetic trees, probe analysis, chumeric sequence testing and sequence-similarity analysis (Hugenholtz and Pace, 1996). Figure 5 shows 16S rDNA of bacteria.

Figure 5 Map of 16S rDNA sequence of *Streptomyces ambofaciens* consisted of conserved and variable regions. The conserved regions, which conserved to all bacterial domain, are useful to design primers (universal primers). For the variable regions, are vary among all bacteria, but specific to some bacterial groups. These are very useful to design primers of genus and group specific (Rintala et al., 2001).

2.4 Molecular techniques

Due to the limitations of traditional culture-dependent methods the use of molecular techniques has become of growing importance for the study of microbial communities in various ecosystems (Yeates et al., 1997). The extraction of total DNA from soil samples enables microbial ecologists to obtain biological material without the need to isolate microorganisms by cultivation (Tebbe and Vahjen, 1993). Environmental samples can contain a number of different bacterial species and PCR has the potential to allow rapid detection of any bacterial species for which specific amplification primers are available. Depending on source of samples, various inhibitors of PCR amplification may be present, such as humic acid and fulvic acid. Finally, DNA can be difficult to isolate. (McGregor et al., 1996). The rRNA approach has been successfully applied to reveal the existence of several novel lineages of hitherto unknown prokaryotes leading to a broadening of our view on microbial diversity. It must be stressed, however, that cultivation-independent, PCR-based methods can also have inherent biases preventing a reliable assessment of the structure of bacterial populations which may lead to a misinterpretation of the abundance of certain phylogenetic groups. Such pitfalls may be avoided by hybridizing whole cells or extracted rRNA from the studied habitat with specific oligonucleotide probes in order to verify the initial results. Furthermore, the retrieval of a novel 16S rRNA sequence reveals very little about the phenotypic traits of the respective organism and its metabolic activity. It is only when the retrieved sequence can be clearly affiliated to a monophyletic lineage which is characterized by a common phenotypic trait that some conclusions may be drawn about the function of the corresponding microorganism. In most cases, however, the simple knowledge of the phylogenetic diversity in an environment is not very helpful in understanding the interacting metabolic processes and factors which control them. Nevertheless, a molecular approach can help in the identification of microorganisms which are ecologically relevant because of their abundance or activity. These microorganisms can then be the subject of detailed studies or a target of directed cultivation experiments. The majority of prokaryotes living in natural environments are rather inconspicuous. Therefore, several molecular techniques were developed in order to overcome the lack

of information about the function of bacteria identified by cultivation-independent methods. Despite the progress which has been made in linking the identification of distinct microorganisms with their functions in situ, it may still be necessary to isolate or enrich novel bacteria to reveal their metabolic potential under various environmental conditions. The results of molecular ecology research has established that experimental strategies based on the combination of molecular techniques with traditional cultivation-dependent methods have great potential in revealing some of the hidden complexity of natural microbial ecosystems (Jurgens, 2002).

2.4.1 Polymerase Chain Reaction (PCR)

Polymerase Chain Reaction (PCR) invented by (Mullis et al., 1986). It has become a profound impact on molecular biology as well as has great potential as an important tool in detecting genetic polymorphism. PCR is a rapid procedure for in vitro enzymatic amplification of a specific segment of DNA. Like molecular cloning, PCR seems infinite and is still growing. The theoretical basis of PCR is outlined in figure 6. There are three nucleic acid segments: the segment of double-stranded DNA to be amplified and two single-stranded oligonucleotide primers flanking it. Additionally, there is a protein component (a DNA polymerase), appropriate deoxyribonucleoside triphosphates (dNTPs), a buffer, and salts. PCR cycle consists of three steps. The first step is called deneturation. In the step, the double stranded DNA molecules are separated into single-stranded ones which are used as templates for the next two steps, the second strep is called annealing. Primers anneal to the templates. During the third step which is called polymerase extension, DNA polymerase extends the annealed primers using the single-stranded molecular as templates. The process is repeated for many cycles. After extraction of soil DNA, the initial step is PCR amplification of the 16S rRNA genes, from the community DNA using universal, domain or group specific primers. The resulting products are separated in different ways, depending on the technique (Tiedje et al., 1999).

Figure 6 Principle of PCR amplification. First, the DNA template is denature at 94 $^{\circ}$ C to 95 $^{\circ}$ C. The annealling (50-65 $^{\circ}$ C) of primer to template DNA by Extension (72 $^{\circ}$ C) by additioning of nucleotide bases (dNTPs) catalysed by Taq DNA polymerase. (http://www.bioron.net)

2.4.2 Denaturing Gradient Gel Electrophoresis (DGGE) and Temperature Gradient Gel Electrophoresis (TGGE)

Genotypic variation can also be monitored using denaturing gradient gel electrophoresis (DGGE) and Thermal gradient gel electrophoresis (TGGE) (Muyzer et al., 1993). The technique is based on the separation of polymerase chain reaction-amplified fragments, all the some length but different base-pair sequences. Separation of DGGE is based on the electrophoretic mobility of a partially melted DNA molecule in polyacylamide gels, which is decreased compared with that of the completely helical form of the molecule, the melting of fragments proceeds in discrete so-called melting domains: stretches of base pairs with an identical melting temperature. Once the melting domain with the lowest melting temperature reaches its melting temperature at a particular position in the DGGE gel, a transition of helical to partially melted molecules occurs, and migration of the molecule will practically halt (Figure 7). Sequence variation with such domains causes their melting temperatures to differ. Sequence variants of the particular fragments will therefore stop migrating at different positions in the denaturing gradient and hence can be separated effectively by DGGE.

This technique has been successfully applied to identifying sequence variations in a number of genes from several different organisms. PCR can be used to selectively amplify the sequence of interest before DGGE is used. G-C-rich sequences can be incorporated into one of the primers to modify the melting behavior of the fragment of the interested to the extent to which close to 100% of all possible sequence variations can be detected. However, a limitation of this method is the fact that only partial sequences of up to about 500 bp are separated well. Most studies of microbial community diversity so far have been based on the analysis of only one to three variable regions (Muyzer et al., 1993). Moreover, there is no comparative sequence.

R = Reference pattern, A = Organism 1, B = Organism 2, C = Organism 3, M = Mix of organisms 1, 2 and 3, S = unknown sample

Figure 7 DGGE and TGGE principle. (http://bccm.belspo.be)

2.4.3 Single-strand conformation polymorphism (SSCP)

Single-strand conformation polymorphism (SSCP) is the easiest and most employed technique in detecting mutation and analyzing variation. After using the technique PCR in amplification of the specific place of interest, the aftermath DNA will be worked more. It will be denatured to create single-stranded molecules and loaded on non-denaturing gel. Single-stranded DNA folds differently, depending on each single base (Sunnucks et al., 2000). Also, some scientists believe that mutation-induced changes of tertiary structure of the DNA bring about differences in terms of mobility for each DNA strand. As for the non-denaturing gel, the composition and the running conditions of its can be varied: alteration of the temperature or the degree of crosslinking or the adding of glycerol or sucrose. However, some single strand nucleic acids can exist in several netastable electrophoretically resolvable conformations. Thus, the assignment of an apparently unique conformer to a population or 'ribotype' is made with and element of faith (Tiedje et al., 1999).

2.4.4 Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) and Amplified ribosomal DNA Restriction analysis (ARDRA),

Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) of 16S rDNA otherwise known as Amplified ribosomal DNA Restriction analysis (ARDRA) are simple method based, consisted of PCR amplification of 16S rDNA with primers pair (Domain, genus, or strain specific) and the product is digested with appropriate restriction endunuclease (usually 4 bp recognition sites which called tetrameric restriction enzyme) and separating the DNA fragment by gel electrophoresis (Urakawa et al., 1999; Gich et al., 2000) as shown in Figure 8. This approach has been used most frequently on isolates as part of a clones screening step (Liu et al., 1997) prior to sequencing or some cases, to provide a level of insight into phylogeny (Moyer et al., 1996). More recently, the technique has been used to probe community structure and useful as a means to detect changes in communities (Tiedje et al., 1999) and each RFLP pattern is representative of a ribotybe or operational taxonomic unit (Moyer et al., 1996). This technique provides a higher level of resolution than T-RFLP because the sizes of all restriction fragments are used in the analysis fro each enzyme, therefore sampling a larger portion of rDNA sequence. A computer analysis of digestion sites of over 100 environmental stains in the ribosomal database showed that the median sequence difference detected by the use of four tetrameric restriction endonucleases was 97.4% (Moyer et al., 1996). The 16S rRNA clones differentiated by restriction enzymes are often termed OTUs or phylotypes (Moyer et al., 1994).

2.4.5 Ribosomal Intergenic Spacer Analysis (RISA)

In the majority of characterizaed microorganisms, the 16S rRNA gene is adjacent to the 23S rRNA gene and is separated by and intervening region of variable length. Robosomal intergenic spacer analysis (RISA) separates PCR products that space the 5' end of the 16S rRNA gene, through the spacer, and into the 3' end of the 23S rRNA genes (Lanoot et al., 2005).

Figure 8 Principle of Restriction Fragment Length Polymorphism (RFLP). (www.campus.skelleftea.se)

2.4.6 Terminal-Restriction Fragment Length Polymohphism (T-RFLP)

In T-RFLP, near complete genes such as 16S rRNA genes in a sample are amplified using a fluorescently-labeled primer to yield a mixture of labeled 16S rRNA genes. These amplification products are digested with restriction enzymes to produce labeled terminal restriction enzyme fragments (T-RFs).These T-RFs are then denatured, and the single stranded DNA is separated by electrophoresis under denaturing conditions (e.g. at high temperature) (Figure 9). The size of the fragments can be accurately determined using an internal standards labelled with a different fluorochrome. Ideally, each T-RF represents a single microorganism, though in practice microorganisms of different species often share one T-RF. Therefore, digestion with up to three different restriction enzymes is usually necessary to accurately identify a microorganism on the basis of T-RF size. The relative abundance of microorganisms represented by a T-RF can be determined by measuring the fluorescence of each T-RF relative to the sum of the fluorescence. Computer analysis of gene sequences can be carried out to determine the theoretical T-RFs of known microorganisms. Alternatively, a database of experimentally-derived T-RFs from known microorganisms can be created to identify microorganisms in environmental samples (Liu et al., 1997).

T-RFLP is a rapid method for analyzing microbial communities. It can be automated to process multiple samples in a short time-span. However, T-RFLP is susceptible to biases common for all PCR-based community analysis techniques. The method is only semi-quantitative due to the variation in 16S rRNA gene copy number in different microbes. The reliable lower limit of detection of PCR products in a mixture is about 1%.

Figure 9 Principle of Terminal fragment length polymorphism (T-RFLP).

(www.campus.skelleftea.se)

2.4.7 Random Amplified Polymorphic DNA (RAPD)

Random Amplified Polymorphic DNA (RAPD) analysis, was first developed in 1990, is usually employed in genetic diversity studies. This technique is not base an amplification of 16S rDNA but, based on the use of a single arbitrary primer, commonly a 10-mer or 20-mer, in a PCR reaction to synthesize multiple copies of random genomic DNA sequences. The amplification products are derived from regions of the genome that contain two shot segments on opposite strands with homology to the primer and situated sufficiently close together for the amplification to work. The advantage of this technique required no DNA probes, sequence information, and use small amount of DNA therefore quick, simple and efficient. Also, the technique can be used for species identification of *Streptomyces* strains.

Figure 10 Full-cycle rRNA approach - strategies for characterizing microbial communities without the need for cultivation (Hugenholtz and Pace, 1996; Jurgens, 2002).

2.5 Phylogenetic analysis

The phylogenetics is the study of evolutionaty relationships. As alluded to above, phylogenetic analysis is the means of inferring or estimating these relationships. The evolutionary history inferred from phylogenetic analysis usually is depicted as branching (treelike) diagrams that represent an estimated prediction of the inheried relationships amng molecules, organisms, or both. Phylogenetics sometimes is called cladistics, because the word clade, a set of descendants form a single ancestor, is derived from the greek word for branch. However, cladistics is a particular method of hypothesizing about evolutionary relationships (Bazevanis and Ouelette, 2005).

2.5.1 Method for phylogenetic tree construction

Phylogenetic three-building methods implemented in available software are discussed in detail both in the literature (Swofford, 2002) and on the Internet. This section briefly describes a selection of the most popular mehthods. Tree-building methods can be sorted into distance-based versus character-based methods. Much of the discussion in molecular phylogenetics dwells on the usefulness of the distance-based and character-based methods. Distance methods compute pairwise distances according to some measure, and then discard the actual data, using only the fixed distances to derive trees. Character-based methods derive tree that optimize the distribution of the actual data patterns for each character. Pairwise distances thus are not fixed, because they are determined by the tree topolygy. The most commonly applied distance-based methods include NJ and Fitch-Margoliash (FM), whereas the most common character-based methods include maximum parsimony and ML.

2.5.1.1 Distance-based method

Distance-based methods use the amount of dissimilarity (the distance) between two aligned sequences to derive trees. A distance method would reconstruct the true tree if all genetic divergence events were recorded accurately in the sequence. However, divergence encounters an upper bound as sequences become mutationally satuated. After one sequence of a diverging pair has mutated at a particular site, subsequent muattions in either sequence cannot render the sites any more "different". In fact, subsequenct mutations can make them equal again (for example, if a valine mutates to an isoleucine, which mutates back to a valine again). There fore, most distance-based methods correct for such "unseen" substitution. In practice, application of the rate matrix dffectively presumes that some proportion of observed pariwise base identities actually represents multiple mutations, and that this proportion increases with increasing overall sequence divergence. The fragment pattern obtained form RFLP analysis consisted of presence or absence of individual bands on a gel. The present of band is indicated by "1" and for the absence by "0" transform to binary data (0 and 1). The most commonly applied distance-based methods are as follows:

- UPGMA. UPGMA is a clustering or phonetic algorithm; it jouns tree brances on the criterion of greatest similarity among pairs oand averages of joined pairs. It is not strictly on evolutionary distance methods. UPGMA is expected to generate an accurate topology with true branch lengths only when the divergence is according to a molecular clock (ultrameric) or is approximately equal to raw sequence dissimilarity. As mentioned earlier, these conditions rarely are met in practice.

- NJ. The NJ algorithm commonly is applied with distance tree building, regardless of the optimization criterion. The fully resoled tree is "decomposed" from a fully unresolved "star" tree by successively inserting brances between pa pair of closest (actually, most isolate) neighbors and the remaining terminals in the tree. The closest neighbor pair then is consolidated, effectively reforming a star tree, and the process is repeated. The method is comparative rapid.

Simulation studies indicate that UPGMA performs poorly over a broad range of tree-shape space. The use of this method is not recommended; it is mentioned here only because its application seems to persist, as evidenced by UPGMA gene tree appearing in pubications. NJ is clearly the fastest procedure and generally yields a tree close to, if not the actual, ME Tree. However, it yields only one tree. Depending on the structure of the data, numerous different tree may be as good or significantly better that NJ tree. However, the speed of NJ and its ability to produce results very similar to other slower methods ensures that this method continues to be one of the most popular used to date.

27

2.5.1.2 Character-based method

The character based methods attempt to infer the phylegeny based on all the individual characters sush as nucleotide or amino acids. Two commonly used method are Maxmum parsimony and Maxmum likelihood.

2.5.2 Computer software

- PHYLIP (Phylogeny Inference Package) is a package comprising approximately 30 programs that cover most of aspect of phylogenetic analysis and freely available for a wide variety of operating system written by Falsenstein. A vesion 3.68 is now release and available. PHYLIP is a command line program and does not have a point-and-click like PAUP do.

- PAUP* (Phylogenetic Analysis Using Parsimony methods*) written by Swofford. PAUP contain menu functions (including tree graphics) as possible in a single, platform-independent program with a menu interface.

2.6 The study of bacterial and streptomyces diversity in environment

Moyer et al. (1994) examined a microbial mat community at a deep-sea hydrothermal vent by ARDRA. They obtained 12 RFLP types from 48 clones by using four four-base-specific restriction enzymes and found two dominant clone types.

Rintala et al. (2002) examined the occurrence of streptomycetes in house dust by 16S rRNA gene sequences directly PCR amplified from DNA and found that Streptomycetes were detected in 81 % of the dust samples by PCR and actinomycetes in 36 % of the samples by culture. Thus, PCR based detection seems to be a more sensitive and accurate method for detection of streptomycetes in house dust than culture.

Atalan (2000) was separated the unknown Streptomyces strains isolated from soil samples, the interspacer regions of 16S-23S rDNA of 14 isolates were amplified with PCR (polymerase chain reaction) and digested with three restriction endonucleases, namely, Bsp143I, HaeIII and MnII. The restriction patterns were used for RFLP analysis. A dendrogram were constructed using the unweighed pair group method using UPGMA after analysis restriction patterns. Five RFLP groups were obtained and one test strain was left as a single member group. RFLP profile indicated that unknown strains could be identified with data based on the interspacer region of 16S-23S DNA rapid and quickly.

Inbar et al. (2005) examined the distribution of Stretpomycetes in soil amendment with compost using a stretpomycetes-specific PCR-DGGE method coupled with band excision and sequence analysis and found the community compostion of stretpomycetes in rhizosphere, as in the bulk soil, was strongly influenced by the addition of compost amendment.

CHAPTER III

MATERIALS AND METHODS

Materials

Equipments

PCR Thermal cycler

- Mycycler (Bio-rad)

Microcentrifuge Beckman Coulter, USA and Hettich)

Refrigerated centrifuge

- Allegra 25R (Beckman Coulter, USA)

Electrophoresis apparatus

- Mini-Run (Bioer)
- Maxicell (Electrophoresis system)
- Mini sub DNA cell (Bio-rad)
- Power supply: Bio-rad and Amersham

Microcentrifuge tubes 0.2 ml, 0.6 ml, 1.5 ml, 2 ml (AxyGen, Inc, USA)

Pipette tips 10 µl, 200 µl, 1000 µl (AxyGen, Inc, USA)

Orbital shaker (Innova 2100, New Brunswick scientific, co. Inc, USA)

-20 °C Freezer (Astina)

-80 °C Freezer (Sanyo Ultralow)

4 °C Refrigerator (Sharp and Sandenintercool)

Incubator (Gallenkamp)

Orbital Incubator shaker (MRC)

Refrigerated incubator (FOC225I)

Water bath shaker (Gyrotory, New Brunswick scientific, co. Inc, USA)

Laminar flow (Biohazard, model V5, Lab Service)

UV transiluminator (UVP)

Gel documentation (Syngene)

Vortex (Genie)

Water bath (Buchi)

Spectrophotometer DU 800 (Beckman Coulter, USA) Microscope (Olympus) Sonicater (Ney, Ultra sonic) Autoclave (Sanyo, Labo autoclave) pH meter (Mettler Toledo) Balance (Mettler Toledo) Micropipettes: P2, P20, P100, P200, P1000 (Gilson Medical Electrical S.A., France) and P20, P200, P1000 (Scolex)

Chemical reagents

Oligonucleotide primers (BSU) dNTPs mix (New England Biolab) BSA (New England Biolab) DMSO (Fermentas) DNA ladders (Fermentas) Agarose (Seakem) Tris-(hydroxyl methyl)-aminomethane (USB) Glacial acetic acid (Merk, Germany) Boric acid (Fulka) Ethidium bromide (Sigma, USA) Ethylene diamine tetraacetic acid, disodium salt dehydrate (Sigma) Absolute ethanol (Merk, Germany) Isopropanol (Merk, Germany) Chloroform (Merk, Germany) Isoamyl alcohol (Sigma) N,N'-dimethyl formamide (Fulka) IPTG (Sigma) X-gal (Sigma) Ampicillin (USB) Sodium docecyl sulphate (USB)

CTAB (USB) Yeast extract (Difco, USA) Tryptone (Difco, USA) NaCl (Carlo Erba) Soluble starch (Difco, USA) Bacto agar (Difco, USA) Nutrient broth (Difco)

Ennzymes

Taq DNA polymerase (New England Biolab)
Restriction enzymes *Msp*I (New England Biolab)

RNase A (amresco)
ProteinaseK (USB)
Lysozyme (Sigma, USA)

Reagent kits

QiAquick Gel Extraction kit (Qiagen, Germany) Gene aid gel extraction kit (USA) RBC T/A cloning kit (Taiwan)

Methods

3.1 Sequence retrieval, alignment and DNA distance analysis

79 Bacterial 16S rDNA sequences were online downloaded from Ribosomal Database Project (RDP) website at http://rdp.cme.msu.edu or from National Center for Biotechnology Information (NCBI) at http://www.ncbi.nlm.nih.gov. The sequences were grouped by genera according to Buchanan and Gibbons (1974) and the RDP Hierarchical Browser (http://rdp.cme.msu.edu). Seventy sequences were Streptomyces 16S rDNA sequences, six were Actinomyces and three were outgroup bacteria. All sequences used were longer than 1,200 bp. The most recent submitted sequence to RDP database for each bacterial sequence was used, and based on reported for the following bioactive activities: antibacterial (AB), antifungal (AF), antiparasitic (AP), antiviral (AV), antitumor (AT), immunosuppressant (IM), growth promotant (GP), and herbisidal (HB). (Buchanan and Gibbons, 1974; Strohl, 1997; Kieser et al., 2000) as listed in Table 2. All sequences were aligned in Clustal X program Version 1.83. The sequence were trimmed at the priming site of primers pair StrepB and StrepF (Rintala et al., 2001) in BioEdit program version 7.0.9.0 and complied in FASTA format. The postamplified 16S rDNA sequence file about 1 kb in length (termed StrepBF region hereafter) were realigned, and the final alignment was converted to NEXUS formats for phylogenetic tree reconstruction. Tree construction in PAUP* (Phylogenetic Analysis Using Parsimov methods*) version 4 beta 10 program using DNA distance analysis of Kimura's 2-parameter method and Neighbor Joining were used to construct the tree. Analysis of reliability was subjected to a bootstrap test with 100 replicates and >50% bootstrap values were report.

Species	Code	Accession no.	Bioactivity*	Compound name	Ref.
S. achromogenes subsp. rubradiris	S01	AB184561	AT	Aclacinomycin A	Strol (1997)
S. albofaciens	S02	AB184179	AB	Oxytetractcline	Buchanan et al. (1974)
S. alboniger	S03	AB184331	AB	Puromycin	Kieser et al. (2000)
S. albolongus	S04	AB184425	AB	Proceomycin	Buchanan et al. (1974)
S. albovinaceus	S05	AB249958	AB	-	Buchanan et al. (1974)
S. almquistii	S06	AB184258	AB	Moenamycin	Buchanan et al. (1974)
S. ambofaciens	S07	AM238663	AB	Spiramycin	Kieser et al. (2000)
S. antibioticus	S08	EF063450	AB, AV, AT	Oleandomycin, Vidarabene	Kieser et al. (2000)
S. aureocirculatus	S09	AB184260	AB, GP	-	Buchanan et al. (1974)
S. aureofaciens	S10	EF063459	AB	Chlotetracycin, Narasin	Kieser et al. (2000)
S. bobili	S11	AB249925	AB	Cinerubin	Buchanan et al. (1974)
S. cattleya	S12	AB184571	AB	Thienamycin	Buchanan et al. (1974)
S. clavuligerus	S13	DQ026628	AB	Clavulanic acid	Strol (1997)
S. ederensis	S14	AB184658	AB	Moenomycin	Strol (1997)
S. fradiae	S15	EU367982	AB, GP	Neomycin, Actinomycin Z	Strol (1997)
S. fulvoviolaceus	S16	AB184573	AB, AV	Rubomycin	Buchanan et al. (1974)
S. gibsonii	S17	AB184663	AB	-	Buchanan et al. (1974)

 Table 2 16S rDNA sequences of Streptomyces, Actinomyces and out group bacteria used in this study

* antibacterial (AB), antifungal (AF), antiparasitic (AP), antiviral (AV), antitumor (AT), immunosuppressant (IM), growth promotant (GP), and herbisidal (HB)

Species	Code	Accession no.	Bioactivity*	Compound name	Ref.
S. graminofaciens	S18	AB184416	AB	Streptogramin	Kieser et al. (2000)
S. griseus	S19	EU048540	AF, AT	Daunorubicin, Candicidin	Strol (1997)
S. kanamyceticus	S20	EU367975	AB	Kanamycin	Kieser et al. (2000)
S. lincolnensis	S21	DQ462654	AB, GP	Lincomycin	Strol (1997)
S. narbonensis	S22	DQ445794	AB	Josamycin, Narbomycin	Kieser et al. (2000)
S. ochraceiscleroticus	S23	DQ442533	AB	-	Buchanan et al. (1974)
S. rimosus subsp. paromomycinus	S24	AB184680	AB, AF, AP	Paromomycin, Streptimidone	Kieser et al. (2000)
S. rimosus	S25	EF371440	AB, GP	Oxytetracycline	Strol (1997)
S. spectabilis	S26	EU521694	AB	Spectinomycin	Strol (1997)
S. spiroverticillatus	S27	AB249921	AB, AF	-	Buchanan et al. (1974)
S. venezuelae	S28	EU367976	AB	Chloramphenical	Kieser et al. (2000)
S. xantholiticus	S29	AB184349	AB, AF	Xanthalycin A, B	Buchanan et al. (1974)
S. tenebrarius	S30	AB297962	AB	Tobramycin	Strol (1997)
S. albidoflavus	S31	EF620361	AF	3-phynyl proionic acid	Narayana et al.
S. cacaoi subsp. asoensis	S32	DQ026644	AF	Polyoxin	Kieser et al. (2000)
S. chrestomyceticus	S33	DQ026633	AF	Neomycin E, F	Buchanan et al. (1974)
S. nodosus	S34	EU273535	AF	Amphotericin B	Strol (1997)

Species	Code	Accession no.	Bioactivity*	Compound name	Ref.
S. noursei	S35	EF017717	AB	Nystamycin	Kieser et al. (2000)
S. tendae	S36	AB184172	AF	Nikkomycin	Strol (1997)
S. varsoviensis	S37	DQ026653	AF	Oxytetracycline	Buchanan et al. (1974)
S. natalensis	S38	AB184356	AF	Natamycin	Kieser et al. (2000)
S. albus	S39	EF059751	AP, GP	Salinomycin	Kieser et al. (2000)
S. avermitilis	S40	DQ768097	AP	avermectin	Kieser et al. (2000)
S. cinnamonensis	S41	DQ462657	AP, GP	Monensin	Kieser et al. (2000)
S. albus subsp. pathocidicus	S42	AB184501	AT	Pathocidin	Buchanan et al. (1974)
S. albosporeus subsp. labilomyceticus	S43	EF626593	AT	Labilomycin	Buchanan et al. (1974)
S. argillaceus	S44	AB045885	AT	Mithramycin	Kieser et al. (2000)
S. caespitosus	S45	AB184320	AT	Mithramycin C	Kieser et al. (2000)
S. coeruleorubidus	S46	AB184849	AT	Daunorubicin	Strol (1997)
S. galilaeus	S47	EU273538	AT	Ferrimycins A1, Cinerubicins A	Buchanan et al. (1974)
S. peucetius	S48	AB249907	AT	Daunorubicin	Strol (1997)
S. peucetius subsp. caesius	S49	AB184611	AT	Doxorubicin	Kieser et al. (2000)
S. verticillus	S50	EF017713	AT	Mitomycin C, Pleomycin	Buchanan et al. (1974)
S. parvulus	S51	AB184326	AT	Daetinomycin	Strol (1997)

Species	Code	Accession no.	Bioactivity*	Compound name	Ref.
S. azureus	S52	EF178674	GP	Thiostrpton	Kieser et al. (2000)
S. bambergiensis	S53	EF654096	GP	Bambermycins	Kieser et al. (2000)
S. flocculus	S54	DQ442498	GP	Ferrioxamine	Buchanan et al. (1974)
S. lavendulae	S55	EU367977	GP, AB	Streptothricin	Strol (1997)
S. virginiae	S56	EU285473	GP	Virginiamycin	Strol (1997)
S. lactamdurans	S57	AF214482	GP	Efrotomycin	Strol (1997)
S. hygroscopicus	S58	EU841547	AP, IM, HB	Bialaphos, FK506, Rapamycin	Strol (1997),
				Hygromycin B, Vilidamycin	Kieser et al. (2000)
S. tsukubaensis	S59	AB217600	IM	Tacrolimus (FK506)	Kieser et al. (2000)
S. viridochromogenes	S60	DQ442555	GP	Phosphinotricin	Strol (1997)
S. scabiei	S61	DQ861637	-	-	Kieser et al. (2000)
S. acidiscabies	S62	AB301488	-	-	Kieser et al. (2000)
S. ipomoeae	S63	AB184857	-	-	Kieser et al. (2000)
S. turgidiscabies	S64	EU593696	-	-	Kieser et al. (2000)
S. coelicolor	S65	EF371438	AB	Actinorhodin	Kieser et al. (2000)
S. lividans	S66	AB184826	AB	Actinorhodin	Kieser et al. (2000)
S. halstedii	S67	EF178695	AT	Vicenistatin	Buchanan et al. (1974)
S. baanensis	S68	EF178688	-	-	Buchanan et al. (1974)

Species	Code	Accession no.	Bioactivity*	Compound name	Ref.
S. clavifer	S69	FJ547108	-	-	Buchanan et al. (1974)
S. indigoferus	S70	EU054371	-	-	Buchanan et al. (1974)
Amycolatopsis mediterranei	A01	EF017716	AB	Rifamycin	Kieser et al. (2000)
Amycolatopsis orientalis subsp. orientalis	A02	FJ455098	AB	Vancomycin	Kieser et al. (2000)
Saccharopolyspora erytraea	A03	AM420293	AB	Erythromycin	Kieser et al. (2000)
Micromonospora olivasterospora	A04	EU274360	AB	Fortimicin	Kieser et al. (2000)
Sporichthya polymorpha	A05	AB025317	-	-	Buchanan et al. (1974)
Thermomonospora chromogena	A06	AF116563	-	-	Buchanan et al. (1974)
Escherichia coli	E01	CP000970	-	-	Buchanan et al. (1974)
Pseudomonas putida	P02	EU661866	-	-	Buchanan et al. (1974)
Baciilus subtilis	B03	EU686584	-	-	Buchanan et al. (1974)

3.2 *In silico* endonuclease digestions and restriction fragment length polymorphism (RFLP) analysis

Each trimmed sequence was exported to NEB Cutter Version 2.0 offered from New England Biolab Incorporation (http://tools.neb.com/NEBcutter2/index.php) for *in silico* digestion with 33 restriction endonucleases that confermed to have the dual requirements of being commercially available and recognizing a specific sequence (4 or 6 bp) in which every nucleotide position is defined (Table 3). After *in silico* restriction digestion, a simulated 2% agarose gel electrophoresis image was plotted and captured as a device-independent files in the PDF or JPG format. Restriction patterns of each enzyme for *Streptomyces* species from NEB Cutter were arranged and transferred as TIFF format using spreadsheet program (Microsoft EXEL 2003) and Adobe Photoshop version 8.0 programs, respectively for analyzing in AlphaEase program V. 5.0 to calculate distances of DNA fragments. Bands were scored manually by their presence (1) or absence (0) for restriction distance analysis.

Restriction enzymes	Sequence	Reaction buffer	Optimum incubation
(isoschizomer)		NEBuffer	temperature (°C)
Bfa I	C'TAG	4	37
$Dpn \mid^{a} (Dpn \mid \mid^{b}, Mbo \mid^{b},$	GA'TC	4	37
Sau3A I, BfuC I)			
BstU I	CG'CG	2	60
Hha I (HindP I)	GCG'C	4 + BSA	37
Msel	T'TAA	2 + BSA	37
Nla III	CATG'	4 + BSA	37
Rsa I	GT'AC	1	37
Taq I	T'CGA	Taq I + BSA	65
Alu I	AG'CT	2	37
Hae III	GG'CC	2	37
Mnl I	CCTC (7/6)	2 + BSA	37
Hpa II (Msp I)	C'CGG	4	37
Aci I	CCGC (-3/-1)	3	37
Aat II (Zra I)	GACGT'C	4	37
Acc65I (Kpn I)	G'GTACC	3	37
Age I	A'CCGGT	1	37
Apal (PspOM I)	GGGCC'C	4 + BSA	25
BmgB I	CACGTC (-3/-	-3) 1	37
BseY I	CCCAGC (-5/	-1) 1	37
BspE I	T'CCGGA	3	37
BsrG I	T'GTACA	2 + BSA	37
BssS I	CACGAC (-5/-	-1) 3	37
Eag I	C'GGCCG	3	37
EcoRI	G'AATTC	EcoRI	37
EcoRV	GAT'ATC	3 + BSA	37

Table 3 Restriction enzyme used for in silico endonuclease digestion

N0. Restriction enzymes	Sequence	Reaction buffer	Optimum incubation
(isoschizomer)		NEBuffer	temperature (°C)
Fsp I	TGC'GCA	4	37
Nae I (NgoMI V)	GCC'GGC	1	37
Pst I	CTGCA'G	3	37
Sac I	GAGCT'C	1 + BSA	37
Sac II	CCGC'GG	4	37
SnaB I	TAC'GTA	4 + BSA	37
Ssp I	AAT'ATT	Ssp I	37
Sma I (TspM I, Xma I)	CCC'GGG	4	25

^a cleaves only when its regconition site is methylated

^b Block my *dam* methylation

3.3 Restriction distance analysis

Restriction distance analysis was performed by PAUP* (Phylogenetic Analysis Using Parsimoy methods*) version 4 beta 10 program using restriction distance analysis from Nei- Li method. A resulting NJ tree was used to investigate the relationship of species and bioactivity producing.

3.4. Samples

3.4.1 Soil samples and soil sampling

Thirty six soil samples were collected from different part of Thailand. 50 -100 g of each samples were collected. Soil type, color and pH were recorded. Twenty one of the samples were from forest soil (Fifteen of the samples were taken from Doi Phuka National Park in Nan province and six form Khao Keaw National Park in Chonburi province). Seven were from mangrove forest and 8 were from paddy field (Table 4 – 6). During collection and transportation, samples were stored on ice upon arriving at the laboratory, the samples were stored at -20° C.

Location	Code	Soil type	pН	Location	Code	Soil type	pН
Nan province, Pua district	A01	Loam	5.87	Chonburi province	D01	Sandy soil	8.53
(Doi Phuka National Park)	A02	Loam	5.69	(Kao Keaw National Park)	D02	Sandy soil	8.22
	A03	Loam	5.09		D03	Sandy soil	6.58
	A04	Loam	3.88		D04	Sandy soil	7.02
	A05	Loam	3.93		D05	Sandy soil	5.98
	A06	Loam	3.62		D06	Sandy soil	8.34
	A07	Loam	4.04				
	A08	Loam	4.52				
	A09	Loam	3.80				
	A10	Loam	3.58				
	A11	Loam	4.26				
	A12	Loam	3.97				
	A13	Loam	4.40				
	A14	Loam	4.94				
	A15	Loam	4.60				

 Table 4 Soil sample from forest mountain (MT) used in RFLP analysis

Location	Code	Soil type	рН	Location	Code	Soil type	pН
Samutprakarn province	E01	Clay	5.88	Bangkok, Bangkhuntian	F01	Clay	7.25
(King Chulalongkorn Fort)	E02	Loam	6.81		F02	Loam	7.13
	E03	Loam	6.89		F03	Loam	7.24
	E04	Loam	7.63				

 Table 5 Soil sample from mangrove forest (MG) used in RFLP analysis

 Table 6 Soil sample from paddy field (PD) used in RFLP analysis

Location	Code	Soil type	pН	Location	Code	Soil type	pН
Mukdaharn province,	G01	Sandy soil	5.29	Ubon Ratchathani province,	H01	Sandy soil	5.20
Nikhomkhamsoi district	G02	Sandy soil	4.43	Varinchamrab district	H02	Sandy soil	4.79
	G03	Sandy soil	5.25	Karnchanaburi province	I01	Clay	8.51
	G04	Sandy soil	5.20	Muang, district	102	Loam	7.93

3.4.2 Bacterial samples and culture conditions

All Streptomyces (S. venezualae, S. narbonensis, and S. lividans) and non-Streptomycetes bacteria (*Bacillus subtilis, Escherichia coli,* and *Pseudomonas putida*) from culture collection of Asst. Prof. Suchart Chanama, Ph.D. from Department of Biochemistry, Faculty of Science, Chulalongkorn University. *Streptomyces* were isolated on NS agar to produce a vegetative mycelium. A single colony was inoculated to a NS broth at 28 °C for 48-72 hr. Out group bacteria (*Bacillus subtilis, Escherichia coli,* and *Pseudomonas putida*) was isolated on Luria-Bertani or nutrient agar. A single colony was grown in LB or nutrient broth for 16-18 hr. 15% glycerol stock preparation was made and stored at -70 °C to all bacterial strains.

Species	Medium	Temperature (°C)
Streptomycetes		
Streptomyces venezuelae	NS	29
Streptomyces narbonensis	NS	29
Streptomyces lividans	NS	29
Streptomyces hygroscopicus	NS	29
Streptomyces rimosus	NS	29
Outgroup bacteria		
Escherichia coli	LB	37
Bacillus subtilus	LB	37
Psudomonas putida	NA	37

Table 7 Bacteria and cultivation media used in this study

3.5 DNA isolation

3.5.1 Soil DNA extraction and purification

Crude DNA was isolated from a soil sample by direct lysis procedure (Saano and Lindstrom, cited in Trevor and Elsas, 1995) with slight modifications. First, 0.25 g of soil was mixed vigorously for 30 min at 37 °C with 625 µl lysis buffer (120 mM Na₂HPO₄ pH8, proteinase K 100 µg/ml and 1% SDS) with occationally shaking during incubation time. Subsequently, 112.5 µl of 5 M NaCl was added and vortexed. Then 93.75 µl of 10% cetyltrimethyl ammonium bromide (CTAB) in 0.7 M NaCl was added, thoroughly mixed and incubate at 65 °C for 20 min. After that samples were centrifuged at 12,000 xg for 1 min at room temperature. Equal volume of chloroform was added and mixed. The aqueous phase was transfer to a new tube after centrifugation at 12,000 xg for 5 min. An Equal volume of isopropanol was added and the mixture was left at -20°C for 30 min, followed by centrifugation (12,000 xg, 5 min). Then the DNA pellet was washed with 70% ethanol and resuspended TE buffer (10 mM Tris-HCl and 1 mM EDTA) pH 8.0. If occurrence of humic acid and other phenolic compounds from soil were co-extract resulting in yellowish to brown color of DNA pellet was observed, crude DNA was purified (as these compounds interfered with the PCR) using QIAgen gel extraction kit (Qiagen, Hilden, Germany), according to the manufacturere's instructions. The purified DNA was then applied to 1% agarose gel in 0.5 X TAE buffer to checked for quality and the size of the DNA. Test of soil purity was checked by spectrophotometry at A260/230 and A260/280 which indicate the contamination of humic acid and protein, respectively (Trevors and Elsas, 1995; Yeates et al., 1997).

3.5.2 Bacterial genomic DNA extraction

3.5.2.1 Preparation of Streptomycetes genomic DNA

DNA extraction was extracted according to Kutchma et al. (1998). First, cells (1.5 ml) were harvested from cell culture by centrifugation (12,000 xg for 1 min) 50 mg of cell pellet was washed with 500 µl acetone and incubate on ice 5 min. Centrifuged at 12,000 xg 4 min and discard acetone. Resuspended chill in 500 µl TE buffer [10 mM Tris-CI, pH 8.0 and 1 mM EDTA (with 1 mg/ml lysozyme)] and incubated 37 °C 1 hr. Add 75 µl of 10% SDS and 125 µl of 5M NaCl, inverted gently and subjected to freeze-thawing method by incubated in liquid nitrogen 3 min and placed in water bath (65 °C). Repeat 5 times and incubated on ice for 10 min. Centrifuged at 12,000 xg 5 min. Transferred clear lysate to a new tube. Added RNaseA 200 µg/ml and incubated 37 °C 30 min. Added ProteinaseK 50 µg/ml and incubated 37 °C 30 min. Added equal volume of Phenol: chloroform: isoamyl alcohol (25:24:1) inverted gently. Centrifuged at 12,000 xg 4 min. Transfered upper aqueous phase to a new tube. Added 2 volume of absolute ethanol and incubated at -20 °C 1 hr. Centrifuged at 12,000 xg 10 min. Washed DNA pellet with 500 µl of 70% ethanol. Centrifuged at 12,000 xg 5 min and let DNA dried at room temperature for 5 min and added 30 µl of TE buffer (10 mM Tris-Cl. pH 8.0 and 1 mM EDTA). Genomic DNA was then applied to 1% agarose gel in 0.5X TAE buffer to check for quality and the size of the DNA compared to a known DNA amount of DNA ladder. Spectrophotmetry measuring of DNA were employed. The OD 260 for DNA of 1.0 corresponds to concentration of 50 µg/ml. The concentration of DNA samples was estimated in μ g/ml by employing the following formula: [DNA] = OD260 x dilution factor x 50.

Purity of DNA samples were evaluated from OD260/280 ratio. The ratio of the purified DNA was approximately 1.8 to 2.0 respectively (Sambrook et al., 1989).

3.5.2.2 Preparation of genomic DNA from outgroup bateria

Preparation of genomic DNA from *Bacillus subtilis, Escherichia coli*, and *Pseudomonas putida* performed according to Ausubel et al. (2002). First, a single colony of each bacteria was grown in 5 ml LB broth overnight. Then, transfered cultured cells to 1.5 ml microcentrifuge tube and centrifuged at 12,000 xg for 1 min. Discarded the supernatant and resuspended cells in 567 μ l TE buffer. Added 30 μ l of 10% SDS and 3 μ l of 20 mg/ml proteinase K, mixed well, and incubated 1 hr at 37 °C. Added 100 μ l of 5 M NaCl and mixed thoroughly and added 80 μ l CTAB/NaCl solution, mixed thoroughly, and incubated 10 min at 65 °C. Then, added an equal volume of chloroform: isoamyl alcohol (24:1) inverted gently. Then, centrifuged at 12,000 xg 4 min. Transfer upper aqueous phase to a new tube. Added 0.6 volume of isopropanol. Centrifuge at 12,000 xg 5 min and let DNA stand for 5 min and added 30 μ l of TE (10 mM Tris-Cl, pH 8.0 and 1 mM EDTA) pH 8.0. Genomic DNA was then applied to 1% agarose gel in 1X TAE buffer to checked for quantity and the size of the DNA compared to a known DNA amount of DNA ladder.

3.6 PCR amplification of 16S rDNA

3.6.1 Primers

PCR primers used in this study were synthesized from BSU and BioDesign Co., Ltd. as listed in Table 8 which specifically designed for specific amplification of eubateria and *streptomyces*. Figure 11 illustrated amplification region of 16S rDNA.

Table 8 PCR primers

Primer	Sequence 5' – 3'	Length	Position	Specificity	Ref.
fD1	GAATTCAGAGTTTGA TCCTGGCTCAG	26	8-27 *	most eubacteria	Weisburg, 1991
rP2	GGATTCACGGCTACCTTGTTACGACTT	27	1492-1513*	most eubacteria	Weisburg, 1991
StrepB	ACAAGCCCAGGAGGCGGGGT	20	139-158 **	Streptomyces	Rintala, 2001
StrepF	ACGTGTGCAGCCCAAGCACA	19	1194-1212 **	Streptomyces	Rintala, 2001

* 16S rDNA position from *E. coli* and ** 16S rDNA position from *S. ambofaciens*

Figure 11 Map of 16S rDNA sequence of *Streptomyces ambofaciens* (Rintala et al,, 2001)

3.6.2 PCR amplification

Nearly full length of 16S rRNA gene fragments were amplified from pure culture and soil DNA extract by first round PCR performed with a MYcycler Thermal cycler (Biorad). For the bacterial specific amplification of 16S rDNA fragments of streptomycetes and non-streptomycetes, the reaction mixture was as follows: 1 µl of template DNA (5-100 ng), 0.5 U Taq DNA polymerase (NEB, USA),1X PCR buffer supply with 2.5 mM MgCl₂, 200 μM deoxynucleoside triphophates, 10 μM fD1 (5'-GAATTCAGAGTTTGATCCTGGCTCAG -3) and rP2 (5'-GGATTCACGGCTACCTTGTT ACGACTT-3') from Weisburg et al. (1991). Primer fD1 binds to base positions 8-27 and primer rP2 to base positions 1492-1513 of E. coli 16S rRNA gene and rP2 primers, and 5% (vol/vol) dimethyl sulfoxide was added to the reaction mixture when used of Steptomyces. DNA as a template to facilitate the denaturation of double-stranded DNA and to circumvent the formation of secondary structures. For amplification of soil DNA, 400 ng of bovine serum albumin per µl was used to prevent inhibition (Kreader, 1996). Twenty five microliters of the mixture was added to a 0.2 ml reaction tube. Amplification was performed by pre-denaturation at 95 °C for 2.10 min. Followed by 30 cycles of 1 min denaturation at 94 °C, 30 sec at 55 °C for primer annealing, and extension at 72 °C for 2 min. Followed by 72 °C 10 min for final extension and hold at 4°C. The PCR was set up listed in Table 9 and Figure 12 a. PCR products were only accepted for further analysis when a simultaneous negative control PCR (water instead of DNA) showed no amplification. The PCR products were electrophoresed on 1% agarose gels in TAE buffer and stained with ethidium bromide (1 mg/ml). The DNA bands were visualized by UV transillumination and photographed using Genesnap (Syngene) to ensure that a fragment of the correct size had been amplified. First round PCR products from soil sample were then used as template in a nested PCR using primer StrepB (5' -ACAAGCCCAGGAGGCGGGGT) + StrepF (5' – ACGTGTGCAGCCCAAGCACA) (Rintala et al., 2001). This Streptomyces-specific primer hybridized at positions internal to those targeted of Streptomyces ambofaciens ATCC 23877T (rrnD operon; GenBank accession no. M27245) and generated fragments approximately 1,074 bp in length. The reaction mixture was as follows: 1 µl of template DNA (1:10 dilution of first round PCR

product or DNA from pure culture), 0.5 U Taq DNA polymerase (NEB, USA),1x PCR buffer supply with 2.5 mM MgCl₂, 200 uM deoxynucleoside triphophates, and 10 uM StrepB and StrepF. Amplification was performed by pre-denaturation at 95 °C for 5 min. Followed by 30 cycles of 45 sec denaturation at 94 °C, 64 °C for 40 sec or primer annealing, and extension at 72 °C for 2 min. Followed by 72 °C 10 min for final extension and hold at 4°C (Table 9 and Figure 12 b). Two microliters of each PCR products were then applied to 1% agarose gel electrophoresis in 0.5X TAE buffer to check for exsistance of the amplification products and correction of the fragment.

Components	Volume	Final concentration
10X PCR buffer (supply with Mg)	2.5 µl	1X
10 mM dNTP mixture	0.5 µl	200 µM
Forward primer (10 µM)	0.5 µl	0.2 µM
Reverse primer (10 µM)	0.5 µl	0.2 µM
DMSO*	1.25 µl	5 %
BSA** (10mg/ml)	0.4 µl	400 ng
DNA***	1 µl	5-100 ng
Taq (NEB) (1 U)	0.5 µl	0.5 U
Sterile distilled water	To 25 μl	

Table 9 PCR reaction set up

* DMSO was used if DNA template was from *Streptomyces* Genomic DNA to facilitate the denaturation of double-stranded DNA and to circumvent the formation of secondary structures

** BSA was used if DNA template was from soil DNA to prevent inhibition

*** DNA template could be from total genomic DNA extraction of bacterial culture, boiled colony of *Streptomyces* on agar plate, or purified soil DNA 5-100 ng

Figure 12 Thermal cycling condition for amplification of eubacterial 16S rDNA approximate size 1.5 kb (a) and amplification of *Streptomyces* 16S rDNA approximate size 1 kb (b)

3.7 Cloning of 16S rDNA library

3.7.1 Purification of PCR product from agarose gel

Single or pooled PCR products (1 kb) from soil samples were purified from 1% agarose gels with the QIAquick gel extraction kit (Qiagen). According to manufacturer's protocol, a preparative agarose gel electrophoresis using 1% agarose gel in 0.5 X TAE buffer and electrophored at 100 Volt for 25 min. The PCR fragment were excised from the gel using sterile razor blade and added equal volume of QG buffer of a gel (i.e. 100 mg gel equal 100 µl QG) and incubated at 50 °C for 10 min with occational inverting until the gel was completely melt. Then the melt solution was loaded into a column and centrifuged at max. speed form 1 min. Discarded the flow through and added 750 µl of PE buffer to a spin column and centrifuge for 1 min. Discarded flow though and assembled the collection tube back to the spin column and centrifuged again for 1 min to get rid of remaining PE solution. Then, added 30 µl of pre-warmed (50 °C) steriled or EB buffer to a spin column and let it stood for 5 min and centrifuged for 1 min at max. speed. The purified PCR product was then applied to gel electrophoresis to checked for amount of DNA by compared with the known DNA amount of DNA maker.

3.7.2 Ligation of PCR product to a vector

The purified PCR products were ligased into the T/A cloning vector (RBC, Taiwan). The ligation reaction mixture contained 56 ng (1-3 μ l) of insert and 50 ng of vector (3:1 molar ratio) using T4 DNA ligase in the final reaction volume 10 μ l, incubated at 4 °C overnight (18 hr).

3.7.3 Host cell preparation

A colony of *E. coli* XL1blue was cultured as the starter in 5 ml LB broth at 37 $^{\circ}$ C overnight. 1% of cultured was added to 50 ml LB broth and shacked at 250 rmp, 37 $^{\circ}$ C for 3 hrs (OD600~0.3-0.4). The cells were harvested by centrifuged at 4,000 xg, 4 $^{\circ}$ C for 10 min using refrigerated centrifuge Allergra 25R (Beckman Coulter, USA). Discard the supernatant and resuspended cell pellet with 25 ml cold 100 mM CaCl₂ solution. Mixed gently by pipetting up and down. After chilled on ice for 30 min, centrifuged at 4,000 xg, 4 $^{\circ}$ C for 10 min. Resuspended cells in 2 ml 100 mM CaCl₂ containing 15% glycerol. Aliquot (100 µl) into 1.5 ml centrifuge tubes and stored at -80 $^{\circ}$ C until used.

3.7.4 Transformation of ligation product to E.coli host cells

Prior to transformation the water bath was set at 42° C. 9 µl of ligation mixture was added to a 100 µl aliquot competent cell and mixed well. Then, chilled on ice for 25 min and heat shocked at 42 °C water bath for 45 sec. Added 900 µl of LB broth and incubated at 37 °C for 1 hr with shacking. Then the cultured cell suspension was centrifuged at 10,000 xg for 15 sec. The cell pellet was resuspended in 300 µl of LB and spreaded on LB agar plates supplement with 50 µg/ml ampicillin, 20 µl 50 mg/ml X-Gal (5- bromo-4-chloro-3-indoly-b-D-galactopyranoside), and 100 µl 100 mM IPTG (isopropyl-b-D-thiogalactopyranoside). After incubation at 37 °C for 16 hr, the positive recombinants were screened on alpha-complementation of (blue-white screening). The white colonies were positive clones which contain insert DNA whereas the blue colonies contained no insert DNA. 100-200 colonies were picked for single or pooled soil samples.

3.8 Restriction endonuclease digestions and analysis

3.8.1 DNA preparation

Positive clones were amplified by PCR amplification with primer pairs StrepB + StrepF. The PCR reaction contained 0.5 U Taq DNA polymerase (NEB, USA),1x PCR buffer supply with 2.5 mM MgCl₂, 200 uM deoxynucleoside triphophates, and 10 μ M StrepB and StrepF. The template DNA was prepared from single colony by heated at 95 °C in 100 μ l dH₂O for 5 min and centrifuged (12,000 xg for 2 min) and 5 μ l were take as a template for PCR reaction. Amplification was performed by pre-denaturation at 95 °C for 5 min. Followed by 30 cycles of 45 sec denaturation at 94 °C, 64 °C for 40 sec or primer annealing, and extension at 72 °C for 2 min. Followed by 72 °C 10 min for final extension and hold at 4°C. The PCR products were elctrophoretically analysed by 1% agarose gel.

3.8.2 Digestion of PCR amplicon

No pre-treatment of PCR amplified DNA from positive colony was required for enzymatic digestion. 10 μ I of PCR products were digested with restriction enzyme was set up as follows (Table 10) and incubated at 37 °C for 3–4 hr.

 Table 10 Restriction digestion reaction

Component	Volume
PCR product	10 µl (1 µg)
Restriction enzyme (10-20 U/ µI)	1 µl
10X NEB buffer	2 µl
Sterile distilled water	Το 20 μΙ

Samples were electrophoresed on 3% agarose gel (20 x 20 cm) in 1X TBE buffer at 80 Volts for 2.30 hr. The gels were stained for 10 min in distilled water with ethidium bromide (1 mg/ml). Destaining was done for 40 min in distilled water. A photograph of the gel was stored on hard disk as a TIFF file through a coupled camera using Genesnap software. The restriction fragment patterns were compared manually with those from the *in silico* restriction endonuclease digestions. All bands within a profile were assigned except for those with a size of less than 45 bp found within the profile which is the detection limit of agarose gel electrophoresis. Clones with similar banding patterns were grouped together. The summarization of methods showed in Figure 13.

Compare with the references Streptomyces (sequence from database) RFLP profile

Figure 13 Flow diagram of protocols to analyze bioactive producing *Streptomyces* from soil

CHAPTER IV

RESULTS

4.1 Frequency of bioactive Streptomyces and Actinomyces

Frequency of bioactive *Streptomyces* and *Actinomyces* were listed in Table 11. Among seventy six *Streptomyces* and *Actinomyces*, thirty five have antibacterial activity, fourteen have antitumor, twelve have growth promotant activity, eleven have antifungal activity, five have antipasitic activity, two have antiviral, two have immunosuppressant activity, and two herbicidal. In particular, many *Streptomyces* reported on antibacterial activity were only two from seventy six. Some *Sterpomyces* such as *S. hygroscopicus* was reported on many biological activity including antiparasitic, immunosuppressant, and herbisidal activity, and *S. griseus* on antifungal and antitumor activity.

					Bioactivity *				
Code	Name of Bacteria	AB	AF	AP	AV	AT	IM	GP	HB
S01	S. acromogens subs. rubradirus	-	-	-	-	+	-	-	-
S02	S. albofaciens	+	-	-	-	-	-	-	-
S03	S. alboniger	+	-	-	-	-	-	-	-
S04	S. albolongus	+	-	-	-	-	-	-	-
S05	S. albovinaceus	+	-	-	-	-	-	-	-
S06	S. almquistii	+	-	-	-	-	-	-	-
S07	S. ambofacines	+	-	-	-	-	-	-	-
S08	S. antibioticus	+	-	-	+	+	-	-	-
S09	S. aureocirculatus	+	-	-	-	-	-	-	-
S10	S. aureofaciens	+	-	-	-	-	-	+	-
S11	S. bolili	+	-	-	-	-	-	-	-
S12	S. cattleya	+	-	-	-	-	-	-	-
S13	S. clavuligerus	+	-	-	-	-	-	-	-
S14	S. ederensis	+	-	-	-	-	-	-	-
S15	S. fridiae	+	-	-	-	-	-	+	-
S16	S. fulvoviolaceus	+	-	-	+	-	-	-	-
S17	S. gibsonii	+	-	-	-	-	-	-	-
S18	S. graminofaciens	+	-	-	-	-	-	-	-
S19	S. griseus	-	+	-	-	+	-	-	-
S20	S. kanamyceticus	+	-	-	-	-	-	-	-
S21	S. lincolnensis	+	-	-	-	-	-	+	-
S22	S. narbonensis	+	-	-	-	-	-	-	-
S23	S. ochraceiscleroticus	+	-	-	-	-	-	-	-
S24	S. rumosus subs. paromomycinus	+	+	+	-	-	-	-	-
S25	S. rimosus	+	-	-	-	-	-	+	-
S26	S. spectabilis	+	-	-	-	-	-	-	-
S27	S. spiroverticillatus	+	+	-	-	-	-	-	-
S28	S. venezuelae	+	-	-	-	-	-	-	-
S29	S. xantholiticus	+	+	-	-	-	-	-	-
S30	S. tenebrarius	+	-	-	-	-	-	-	-
S31	S. albidoflavus	-	+	-	-	-	-	-	-
S32	S. cacaoi subs. asoensis	-	+	-	-	-	-	-	-
S33	S. chrestomyceticus	-	+	-	-	-	-	-	-
S34	S. nodosus	-	+	-	-	-	-	-	-
S35	S. noursei	+	-	-	-	-	-	-	-
S36	S. tendae	-	+	-	-	-	-	-	-
S37	S. varsoviensis	-	+	-	-	-	-	-	-
S38	S. natalensis	-	+	-	-	-	-	-	-
S39	S. albus	-	-	+	-	-	-	+	-

 Table 11 Frequency of bioactive Stretpomyces and Actinomyces

Table 11 (continued).

						Bioactivity *			
Code	Name of Bacteria	AB	AF	AP	AV	AT	IM	GP	HB
S40	S. avermitilis	-	-	+	-	-	-	-	-
S41	S. cinnamonensis	-	-	+	-	-	-	+	-
S42	S. albus subs. pathodicus	-	-	-	-	+	-	-	-
S43	S. albosporeus subs. labilomyceticus	-	-	-	-	+	-	-	-
S44	S. argillaceus	-	-	-	-	+	-	-	-
S45	S. caespetosus	-	-	-	-	+	-	-	-
S46	S. coeruleorubidus	-	-	-	-	+	-	-	-
S47	S. galilaceus	-	-	-	-	+	-	-	-
S48	S. peucetius	-	-	-	-	+	-	-	-
S49	S. peucetius subs. caesius	-	-	-	-	+	-	-	-
S50	S. verticillus	-	-	-	-	+	-	-	-
S51	S. parvulus	-	-	-	-	+	-	-	-
S52	S. azureus	-	-	-	-	-	-	+	-
S53	S. bambergiensis	-	-	-	-	-	-	+	-
S54	S. flocculus	-	-	-	-	-	-	+	-
S55	S. lavendulae	-	-	-	-	-	-	+	-
S56	S. virginiae	-	-	-	-	-	-	+	-
S57	S. lactamdurans	-	-	-	-	-	-	+	-
S58	S. hygroscopicus	-	-	+	-	-	+	-	+
S59	S. tsukabaensis	-	-	-	-	-	+	-	-
S60	S. viridochromogens	-	-	-	-	-	-	-	+
S61	S. sacbiei	-	-	-	-	-	-	-	-
S62	S. acidiscabie	-	-	-	-	-	-	-	-
S63	S. ipomoeae	-	-	-	-	-	-	-	-
S64	S. turgidiscabies	-	-	-	-	-	-	-	-
S65	S. coelicolor	+	-	-	-	-	-	-	-
S66	S. lividans	+	-	-	-	-	-	-	-
S67	S. halstedii	-	-	-	-	+	-	-	-
S68	S. baanensis	-	-	-	-	-	-	-	-
S69	S. clavifer	-	-	-	-	-	-	-	-
S70	S. indigoferus	-	-	-	-	-	-	-	-
A01	Amycolatopsis mediterranei	+	-	-	-	-	-	-	-
A02	Amycolatopsis orientalis subsp. orientalis	+	-	-	-	-	-	-	-
A03	Saccharopolyspora erytraea	+	-	-	-	-	-	-	-
A04	Micromonospora olivasterospora	+	-	-	-	-	-	-	-
A05	Sporichthya polymorpha	-	-	-	-	-	-	-	-
A06	Thermomonospora chromogena	-	-	-	-	-	-	-	-
		35	11	5	2	14	2	12	2

* Bioactivities: antibacterial (AB), antifungal (AF), antiparasitic (AP), antiviral (AV), antitumor (AT), immunosuppressant (IM), growth promotant (GP), and herbicidal (HB)

4.2 Phylogenetic tree reconstruction from sequence data

The results of the phylogenetic tree of *Streptomyces*, *Actinomyces*, and outgroup bacteria based on the 16S rRNA gene sequences (StrepBF region) and the bioactivities of the microorganisms are shown in Figure 14. The microorganisms that had antibacterial were relatively consistent with the microorganisms had antifungal activity. A Phylogenetic tree was reconstructed using PAUP* program, neighbor-joining distance method Kimura's 2-parameters. The bootstrap values > 50% were shown in Figure 15 indicated the reliable of the tree from DNA sequence.

Figure 14 Phylogenetic tree of *Streptomyces*, *Actinomyces*, and outgroup bateria based on 16S rDNA sequences (StrepBF region ~ 1 kb) and bioactivity of the microorganisms. Bioactivities: antibacterial (AB), antifungal (AF), antiparasitic (AP), antiviral (AV), antitumor (AT), immunosuppressant (IM), growth promotant (GP), and herbicidal (HB)

Figure 15 Bootstrap tree with a 100 replication of data set of *Streptomyces*, *Actinomyces*, and outgroup bateria based on 16S rDNA sequence (StrepBF region ~ 1 kb). The bootstrap values more than 50% were shown.

4.3 *In silico* endonuclease digestions and restriction fragment length polymorphism (RFLP) analysis

Thirty three restriction enzymes were used for *in silico* restriction enzyme digestion. Thirteen were 4 –bp cutters (tetrameric restriction enzymes) and twenty were 6-bp cutters (hexameric restriction enzymes). Restriction enzymes were retrieved from REBASE (Restriction Enzyme Database) at http://rebase.neb.com as listed in Table 3. Resulting RFLP Patterns of 79 16S rDNA sequences from *Streptomyces, Actinomyces,* and outgroup bacteria digested *in silico* with each restriction enzyme using NEBcutter Version 2.0 (New England Biolab) were group according to pattern similarity, numerical distribution of microorganisms were also shown in Figure 16. The similarity of patterns among *Streptomyces* species were grouped as listed in Table 12 to 44.

Figure 16 2% agarose gel from computer-simulated RFLP pattern from *in silico* digestion of 16S rDNA StrepBF region with single restriction enzyme. Thirty three enzymes were used; *Bfal*, *Dpnl*, *Bst*Ul, *Hhal*, *Msel*, *Nla*III, *Rsal*, *Taql*, *Alul*, *Hae*III, *Mnll*, *Hpa*II, and *Aci*I. The unique RFLP pattern was indicated by code of each microorganism as listed in the table at the top of the figure. The same RFLP pattern obtained from the same restriction enzyme digestion of different microorganisms were indicated as G listed in Table 12-44. The scale bar represented the 100 bp marker. The table at the bottom of the figure showed the numerical distribution of the microorganisms containing one or more than one microorganism and number of OTUs.

^A tetrameric restriction enzyme

^B hexameric restriction enzyme

8	G6A	G7A	G8A	S35	G9A	G10A	G11A	A05	A06	E01	P02	B03
1000 -	_	-	_	=	_	=				=		—
100 -	2. <u> </u>	_	=	_	v 	<u> </u>		_				
											Dpn	IA
No. of micro- organis	52 sms	3	4	1	4	4	6	1	1	1	1	1
OTUs	=				12 (DTUs						

4																						
1000 -	G18A	G19A	G20A G	621A	G22A	G23A	S12	S53	S38	S14	S30	S63	S57 o	324A	G25A	A03	A04	A05	A06	E01	P02	B03
500 -					-		_			_	_		_					_		_	Ξ	
100 -	Ξ	:=		_						_			Ξ		III	_				: :		—
																					Hha I	A
No. o micro orga	of 42 o- nisms	3	3	4	6	2	1	1	1	1	1	1	1	2	2	1	1	1	1	1	1	1
OTU	s =										22 C)TUs										

1	G63A	S26	G64A	G65A	G66A	G67A	G68A	S57	S49	S10	S55	S61	S62	A03	A04	A05	A06	E01	P02	B03
1000																				
500 -																				
	_	=	_		=	-	=	_	=	=	=	_	_	-		<u> </u>	_	_	=	_
100 -						Ĩ		Ī			≣	\equiv					=		_	
	_	_	_	_	_	-	_	_	_	_	-	_	_	_	_		_	_	_	_
																		Aci I	A	
I I																	,	107 1		
	-																			
No.	of 20	1	11	12	13	4	1	1	1	1	1	1	1	1	1	1	1	1	1	1
No. micr orga	of 20 o- anisms	1	11	12	13	4	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Figure 16 (continued).

Figure 16 (continued).

Figure 16 (continued).

 Table 12 List of groups of microorganisms according to similar RFLP pattern after
 digested with Bfal

S01S. acromogens subs. nubradirisS03S. albolnigerS02S. albolaciensS04S. albolangusS06S. almolistiiS05S. antbiolacusS07S. ambolacinesS08S. antbiolacusS10S. aureocirculatusS11S. balliS11S. cattelyaS16S. fulvoviolaceusS12S. cattelyaS16S. fulvoviolaceusS15S. fridiaeS20S. kanamyceticusS15S. fridiaeS20S. kanamyceticusS15S. fridiaeS40S. avernitiisS18S. graminofaciensS40S. avernitiisS22S. narbonensisS47S. gillaceusS23S. ochraceiscleroticusS56S. virginiaeS24S. rumosus subs. paromomycinusS67S. halstediiS25S. spiroverticillatusS68S. baerensisS26S. santhollicusS26S. spectabilisS31S. albidoflavusS26S. spectabilisS33S. cherstemyceticusS13S. tenebrariusS34S. nolosusG4AName of microorganismsS35S. nurseiS30S. tenebrariusS36S. tendaeS57S. izeuroorganismsS37S. varsoviensisG5AName of microorganismsS35S. constonensisG5AName of microorganismsS41S. cinamonensisG5AName of microorganismsS42S. albus subs. pathodicusS63S. joomoeae<	G1A	Name of microorganisms	G2A	Name of microorganisms
S02S. albolaciensS04S. albolacysS05S. almolacionsS05S. albovinaceusS07S. amolacionsS08S. antbilaciusS10S. aureolaciensS09S. aureoinculatusS11S. clavulligerusS16S. hinvoloaceusS15S. tridiaeS20S. kanamyceticusS17S. gibsoniiS21S. kanamyceticusS18S. graninofaciensS40S. arguillaceusS19S. graninofaciensS41S. gaillaceusS23S. achraceiscleroticusS56S. virginiaeS24S. rumosus subs. paromomycinusS67S. halstediiS25S. rimosusS68S. baanensisS26S. spiroverticillatusS26S. spectabilisS28S. verazuelae	S01	S. acromogens subs. rubradiris	S03	S. alboniger
S06S. almoulatilS05S. albovinaceusS07S. ambofacinesS08S. antbioticusS10S. aureofaciensS09S. aureocinculatusS11S. cattleyaS11S. boliliS13S. clavullgerusS16S. tulvoviolaceusS15S. findiaeS20S. kananyceticusS17S. gibsoniiS21S. incolnensisS18S. graninofaciensS44S. argillaceusS22S. narborensisS47S. galiaceusS23S. ochraceiscleroticusS56S. virginiaeS25S. rimosusS68S. balatediiS25S. rimosusS68S. balatediiS26S. spiroverticillatusS69S. claviferS28S. venezuelae	S02	S. albofaciens	S04	S. albolongus
S07S. antbolacinesS08S. antibioticusS10S. aureofaciensS09S. aureocirculatusS11S. cattleyaS11S. bolliS13S. cattleyaS16S. kulvoviolaceusS15S. fridaeS20S. karamyceticusS17S. gibsoniiS21S. incolnensisS19S. grisusS44S. argillaceusS22S. narbonensisS47S. galiaceusS23S. ochraceisclerolicusS66S. virginiaeS24S. rumosus subs. paromomycinusS67S. halstediiS25S. rumosus subs. paromomycinusS68S. baanensisS26S. venezuelae	S06	S. almquistii	S05	S. albovinaceus
S10S. aureofaciensS09S. aureoirculatusS11S. cattleyaS11S. boiliS13S. clavuligerusS16S. tulvoviolaceusS15S. fridiaeS20S. kanamyceticusS17S. gibsoniiS21S. incohensisS18S. grainiofacinasS40S. avernitilisS22S. narbonensisS47S. galilaceusS23S. ochraceiscleroticusS56S. virginiaeS24S. rumosus subs. paromomycinusS67S. halstediiS25S. rimosusS68S. baanensisS26S. venezuelae	S07	S. ambofacines	S08	S. antibioticus
S12S. cattleyaS11S. boliiS13S. clavuligerusS16S. bulvoviolaceusS15S. fridiaeS20S. kanamyceticusS17S. gibsoniiS21S. lincohensisS18S. graminofaciensS40S. argillaceusS19S. grisusS44S. argillaceusS22S. narbonensisS56S. virginiaeS24S. chraelscleroticusS56S. virginiaeS25S. rimosus subs. paromomycinusS67S. halstediiS26S. spiroverticillatusS69S. claviferS28S. venezuelae	S10	S. aureofaciens	S09	S. aureocirculatus
S13S. clavuligerusS16S. fukveviolaceusS17S. gibsoniiS20S. kanamyceticusS17S. gibsoniiS21S. lincolnensisS18S. gramindaciensS40S. avermillisS19S. griseusS44S. argillaceusS22S. narbonensisS47S. gaillaceusS23S. ochraceisclenotousS56S. virginiaeS25S. rimosusS68S. baanensisS27S. spiroverticillatusS69S. claviterS28S. venezuelaeS15S. baanensisS29S. kanthollitcusG3AName of microorganismsS31S. albidoflavusS53S. bambergiensisS33S. chreatomycetusS30S. tenebrariusS34S. nourseiS30S. tenebrariusS35S. nourseiS30S. tenebrariusS36S. nourseiS30S. tenebrariusS37S. varsoviensisA02Amycolatopsis mediterranelS38S. nourseiS402S. albusS41S. cinnanonensisG5AName of microorganismsS43S. albusA02Amycolatopsis mediterranelS44S. peucetiusS63S. jouroeaeS44S. peucetiusS63S. jouroeaeS44S. peucetiusS63S. jouroeaeS44S. peucetiusS63S. jouroeaeS44S. peucetiusS63S. jouroeaeS44S. peucetiusScS. indigenes <td>S12</td> <td>S. cattleya</td> <td>S11</td> <td>S. bolili</td>	S12	S. cattleya	S11	S. bolili
S15S. fridiaeS20S. kanamyceticusS17S. gibsoniiS21S. lincoinensisS18S. graminofaciensS40S. avermitilisS19S. griseusS44S. argillaceusS22S. narbonensisS47S. gaillaceusS23S. ochraceiscleroticusS67S. halstediiS24S. rimosus subs. paromomycinusS67S. halstediiS25S. rimosusS68S. baanensisS25S. vinezuelaeS28S. venezuelaeS29S. xanthollitcusG3AName of microorganismsS31S. albidoffavusS26S. spectabilisS33S. chreatomyceticusS30S. teneborgiensisS33S. chreatomyceticusS30S. teneborgiensisS34S. nourseiS30S. teneborgiensisS35S. nourseiS57S. lactamduransS34S. condosusG5AName of microorganismsS35S. albusS63S. jopmoeeS41S. cinnamonensisG5AName of microorganismsS42S. albusS63S. jopmoeeS44S. coeruleorubicusS63S. jopmoeeS44S. coeruleorubicusS63S. jopmoeeS44S. coeruleorubicusS63S. jopmoeeS44S. peucetiusS.S. albusS44S. peucetiusS.S. albusS54S. peucetiusS.S. albusS55S. surfucatiosS.S. furgidisc	S13	S. clavuligerus	S16	S. fulvoviolaceus
S17S. gibsoniiS21S. incolnensisS18S. graminofaciensS40S. avernitilisS19S. griseusS44S. argillaceusS22S. narbonensisS47S. galilaceusS23S. ochraesiscleroticusS56S. virginiaeS24S. rumosus subs. paromomycinusS67S. halstediiS25S. rumosus subs. paromomycinusS68S. baanensisS26S. spirovarticillatusS69S. claviferS27S. spirovarticillatusG3AName of microorganismsS31S. altbicoflavusS26S. spectabilisS32S. cacaol subs. asoensisS53S. bambergiensisS33S. chrestomyceticusG4AName of microorganismsS34S. nodosusG4AName of microorganismsS35S. nourseiS30S. tenebrariusS36S. tendaeS57S. lactanduransS37S. varsoviensisG5AName of microorganismsS42S. albusS65S. jopmoeaeS43S. conclusursS63S. jopmoeaeS44S. coeruleorubidusS63S. jopmoeaeS44S. ceaceptosusA01Amycolatopsis mediterraneiS45S. caeseptosusA01Amycolatopsis mediterraneiS46S. peucetiusS65S. jopmoeaeS47S. lakusbaensisS65S. jurginacibi en diterraneiS46S. peucetiusS65S. jurginacibi en diterraneiS47S. lakub	S15	S. fridiae	S20	S. kanamyceticus
S18S. graminofaciensS40S. avermittilisS19S. griseusS44S. argillaceusS22S. narbonensisS47S. galilaceusS23S. ochraceisclerotocusS56S. virginiaeS24S. rumosus subs. paromomycinusS67S. halstediiS25S. rimosusS68S. baanensisS27S. spiroverticillatusS69S. claviferS28S. venezuelae	S17	S. gibsonii	S21	S. lincolnensis
S19S. griseusS44S. argiliaceusS22S. narbonensisS47S. galilaceusS23S. ochraceiscleroticusS56S. virginiaeS24S. rumosus subs. paromomycinusS67S. halstediiS25S. rimosusS68S. baanensisS27S. spiroverticillatusS69S. claviterS28S. venezuelaeG3AName of microorganismsS29S. xantholiticusG3AS. speciabilisS31S. abidoflavusS26S. speciabilisS32S. cacaoi subs. asoensisS3S. bambergiensisS33S. chrestomyceticusS30S. tenebrariusS36S. tenstomyceticusS1S. latanduransS37S. varsoviensisA02Amycolatopsis mediterraneiS38S. tendaeS57S. lactanduransS37S. varsoviensisA02Amycolatopsis mediterraneiS39S. albusS53S. loroneaeS41S. cinnamonensisG53S. loroneaeS42S. albus subs. pathodicusS63S. formeaeS43S. opeucetiusS63S. loroneaeS44S. peucetiusS54S. forculusS44S. peucetiusS56S. virdicusS45S. caesplosusS1S. parvalusS46S. peucetiusS57S. lating S1S47S. peucetiusS56S. lorging S1S48S. peucetiusS56S. indig S1S49S. peucetius </td <td>S18</td> <td>S. graminofaciens</td> <td>S40</td> <td>S. avermitilis</td>	S18	S. graminofaciens	S40	S. avermitilis
S22S. narbonensisS47S. galilaceusS23S. ochraceiscleroticusS56S. virginiaeS24S. rumosus subs. paromomycinusS67S. halstediiS25S. rimosusS68S. baanensisS27S. spiroverticillatusS69S. claviferS28S. venezuelae	S19	S. griseus	S44	S. argillaceus
S23S. ochraceiscleroticusS56S. virginiaeS24S. rumosus subs. paromomycinusS67S. halstediiS25S. rimosusS68S. baanensisS27S. spiroverticillatusS69S. claviferS28S. venezuelaeG3AName of microorganismsS31S. albidoflavusS26S. spectabilisS32S. cacaoi subs. asoensisS53S. bambergiensisS33S. chrestomyceticusG4AName of microorganismsS34S. nodosusG4AName of microorganismsS35S. norseiS30S. tenebrariusS36S. tendaeS57S. lactamduransS37S. varsoviensisA02Amycolatopsis mediterranelS39S. albusA02Amycolatopsis mediterranelS41S. cinnamonensisG53S. iporoeaeS42S. albus subs. pathodicusS63S. iporoeaeS43S. albus subs. labilomyceticusA01Amycolatopsis mediterranelS44S. peucetiusS56S. iporoeaeS45S. caespetosusS1S. iporoeaeS46S. coeruleorubidusS1S. ipavalusS47S. parvalusS1S. iporoeaeS48S. peucetius subs. caesiusS1S. ipavalusS56S. verticillusS1S. ipavalusS57S. sactificS. ipavalusS58S. hygroscopicusS1S59S. viridochromogensS1S61S. sacilis <td>S22</td> <td>S. narbonensis</td> <td>S47</td> <td>S. galilaceus</td>	S22	S. narbonensis	S47	S. galilaceus
S24S. rumosus subs. paromomycinusS67S. halstediiS25S. rimosusS68S. baanensisS27S. spiroverticillatusS69S. claviferS28S. venezuelaeG3AName of microorganismsS31S. albidotlavusS26S. spectabilisS32S. cacaoi subs. asoensisS53S. bambergiensisS33S. chrestomyceticusG4AName of microorganismsS34S. nodosusG4AName of microorganismsS35S. notasusG4AName of microorganismsS36S. tendaeS57S. lactamduransS37S. varsoviensisA02Amycolatopsis mediterranelS39S. albusA02Amycolatopsis mediterranelS41S. cinnamonensisG5AName of microorganismsS42S. albusS. albusS. inproceaeS43S. albus subs. pathodicusS63S. formoeaeS44S. peucetiusA01Amycolatopsis mediterranelS45S. caespetosusA01Amycolatopsis mediterranelS46S. peucetiusS53S. indicationS47S. parudiusS54S. flocculusS54S. flocculusS54S. flocculusS46S. peucetius subs. caesiusS55S55S. parudiusS55S56S. virticillusS55S57S. saciliesS. ingingerisS58S. hygroscopicusS55S59S. turdiscablesS55S6	S23	S. ochraceiscleroticus	S56	S. virginiae
S25S. rimosusS68S. baanensisS27S. spiroverticillatusS69S. claviferS28S. venezuelae	S24	S. rumosus subs. paromomycinus	S67	S. halstedii
S27S. spiroverticillatusS69S. claviferS28S. venezuelaeG3AName of microorganismsS29S. xanthollticusG3AName of microorganismsS31S. albidoflavusS26S. spectabilisS32S. cacaoi subs. asoensisS53S. bambergiensisS33S. chrestomyceticusG4AName of microorganismsS34S. nodosusG4AName of microorganismsS35S. nourseiS30S. tenebrariusS36S. tendaeS57S. lactamduransS37S. varsoviensisA02Amycolatopsis mediterraneiS39S. albusS41S. cinnamonensisG5AName of microorganismsS42S. albus subs. pathodicusS63S. ipomoeaeS43S. caespetosusS63S. ipomoeaeS44S. peucetiusS63S. ipomoeaeS45S. caespetosusA01Amycolatopsis mediterraneiS46S. peucetiusS63S. ipomoeaeS47S. peucetiusS63S. ipomoeaeS48S. peucetiusS64S. floculusS59S. surialisS. floculusS55S59S. tukabaensisS55S60S. viridochromogensS64S61S. sacbieiS. indigoferusS64S. turgidiscabiesS65S65S. coelicolorS66S. lividansS70S. indigoferusA04Micromonospora olivasterospora	S25	S. rimosus	S68	S. baanensis
S28S. venezuelaeImage: constraintsS29S. xantholiticusG3AName of microorganismsS31S. albidoflavusS26S. spectabilisS32S. cacaol subs. asoensisS53S. bambergiensisS33S. chrestomyceticusG4AName of microorganismsS34S. nourseiS30S. tenebrariusS35S. nourseiS30S. tenebrariusS36S. tendaeS57S. lactamduransS37S. varsoviensisA02Amycolatopsis mediterraneiS39S. albusG5AName of microorganismsS41S. cinnamonensisG5AName of microorganismsS42S. albus subs. pathodicusS63S. ipornoeaeS43S. albus subs. pathodicusS63S. ipornoeaeS44S. coeruleorubidusS63S. ipornoeaeS45S. coeruleorubidusA01Amycolatopsis mediterraneiS46S. peucetiusS41S. peucetiusS57S. parvulusS41S. parvulusS51S. parvulusS41S. flocculusS54S. flocculusS45S. sacheiS55S. colicolorS41S. sacheiS64S. turgidiscabiesS45S. colicolorS65S. colicolorS45S. colicolorS66S. lividansS45S. colicolorS67S. sacheiS. viridohromogena olivasterosporaS68S. lividansS45S69S. lividans <t< td=""><td>S27</td><td>S. spiroverticillatus</td><td>S69</td><td>S. clavifer</td></t<>	S27	S. spiroverticillatus	S69	S. clavifer
S29S. xantholiticusG3AName of microorganismsS31S. albidoflavusS26S. spectabilisS32S. cacaoi subs. asoensisS53S. bambergiensisS33S. chrestomyceticusG4AName of microorganismsS34S. nodosusG4AName of microorganismsS35S. nourseiS30S. tenebrariusS36S. tendaeS57S. lactamduransS37S. varsoviensisA02Amycolatopsis mediterraneiS39S. albusG5AName of microorganismsS41S. cinnamonensisG5AName of microorganismsS42S. albus subs. pathodicusS63S. ipomoeaeS43S. albosporeus subs. labilomyceticusA01Amycolatopsis mediterraneiS44S. coeruleorubickusS63S. ipomoeaeS45S. coeruleorubickusS63S. ipomoeaeS46S. coeruleorubickusS63S. ipomoeaeS47S. pavulusS63S. ipomoeaeS50S. verticillusS57S. alusS51S. pavulusS55S. azureusS54S. flocculusS55S. indicotromogensS59S. tukabaensisSS61S. sacbieiS. indigoferusS64S. turgidiscabiesSS65S. coelicolorSS66S. lividansSS67S. indigoferusSS68S. lividansSS69S. lidigoferusSS64 <td>S28</td> <td>S. venezuelae</td> <td></td> <td></td>	S28	S. venezuelae		
S31S. albidoflavusS26S. spectabilisS32S. cacaoi subs. asoensisS53S. bambergiensisS33S. chrestomyceticusG4AName of microorganismsS34S. nodosusG4AName of microorganismsS35S. nourseiS30S. tenebrariusS36S. tendaeS57S. lactamduransS37S. varsoviensisA02Amycolatopsis mediterraneiS39S. albusS41S. cinnamonensisG5AName of microorganismsS42S. albus subs. pathodicusS63S. ipornoeaeS43S. albosporeus subs. labilomyceticusA01Amycolatopsis mediterraneiS44S. coeruleorubidusS63S. ipornoeaeS45S. coeruleorubidusS63S. ipornoeaeS48S. peucetiusA01Amycolatopsis mediterraneiS50S. verticillusS55S. actureusS51S. parvulusS55S. tukabaensisS52S. azureusS55S. indicotromogensS61S. sacbieiS. sacbieiS62S. acidiscabieS55S65S. coelicolorS66S. lividansS76S. lidigoferusA04Micromonospora chromogena	S29	S. xantholiticus	G3A	Name of microorganisms
S32S. cacaoi subs. asoensisS53S. bambergiensisS33S. chrestomyceticusG4AName of microorganismsS34S. nodosusG4AName of microorganismsS35S. nourseiS30S. tenebrariusS36S. lendaeS57S. lactamduransS37S. varsoviensisA02Amycolatopsis mediterraneiS39S. albusS41S. cinnamonensisG5AName of microorganismsS42S. albus subs. pathodicusS63S. jpomoeaeS43S. albosporeus subs. labilomyceticusA01Amycolatopsis mediterraneiS44S. coeruleorubidusS63S. jpomoeaeS45S. coeruleorubidusS63S. jpomoeaeS48S. peucetiusA01Amycolatopsis mediterraneiS50S. verticillusS51S. parvulusS52S. azureusS54S. flocculus-S55S. tukabaensis-S61S. sacbiel-S62S. acidiscabie-S63S. turgidiscabies-S64S. turgidiscabies-S65S. coelicolor-S66S. lividans-S75S. coelicolor-S66S. lividans-S70S. lindigoferus-A04Micromonospora chromogena-	S31	S. albidoflavus	S26	S. spectabilis
S33S. chrestomyceticusImage: chrestomyceticusS34S. nodosusG4AName of microorganismsS35S. nourseiS30S. tenebrariusS36S. tendaeS57S. lactamduransS37S. varsoviensisA02Amycolatopsis mediterraneiS39S. albusAmycolatopsis mediterraneiS41S. cinnamonensisG5AName of microorganismsS42S. albus subs. pathodicusS63S. ipomoeaeS43S. albosporeus subs. labilomyceticusA01Amycolatopsis mediterraneiS44S. ceeruleorubidusS63S. ipomoeaeS45S. caespetosusA01Amycolatopsis mediterraneiS46S. coeruleorubidusS63S. ipomoeaeS47S. peucetiusSSS50S. verticillusSS51S. parvilusSS52S. azureusSS54S. flocculusSS55S. turgidiscabiesSS61S. sacbieiS62S. acidiscabieS64S. turgidiscabiesS65S. coelicolorS64S. turgidiscabiesS65S. coelicolorS66S. lividansS70S. indigoferusA04Micromonospora chromogena	S32	S. cacaoi subs. asoensis	S53	S. bambergiensis
S34S. nodosusG4AName of microorganismsS35S. nourseiS30S. tenebrariusS36S. tendaeS57S. lactamduransS37S. varsoviensisA02Arnycolatopsis mediterraneiS39S. albusA02Arnycolatopsis mediterraneiS41S. cinnamonensisG5AName of microorganismsS42S. albus subs. pathodicusS63S. ipomoeaeS43S. albosporeus subs. labilomyceticusA01Arnycolatopsis mediterraneiS45S. caespetosusA01Arnycolatopsis mediterraneiS46S. coeruleorubidusS63S. ipomoeaeS48S. peucetiusA01Arnycolatopsis mediterraneiS50S. verticillusS55S. azureusS51S. parvulusS58S. hygroscopicusS58S. hygroscopicusS59S. tsukabaensisS60S. viridochromogensS61S63S. coelicolorS65S64S. turgidiscabiesS65S. coelicolorS66S. lividansS70S. indigoferusA04Micromonospora chromogena	S33	S. chrestomyceticus		
S35S. nourseiS30S. tenchariusS36S. tendaeS57S. lactamduransS37S. varsoviensisA02Amycolatopsis mediterraneiS39S. albusG5AName of microorganismsS41S. cinnamonensisG53S. ipomoeaeS42S. albus subs. pathodicusS63S. ipomoeaeS43S. albosporeus subs. labilomyceticusA01Amycolatopsis mediterraneiS45S. caespetosusA01Amycolatopsis mediterraneiS46S. coeruleorubidusA01SS48S. peucetiusSSS50S. verticillusSS51S. parvulusSS52S. azureusSS54S. flocculusS55S. tsukabaensisS60S. viridochromogensS61S. sacidiscabieS62S. acidiscabiesS64S. turgidiscabiesS65S. coelicolorS66S. lividansS70S. indigoferusA06Thermononospora chromogena	S34	S. nodosus	G4A	Name of microorganisms
S36S. tendaeS57S. lactamduransS37S. varsoviensisA02Amycolatopsis mediterraneiS39S. albusG5AName of microorganismsS41S. cinnamonensisG5AS. alponoeaeS42S. albus subs. pathodicusS63S. ipomoeaeS43S. albosporeus subs. labilomyceticusA01Amycolatopsis mediterraneiS44S. caespetosusA01Amycolatopsis mediterraneiS45S. caespetosusA01Amycolatopsis mediterraneiS46S. coeruleorubidusA01Amycolatopsis mediterraneiS48S. peucetiusA01Amycolatopsis mediterraneiS49S. peucetiusSubs. caesiusStatusS50S. verticillusSubs. caesiusStatusS51S. parvulusSubs. caesiusStatusS52S. azureusSubsSubsectiusS54S. flocculusSubsectiusSubsectiusS58S. hygroscopicusSubsectiusS61S. sachieiSubsectiusS62S. acidiscabieSubsectiusS63S. coelicolorSubsectiusS64S. turgidiscabiesSubsectiusS65S. coelicolorSubsectiusS66S. lividansSubsectiusS70S. indigoferusSubsectiusA06Thermononospora chromogenaSubsectius	S35	S. noursei	S30	S. tenebrarius
S37S. varsoviensisA02Amycolatopsis mediterraneiS39S. albusG5AName of microorganismsS41S. cinnamonensisG5AName of microorganismsS42S. albus subs. pathodicusS63S. ipomoeaeS43S. albosporeus subs. labilomyceticusA01Amycolatopsis mediterraneiS45S. caespetosusA01Amycolatopsis mediterraneiS46S. coeruleorubidusA01Amycolatopsis mediterraneiS48S. peucetiusA01Amycolatopsis mediterraneiS49S. peucetiusS. easpetosusS50S. verticillusS. easpetosusS51S. parvulusS. easpetosusS52S. azureusS.S54S. flocculusS. flocculusS58S. hygroscopicusS.S60S. viridochromogensS.S61S. sacbieiS. acidiscabieS62S. acidiscabieS.S63S. turgidiscabiesS64S. turgidiscabiesS65S. coelicolorS66S. lividansS70S. indigoferusA04Micromonospora chromogena	S36	S. tendae	S57	S. lactamdurans
S39S. albusG5AName of microorganismsS41S. cinnamonensisG5AName of microorganismsS42S. albus subs. pathodicusS63S. ipomoeaeS43S. albosporeus subs. labilomyceticusA01Amycolatopsis mediterraneiS45S. caespetosusA01Amycolatopsis mediterraneiS46S. coeruleorubidusA01S.S48S. peucetiusS.S.S50S. peucetius subs. caesiusS55S51S. parvulusS.S52S. azureusS.S54S. flocculusS.S58S. hygroscopicusS59S. tsukabaensisS60S. viridochromogensS61S. sacbieiS62S. acidiscabieS64S. turgidiscabiesS65S. coelicolorS66S. lividansS70S. indigoferusA04Micromonospora chromogena	S37	S. varsoviensis	A02	Amycolatopsis mediterranei
S41S. cinnamonensisG5AName of microorganismsS42S. albus subs. pathodicusS63S. ipomoeaeS43S. albosporeus subs. labilomyceticusA01Amycolatopsis mediterraneiS45S. caespetosusA01Amycolatopsis mediterraneiS46S. coeruleorubidusA01Amycolatopsis mediterraneiS48S. peucetiusSSecoruleorubidusS49S. peucetius subs. caesiusSS50S. verticillusSS51S. parvulusSS52S. azureusSS54S. flocculusSS58S. hygroscopicusS59S. tsukabaensisS60S. viridochromogensS61S. sacbieiS62S. acidiscabieS64S. turgidiscabiesS65S. coelicolorS66S. lividansS70S. indigoferusA04Micromonospora olivasterosporaA06Thermomonospora chromogena	S39	S. albus		
\$42S. albus subs. pathodicus\$63S. ipomoeae\$43S. albosporeus subs. labilomyceticusA01Amycolatopsis mediterranei\$44S. caespetosusA01Amycolatopsis mediterranei\$45S. caespetosusA01Amycolatopsis mediterranei\$46S. coeruleorubidusA01Amycolatopsis mediterranei\$47S. coeruleorubidusA01Amycolatopsis mediterranei\$48S. coeruleorubidusA01Amycolatopsis mediterranei\$49S. coeruleorubidusA01Amycolatopsis mediterranei\$49S. poucetiusA01Amycolatopsis mediterranei\$50S. coeruleorubidusA01Amycolatopsis mediterranei\$51S. poucetiusA01Amycolatopsis mediterranei\$52S. poucetiusA01Amycolatopsis\$54S. poucetiusA01Amycolatopsis\$55S. fuoculusA01Amycolatopsis\$56S. fuoculusA01Amycolatopsis\$57S. faculusA01Amycolatopsis\$60S. hygroscopicusA01Amycolatopsis\$61S. sachieiAnycolatopsisA01\$65S. coelicolorA01Amycolatopsis\$66S. lividansA01Amycolatopsis\$70S. indigoferusA01Amycolatopsis\$70S. indigoferusAnycolatopsis\$70S. indigoferusAnycolatopsis\$70S. indigoferusAnycolatopsis\$71Thermonospora chromogena<	S41	S. cinnamonensis	G5A	Name of microorganisms
S43S. albosporeus subs. labilomyceticusA01Amycolatopsis mediterraneiS45S. caespetosusS46S. coeruleorubidusS48S. peucetiusS49S. peucetius subs. caesiusS50S. verticillusS51S. parvulusS52S. azureusS54S. flocculusS58S. hygroscopicusS59S. sukabaensisS60S. viridochromogensS61S. sacbieiS62S. acidiscabieS63S. turgidiscabiesS64S. turgidiscabiesS65S. coelicolorS66S. lividansS70S. indigoferusA04Micromonospora chromogena	S42	S. albus subs. pathodicus	S63	S. ipomoeae
S45S. caespetosusS46S. coeruleorubidusS48S. peucetiusS49S. peucetius subs. caesiusS50S. verticillusS51S. parvulusS52S. azureusS54S. flocculusS58S. hygroscopicusS59S. tsukabaensisS60S. viridochromogensS61S. sacbieiS62S. acidiscabieS64S. turgidiscabiesS65S. coelicolorS66S. lividansS70S. indigoferusA04Micromonospora chromogena	S43	S. albosporeus subs. labilomyceticus	A01	Amycolatopsis mediterranei
S46S. coeruleorubidusS48S. peucetiusS49S. peucetius subs. caesiusS50S. verticillusS51S. parvulusS52S. azureusS54S. flocculusS58S. hygroscopicusS59S. tsukabaensisS60S. viridochromogensS61S. sacbieiS62S. acidiscableS64S. turgidiscabiesS65S. coelicolorS66S. lividansS70S. indigoferusA04Micromonospora chromogena	S45	S. caespetosus		
S48S. peucetiusS49S. peucetius subs. caesiusS50S. verticillusS51S. verticillusS52S. azureusS54S. floculusS58S. hygroscopicusS59S. tsukabaensisS60S. viridochromogensS61S. sacbieiS62S. acidiscabieS64S. turgidiscabiesS65S. coelicolorS66S. lividansS70S. indigoferusA04Micromonospora chromogena	S46	S. coeruleorubidus		
S49S. peucetius subs. caesiusS50S. verticiliusS51S. parvulusS52S. azureusS54S. flocculusS58S. hygroscopicusS59S. tsukabaensisS60S. viridochromogensS61S. sacbieiS62S. acidiscableS64S. turgidiscabiesS65S. coelicolorS66S. lividansS70S. indigoferusA04Micromonospora olivasterospora	S48	S. peucetius		
S50S. verticillusS51S. parvulusS52S. azureusS54S. floculusS58S. hygroscopicusS59S. tukabaensisS60S. viridochromogensS61S. sacbieiS62S. acidiscabieS64S. turgidiscabiesS65S. coelicolorS66S. lividansS70S. indigoferusA04Micromonospora olivasterospora	S49	S. peucetius subs. caesius		
SS1S. parvulusS52S. azureusS54S. flocculusS58S. hygroscopicusS59S. tukabaensisS60S. viridochromogensS61S. sacbieiS62S. acidiscabieS64S. turgidiscabiesS65S. coelicolorS66S. lividansS70S. nidigoferusA04Thermomospora chromogena	S50	S. verticillus		
S52S. azureusS54S. focculusS58S. hygroscopicusS59S. tsukabaensisS60S. viridochromogensS61S. sacbieiS62S. acidiscabieS64S. turgidiscabiesS65S. coelicolorS66S. lividansS70S. indigoferusA04Micromonospora olivasterosporaA06Thermomonospora chromogena	S51	S. parvulus		
S54S. flocculusS58S. hygroscopicusS59S. tsukabaensisS60S. viridochromogensS61S. sacbieiS62S. acidiscabieS64S. turgidiscabiesS65S. coelicolorS66S. lividansS70S. indigoferusA04Micromonospora olivasterosporaA06Thermomonospora chromogena	S52	S. azureus		
S58S. hygroscopicusS59S. tsukabaensisS60S. viridochromogensS61S. sacbieiS62S. acidiscabieS64S. turgidiscabiesS65S. coelicolorS66S. lividansS70S. indigoferusA04Micromonospora olivasterosporaA06Thermomonospora chromogena	S54	S. flocculus		
S59S. tsukabaensisS60S. viridochromogensS61S. sacbieiS62S. acidiscabieS64S. turgidiscabiesS65S. coelicolorS66S. lividansS70S. indigoferusA04Micromonospora olivasterosporaA06Thermomonospora chromogena	S58	S. hygroscopicus		
S60S. viridochromogensS61S. sacbieiS62S. acidiscabieS64S. turgidiscabiesS65S. coelicolorS66S. lividansS70S. indigoferusA04Micromonospora olivasterosporaA06Thermomonospora chromogena	S59	S. tsukabaensis		
S61S. sacbieiS62S. acidiscabieS64S. turgidiscabiesS65S. coelicolorS66S. lividansS70S. indigoferusA04Micromonospora olivasterosporaA06Thermomonospora chromogena	S60	S. viridochromogens		
S62S. acidiscabieS64S. turgidiscabiesS65S. coelicolorS66S. lividansS70S. indigoferusA04Micromonospora olivasterosporaA06Thermomonospora chromogena	S61	S. sacbiei		
S64S. turgidiscabiesS65S. coelicolorS66S. lividansS70S. indigoferusA04Micromonospora olivasterosporaA06Thermomonospora chromogena	S62	S. acidiscabie		
S65S. coelicolorS66S. lividansS70S. indigoferusA04Micromonospora olivasterosporaA06Thermomonospora chromogena	S64	S. turgidiscabies		
S66S. lividansS70S. indigoferusA04Micromonospora olivasterosporaA06Thermomonospora chromogena	S65	S. coelicolor		
S70S. indigoferusA04Micromonospora olivasterosporaA06Thermomonospora chromogena	S66	S. lividans		
A04Micromonospora olivasterosporaA06Thermomonospora chromogena	S70	S. indigoferus		
A06 Thermomonospora chromogena	A04	Micromonospora olivasterospora		
	A06	Thermomonospora chromogena		

 Table13 List of groups of microorganisms according to similar RFLP pattern after
 digested with DpnI

G6A	Name of microorganisms	G7A	Name of microorganisms
S01	S. acromogens subs. rubradiris	S02	S. albofaciens
S03	S. alboniger	S07	S. ambofacines
S04	S. albolongus	S60	S. viridochromogens
S05	S. albovinaceus		
S08	S. antibioticus	G8A	Name of microorganisms
S09	S. aureocirculatus	S18	S. graminofaciens
S10	S. aureofaciens	S29	S. xantholiticus
S11	S. bolili	S48	S. peucetius
S12	S. cattleya	S49	S. peucetius subs. caesius
S13	S. clavuligerus		
S14	S. ederensis	G9A	Name of microorganisms
S15	S. fridiae	S06	S. almquistii
S16	S. fulvoviolaceus	S17	S. gibsonii
S19	S. griseus	S39	S. albus
S20	- S. kanamyceticus	S54	S. flocculus
S21	S. lincolnensis		
S22	S, narbonensis	G10A	Name of microorganisms
\$23	S. ochraceiscleroticus	S24	S. rumosus subs. paromomycinus
S25	S. rimosus	S26	S. spectabilis
S27	S, spiroverticillatus	S33	S, chrestomyceticus
S28	, S. venezuelae	S36	S, tendae
S31	S. albidoflavus		
\$32	S. cacaoi subs. asoensis	G11A	Name of microorganisms
\$34	S podosus	\$30	S tenebrarius
\$35	S. noursei	S57	S. lactamdurans
\$37	S varsoviensis	A01	Amycolatopsis mediterranei
\$38	S. natalensis	A02	Amycolatopsis orientalis subsp. orientalis
S40	S. avermitilis	A03	Saccharopolyspora erytraea
S41	S. cinnamonensis	A04	Micromonospora olivasterospora
S42	S. albus subs. pathodicus		, , ,
S43	S, albosporeus subs. labilomyceticus		
S44	S. argillaceus		
S45	S. caespetosus		
S46	S. coeruleorubidus		
S47	S. galilaceus		
S50	S. verticillus		
S51	S. parvulus		
S52	S. azureus		
S53	S. bambergiensis		
S55	S. lavendulae		
S56	S. virginiae		
S58	S. hygroscopicus		
S59	S. tsukabaensis		
S61	S. sacbiei		
S62	S. acidiscabie		
S63	S. ipomoeae		
S64	S. turgidiscabies		
S65	S. coelicolor		
S66	S. lividans		
S67	S. halstedii		
S68	S. baanensis		
S69	S. clavifer		
S70	S. indigoferus		

 Table 14 List of groups of microorganisms according to similar RFLP pattern after
 digested with BstUl

G12A	Name of microorganisms	G13A	Name of microorganisms
S01	S. acromogens subs. rubradiris	S12	S. cattleya
S02	S. albofaciens	S23	S. ochraceiscleroticus
S03	S. alboniger	S25	S. rimosus
S04	S. albolongus	S29	S. xantholiticus
S05	S. albovinaceus	S32	S. cacaoi subs. asoensis
S07	S. ambofacines	S34	S. nodosus
S08	S. antibioticus	S41	S. cinnamonensis
S09	S. aureocirculatus	S38	S. natalensis
S11	S. bolili	S45	S. caespetosus
S13	S. clavuligerus	S48	S. peucetius
S14	S. ederensis	S49	S. peucetius subs. caesius
S15	S. fridiae	S50	S. verticillus
S16	S. fulvoviolaceus	S54	S. flocculus
S18	S. graminofaciens	S57	S. lactamdurans
S19	S. griseus	S62	S. acidiscabie
S20	S. kanamyceticus	S64	S. turgidiscabies
S21	S. lincolnensis		
S22	S. narbonensis	G14A	Name of microorganisms
S24	S. rumosus subs. paromomycinus	S52	S. azureus
S27	S. spiroverticillatus	S53	S. bambergiensis
S28	S. venezuelae	S35	S. noursei
S30	S. tenebrarius	S61	S. sacbiei
S31	S. albidoflavus		
S33	S. chrestomyceticus	G15A	Name of microorganisms
S36	S. tendae	S10	S. aureofaciens
S37	S. varsoviensis	S42	S. albus subs. pathodicus
S40	S. avermitilis	S26	S. spectabilis
S43	S. albosporeus subs. labilomyceticus	S46	S. coeruleorubidus
S44	S. argillaceus		
S47	S. galilaceus	G16A	Name of microorganisms
S51	S. parvulus	S06	S. almquistii
S55	S. lavendulae	S17	S. gibsonii
S56	S. virginiae	S39	S. albus
S58	S. hygroscopicus	S70	S. indigoferus
S59	S. tsukabaensis		
S60	S. viridochromogens	G17A	Name of microorganisms
S63	S. ipomoeae	A01	Amycolatopsis mediterranei
S65	S. coelicolor	A02	Amycolatopsis orientalis subsp. orientalis
S66	S. lividans		
S67	S. halstedii		

Table 15 List of groups of microorganisms according to similar RFLP pattern afterdigested with *Hha*I

G18A	Name of microorganisms	G19A	Name of microorganisms
S01	S. acromogens subs. rubradirus	S04	S. albolongus
S02	S. albofaciens	S23	S. ochraceiscleroticus
S03	S. alboniger	S33	S. chrestomyceticus
S05	S. albovinaceus		
S07	S. ambofacines	G20A	Name of microorganisms
S08	S. antibioticus	S24	S. rumosus subs. paromomycinus
S09	S. aureocirculatus	S25	S. rimosus
S10	S. aureofaciens	S37	S. varsoviensis
S11	S. bolili		
S15	S. fridiae	G21A	Name of microorganisms
S18	S. graminofaciens	S06	S. almquistii
S20	S. kanamyceticus	S17	S. gibsonii
S26	S. spectabilis	S39	S. albus
S27	S. spiroverticillatus	S54	S. flocculus
S28	S. venezuelae		
S29	S. xantholiticus	G22A	Name of microorganisms
S32	S. cacaoi subs. asoensis	S16	S. fulvoviolaceus
S34	S. nodosus	S19	S. griseus
S35	S. noursei	S31	S. albidoflavus
S36	S. tendae	S46	S. coeruleorubidus
S40	S. avermitilis	S51	S. parvulus
S41	S. cinnamonensis	S58	S. hygroscopicus
S42	S. albus subs. pathodicus		
S43	S. albosporeus subs. labilomyceticus	G23A	Name of microorganisms
S44	S. argillaceus	S13	S. clavuligerus
S45	S. caespetosus	S50	S. verticillus
S47	S. galilaceus		
S48	S. peucetius	G24A	Name of microorganisms
S49	S. peucetius subs. caesius	S69	S. clavifer
S52	S. azureus	S70	S. indigoferus
S55	S. lavendulae		
S56	S. virginiae	G25A	Name of microorganisms
S59	S. tsukabaensis	A01	Amycolatopsis mediterranei
S60	S. viridochromogens	A02	Amycolatopsis orientalis subsp. orientalis
S61	S. sacbiei		
S62	S. acidiscabie		
S64	S. turgidiscabies		
S65	S. coelicolor		
S66	S. lividans		
S67	S. halstedii		

 Table 16 List of groups of microorganisms according to similar RFLP pattern after
 digested with *Msel*

G26A	Name of microorganisms	G27A	Name of microorganisms
S01	S. acromogens subs. rubradirus	S30	S. tenebrarius
S02	S. albofaciens	S34	S. nodosus
S04	S. albolongus	S57	S. lactamdurans
S05	S. albovinaceus	A01	Amycolatopsis mediterranei
S06	S. almquistii	A02	Amycolatopsis orientalis subsp. orientalis
S07	S. ambofacines	A03	Saccharopolyspora erytraea
S08	S. antibioticus		
S09	S. aureocirculatus	G28A	Name of microorganisms
S10	S. aureofaciens	S03	S. alboniger
S13	S. clavuligerus	S11	S. bolili
S14	S. ederensis	S27	S, spiroverticillatus
S15	S. fridiae	S28	' S. venezuelae
S16	S. fulvoviolaceus	S40	S. avermitilis
S17	S. aibsonii	S41	S, cinnamonensis
S18	S. graminofaciens	S43	S. albosporeus subs. labilomyceticus
S19	S ariseus	S68	S baanensis
\$20	S kanamvceticus	S69	S clavifer
S21	S. lincolnensis	000	
622	C. ashrassiaslaratisus	C204	Nome of microorgonicme
323	S. ochraceisclerolicus	GZ9A	
524	S. rumosus subs. paromomycinus	A04	Micromonospora olivasterospora
\$25	S. rimosus	A05	Sporichthya polymorpha
S26	S. spectabilis		
S29	S. xantholiticus		
S31	S. albidoflavus		
S32	S. cacaoi subs. asoensis		
S33	S. chrestomyceticus		
S35	S. noursei		
S36	S. tendae		
S37	S. varsoviensis		
S38	S. natalensis		
S39	S. albus		
S42	S. albus subs. pathodicus		
S44	S. argillaceus		
S45	S. caespetosus		
S46	S. coeruleorubidus		
S48	S. peucetius		
S49	S. peucetius subs. caesius		
S50	S. verticillus		
S51	S. parvulus		
S52	S. azureus		
S53	S. bambergiensis		
S54	S. flocculus		
S56	S. virginiae		
S58	S. hygroscopicus		
S59	S. tsukabaensis		
z\$60	S. viridochromogens		
S61	S. sacbiei		
S62	S. acidiscabie		
S63	S. ipomoeae		
S64	S. turgidiscabies		
S65	S. coelicolor		
S66	S. lividans		
S67	S. halstedii		

 Table 17 List of groups of microorganisms according to similar RFLP pattern after

 digested with NlaIII

G30A	Name of microorganisms	G33A	Name of microorganisms
S01	S. acromogens subs. rubradirus	S04	S. albolongus
S02	S. albofaciens	S05	S. albovinaceus
S07	S. ambofacines	S11	S. bolili
S10	S. aureofaciens	S12	S. cattleya
S16	S. fulvoviolaceus	S13	S. clavuligerus
S36	S. tendae	S15	S. fridiae
S46	S. coeruleorubidus	S18	S. graminofaciens
S51	S. parvulus	S20	S. kanamyceticus
S52	S. azureus	S22	S. narbonensis
S59	S. tsukabaensis	S23	S. ochraceiscleroticus
S60	S. viridochromogens	S24	S. rumosus subs. paromomycinus
S63	S. ipomoeae	S25	S. rimosus
S65	S. coelicolor	S28	S. venezuelae
S66	S. lividans	S29	S. xantholiticus
		S32	S. cacaoi subs. asoensis
G31A	Name of microorganisms	S33	S. chrestomyceticus
S06	S. almquistii	S34	S. nodosus
S17	S. gibsonii	S35	S. noursei
S19	S. griseus	S37	S. varsoviensis
S26	S. spectabilis	S38	S. natalensis
S27	S. spiroverticillatus	S41	S. cinnamonensis
S31	S. albidoflavus	S44	S. argillaceus
S39	S. albus	S47	S. galilaceus
S42	S. albus subs. pathodicus	S48	S. peucetius
S45	S. caespetosus	S49	S. peucetius subs. caesius
S53	S. bambergiensis	S50	S. verticillus
S54	S. flocculus	S55	S. lavendulae
S62	S. acidiscabie	S56	S. virginiae
		S58	S. hygroscopicus
G32A	Name of microorganisms	S67	S. halstedii
S03	S. alboniger	S68	S. baanensis
S08	S. antibioticus	S69	S. clavifer
S09	S. aureocirculatus	S70	S. indigoferus
S21	S. lincolnensis		
S40	S. avermitilis	G34A	Name of microorganisms
S43	S. albosporeus subs. labilomyceticus	S57	S. lactamdurans
S61	S. sacbiei	A01	Amycolatopsis mediterranei
S64	S. turgidiscabies	A02	Amycolatopsis orientalis subsp. orientalis

 Table 18 List of groups of microorganisms according to similar RFLP pattern after

 digested with *Rsa*

G35A	Name of mcroorganisms	G36A	Name of microorganisms
S01	S. acromogens subs. rubradirus	S04	S. albolongus
S02	S. albofaciens	S05	S. albovinaceus
S03	S, alboniger	S14	S. ederensis
S06	s. almouistii	S15	S. fridiae
S07	S ambofacines	S18	S. graminofaciens
508	S antibioticus	\$20	S. kanamuceticus
500		\$22	S. narbonensis
S10	S. aureofoniana	\$27	S. narbonensis
S10		620	S. spiroverticinatus
810	S. polili	520	S. venezuelae
S12	S. calleya	529	S. xantrionicus
513	S. clavuligerus	541	S. cinnamonensis
516	S. fulvoviolaceus	S48	S. peucetius
517	S. gibsonii	S49	S. peucetius subs. caesius
S19	S. griseus	S56	S. virginiae
S21	S. lincolnensis	S67	S. halstedii
S23	S. ochraceiscleroticus	S68	S. baanensis
S24	S. rumosus subs. paromomycinus	S69	S. clavifer
S25	S. rimosus	S70	S. indigoferus
S26	S. spectabilis		
S30	S. tenebrarius		
S31	S. albidoflavus		
S32	S. cacaoi subs. asoensis		
S33	S. chrestomyceticus		
S34	S. nodosus		
S35	S. noursei		
S36	S. tendae		
S37	S. varsoviensis		
S38	S. natalensis		
S39	S. albus		
S40	S. avermitilis		
S42	S. albus subs. pathodicus		
S43	S. albosporeus subs. labilomyceticus		
S44	S. argillaceus		
S45	S. caespetosus		
S46	S. coeruleorubidus		
S47	S. galilaceus		
S50	S. verticillus		
S51	S. parvulus		
S52	S. azureus		
S53	S. bambergiensis		
S54	S. flocculus		
S57	S. lactamdurans		
S58	S. hygroscopicus		
S59	S. tsukabaensis		
S60	S, viridochromogens		
S61	S. sacbiei		
S62	S. acidiscabie		
S63	S. ipomoeae		
S64	S. turaidiscabies		
S65	S. coelicolor		
S66	S lividans		
A01	Amucolatonsis mediterronei		
A04	Micromonospora olivesterespora		
A05	Sporichthya polymorpha		
AUS	Sponeninya polymorpha		
AUb	inermomonospora chromogena	l	

 Table 19 List of groups of microorganisms according to similar RFLP pattern after

 digested with Taql

G37 A	Name of microorganisms	G38A	Name of microorganisms
S01	S. acromogens subs. rubradirus	S02	S. albofaciens
S03	S. alboniger	S07	S. ambofacines
S04	S. albolongus	S08	S. antibioticus
S05	S. albovinaceus	S10	S. aureofaciens
S06	S. almquistii	S32	S. cacaoi subs. asoensis
S09	S. aureocirculatus	S36	S. tendae
S11	S. bolili	S46	S. coeruleorubidus
S12	S. cattleya	S51	S. parvulus
S13	S. clavuligerus	S52	S. azureus
S14	S. ederensis	S60	S. viridochromogens
S17	S. gibsonii	S62	S. acidiscabie
S18	S. graminofaciens	S65	S. coelicolor
S19	S. griseus	S66	S. lividans
S20	S. kanamyceticus		
S21	S. lincolnensis	G39A	Name of microorganisms
\$23	S ochraceiscleroticus	S16	S fulvoviolaceus
S24	S rumosus subs paromomycinus	\$30	S tenebrarius
S25	S rimosus	000	
\$27	S. apirovartiaillatua	G40A	Name of microorganisms
620		040A	
529	S. xantnoilticus	515	S. male
531	S. albidollavus	522	S. narbonensis
533	S. chrestomyceticus	526	S. spectabilis
\$34	S. nodosus	S28	S. venezuelae
\$35	S. noursei	A02	Amycolatopsis orientalis subsp. orientalis
\$37	S. varsoviensis	A05	Sporichthya polymorpha
\$38	S. natalensis	A06	Thermomonospora chromogena
S39	S. albus		
S40	S. avermitilis		
S41	S. cinnamonensis		
S42	S. albus subs. pathodicus		
S43	S. albosporeus subs. labilomyceticus		
S44	S. argillaceus		
S45	S. caespetosus		
S47	S. galilaceus		
S48	S. peucetius		
S49	S. peucetius subs. caesius		
S50	S. verticillus		
S53	S. bambergiensis		
S54	S. flocculus		
S55	S. lavendulae		
S56	S. virginiae		
S58	S. hygroscopicus		
S59	S. tsukabaensis		
S61	S. sacbiei		
S63	S. ipomoeae		
S64	S. turgidiscabies		
S67	S. halstedii		
S68	S. baanensis		
S69	S. clavifer		
S70	S. indigoferus		
A01	Amycolatopsis mediterranei		
L	l.	1	

digested with Al	ul			
]	G41A	Name of microorganisms	G42A	Name of microorganisms
ĺ	S01	S. acromogens subs. rubradirus	S03	S. alboniger
	S02	S. albofaciens	S04	S. albolongus
	S06	S. almquistii	S05	S. albovinaceus
	S07	S. ambofacines	S08	S. antibioticus
	S10	S. aureofaciens	S09	S. aureocirculatus
	S13	S. clavuligerus	S11	S. bolili
	S17	S. gibsonii	S16	S. fulvoviolaceus
	S18	S. graminofaciens	S21	S. lincolnensis
	S19	S. griseus	S40	S. avermitilis
	S23	S. ochraceiscleroticus	S44	S. argillaceus
	S24	S. rumosus subs. paromomycinus	S47	S. galilaceus
	S25	S. rimosus	S56	S. virginiae
	S26	S. spectabilis	S67	S. halstedii
	S27	S. spiroverticillatus	S68	S. baanensis
	S28	s. venezuelae		
	S29	S. xantholiticus	G43A	Name of microorganisms
	S31	S albidoflavus	S14	S ederensis
	\$32	S. cacaoi subs. asoensis	S20	S. kanamuceticus
	\$33	S. chreetomyceticus	020	3. Kanamycencus
	\$34	S. podoguo	G44A	Name of microorganisms
	C2E		C15	C faidian
	000	S. topdag	010	S. malae
	530 627	S. terrouteneie	522	S. harbonensis
	000	S. varsoviensis	0454	News of entry entry in the
	530	S. natalensis	G45A	Name of microorganisms
	539	S. albus	512	S. cattleya
	541	S. cinnamonensis	AUT	Amycolatopsis mediterranei
	542	S. albus subs. pathodicus	A04	Micromonospora olivasterospora
	S43	S. albosporeus subs. labilomyceticus	A06	l hermomonospora chromogena
	\$45	S. caespetosus		
	S46	S. coeruleorubidus	G46A	Name of microorganisms
	S48	S. peucetius	S30	S. tenebrarius
	S49	S. peucetius subs. caesius	A03	Saccharopolyspora erytraea
	S50	S. verticillus		
	S51	S. parvulus		
	S52	S. azureus		
	S53	S. bambergiensis		
	S54	S. flocculus		
	S58	S. hygroscopicus		
	S59	S. tsukabaensis		
	S60	S. viridochromogens		
	S61	S. sacbiei		
	S62	S. acidiscabie		
	S63	S. ipomoeae		
	S64	S. turgidiscabies		
	S65	S. coelicolor		
	S66	S. lividans		
	S70	S. indigoferus		
	A02	Amycolatopsis orientalis subsp. orientalis	1	

Table 20 List of groups of microorganisms according to similar RFLP pattern after

G47A	Name of microorganisms	G49A	Name of microorganisms
S01	S. acromogens subs. rubradirus	S06	S. almquistii
S10	S. aureofaciens	S17	S. gibsonii
S16	S. fulvoviolaceus	S25	S. rimosus
S19	S. griseus	S39	S. albus
S26	S. spectabilis	S54	S. flocculus
S30	S. tenebrarius		
S31	S. albidoflavus	G50A	Name of microorganisms
S36	S. tendae	S08	S. antibioticus
S42	S. albus subs. pathodicus	S21	S. lincolnensis
S43	S. albosporeus subs. labilomyceticus	S61	S. sacbiei
S44	S. argillaceus	S62	S. acidiscabie
S45	S. caespetosus		
S46	S. coeruleorubidus	G51A	Name of microorganisms
S51	S. parvulus	S34	S. nodosus
S52	S. azureus	S37	S. varsoviensis
S55	S. lavendulae		
S57	S. lactamdurans	G52A	Name of microorganisms
		S22	S. narbonensis
G48A	Name of microorganisms	S68	S. baanensis
S04	S. albolongus	S69	S. clavifer
S05	S. albovinaceus	A02	Amycolatopsis orientalis subsp. orientalis
S12	S. cattleya		
S13	S. clavuligerus	G53A	Name of microorganisms
S15	S. fridiae	S02	S. albofaciens
S18	S. graminofaciens	S03	S. alboniger
S23	S. ochraceiscleroticus	S07	S. ambofacines
S22	S. narbonensis	S11	S. bolili
S58	S. hygroscopicus	S14	S. ederensis
S24	S. rumosus subs. paromomycinus	S09	S. aureocirculatus
S27	S. spiroverticillatus	S20	S. kanamyceticus
S28	S. venezuelae	S32	S. cacaoi subs. asoensis
S29	S. xantholiticus	S35	S. noursei
S33	S. chrestomyceticus	S40	S. avermitilis
S38	S. natalensis	S47	S. galilaceus
S41	S. cinnamonensis	S63	S. ipomoeae
S48	S. peucetius	S64	S. turgidiscabies
S49	S. peucetius subs. caesius	S65	S. coelicolor
S50	S. verticillus	S66	S. lividans
S56	S. virginiae	S53	S. bambergiensis
S59	S. tsukabaensis		•
S60	S. viridochromogens		
S67	S. halstedii		

 $\label{eq:table 21} \mbox{List of groups of microorganisms according to similar RFLP pattern after}$

digested with HaeIII

G54A	Name of microorganisms	G57A	Name of microorganisms
S08	S. antibioticus	S04	S. albolongus
S09	S. aureocirculatus	S05	S. albovinaceus
S40	S. avermitilis	S13	S. clavuligerus
		S15	S. fridiae
G55A	Name of microorganisms	S18	S. graminofaciens
S03	S. alboniger	S23	S. ochraceiscleroticus
S36	S. tendae	S33	S. chrestomyceticus
S45	S. caespetosus	S24	S. rumosus subs. paromomycinus
S65	S. coelicolor	S34	S. nodosus
S66	S. lividans	S27	S. spiroverticillatus
		S28	S. venezuelae
G56A	Name of microorganisms	S29	S. xantholiticus
S02	S. albofaciens	S30	S. tenebrarius
S07	S. ambofacines	S37	S. varsoviensis
S10	S. aureofaciens	S38	S. natalensis
S11	S. bolili	S41	S. cinnamonensis
S14	S. ederensis	S42	S. albus subs. pathodicus
S19	S. griseus	S43	S. albosporeus subs. labilomyceticus
S21	S. lincolnensis	S48	S. peucetius
S60	S. viridochromogens	S49	S. peucetius subs. caesius
S31	S. albidoflavus	S50	S. verticillus
S32	S. cacaoi subs. asoensis	S58	S. hygroscopicus
S35	S. noursei	S59	S. tsukabaensis
S44	S. argillaceus	S67	S. halstedii
S46	S. coeruleorubidus	S68	S. baanensis
S47	S. galilaceus	A02	Amycolatopsis orientalis subsp. orientalis
S51	S. parvulus		
S52	S. azureus	G58A	Name of microorganisms
S61	S. sacbiei	S06	S. almquistii
S62	S. acidiscabie	S17	S. gibsonii
S63	S. ipomoeae	S39	S. albus
S64	S. turgidiscabies	S54	S. flocculus
S69	S. clavifer		
S70	S. indigoferus	G59A	Name of microorganisms
		S56	S. virginiae
		S57	S. lactamdurans

 Table 22 List of groups of microorganisms according to similar RFLP pattern after

digested with Mn/I

G60A Name of microorganisms G61A Name of microorganisms S02 S01 S. albofaciens S. acromogens subs. rubradirus S03 S13 S. alboniger S. clavuligerus S04 S14 S. albolongus S. ederensis S05 S15 S. fridiae S. albovinaceus S06 S28 S. almquistii S. venezuelae S07 S. ambofacines S08 S. antibioticus G62A Name of microorganisms S09 S. aureocirculatus S12 S. cattleya S10 S70 S. aureofaciens S. indigoferus S11 S. bolili S17 S. gibsonii S18 S. graminofaciens S19 S. griseus S20 S. kanamyceticus S21 S. lincolnensis S23 S. ochraceiscleroticus S24 S. rumosus subs. paromomycinus S25 S. rimosus S26 S. spectabilis S27 S. spiroverticillatus S29 S. xantholiticus S31 S. albidoflavus S32 S. cacaoi subs. asoensis S33 S. chrestomyceticus S34 S. nodosus S35 S. noursei S36 S. tendae S37 S. varsoviensis S38 S. natalensis S39 S. albus S40 S. avermitilis S41 S. cinnamonensis S42 S. albus subs. pathodicus S43 S. albosporeus subs. labilomyceticus S44 S. argillaceus S45 S. caespetosus S46 S. coeruleorubidus S47 S. galilaceus S48 S. peucetius S49 S. peucetius subs. caesius S50 S. verticillus S51 S. parvulus S52 S. azureus S53 S. bambergiensis S54 S. flocculus S58 S. hygroscopicus S59 S. tsukabaensis S60 S. viridochromoaens S61 S. sacbiei S62 S. acidiscabie S63 S. ipomoeae S64 S. turgidiscabies S65 S. coelicolor S66 S. lividans

 $\label{eq:table 23} \mbox{ List of groups of microorganisms according to similar RFLP pattern after}$

digested with Hpall

S67 S. halstedii S68 S. baanensis

digested with \not	A <i>ci</i> l			
	G63A	Name of microorganisms	G65A	Name of microorganisms
	S01	S. acromogens subs. rubradirus	S04	S. albolongus
	S03	S. alboniger	S12	S. cattleya
	S08	S. antibioticus	S20	S. kanamyceticus
	S09	S. aureocirculatus	S24	S. rumosus subs. paromomycinus
	S11	S. bolili	S32	S. cacaoi subs. asoensis
	S13	S. clavuligerus	S33	S. chrestomyceticus
	S16	S. fulvoviolaceus	S35	S. noursei
	S36	S. tendae	S38	S. natalensis
	S40	S. avermitilis	S50	S. verticillus
	S43	S. albosporeus subs. labilomyceticus	S63	S. ipomoeae
	S45	S. caespetosus	S64	S. turgidiscabies
	S46	S. coeruleorubidus		
	S47	S. galilaceus	G66A	Name of microorganisms
	S51	S. parvulus	S05	S. albovinaceus
	S52	S. azureus	S14	S. ederensis
	S53	S. bambergiensis	S18	S. graminofaciens
	S59	S. tsukabaensis	S23	S. ochraceiscleroticus
	S60	S. viridochromogens	S25	S. rimosus
	S65	S. coelicolor	S27	S. spiroverticillatus
	S66	S. lividans	S29	S. xantholiticus
			S34	S. nodosus
	G64A	Name of microorganisms	S37	S. varsoviensis
	S02	S. albofaciens	S48	S. peucetius
	S07	S. ambofacines	S58	S. hygroscopicus
	S15	S. fridiae	S67	S. halstedii
	S19	S. griseus	S68	S. baanensis
	S21	S. lincolnensis	S69	S. clavifer
	S28	S. venezuelae	S70	S. indigoferus
	S31	S. albidoflavus		
	S41	S. cinnamonensis	G67A	Name of microorganisms
	S42	S. albus subs. pathodicus	S06	S. almquistii
	S44	S. argillaceus	S17	S. gibsonii
	S56	S. virginiae	S39	S. albus
			S54	S. flocculus
			G68A	Name of microorganisms
			S30	S. tenebrarius
			A01	Amycolatopsis mediterranei
			A02	Amycolatopsis orientalis subsp. orientalis

 Table 24 List of groups of microorganisms according to similar RFLP pattern after

G1B	Name of microorganisms	G1B	Name of microorganisms
S01	S. acromogens subs. rubradiris	S41	S. cinnamonensis
S02	S. albofaciens	S42	S. albus subs. pathodicus
S03	S. alboniger	S43	S. albosporeus subs. labilomyceticus
S04	S. albolongus	S44	S. argillaceus
S05	S. albovinaceus	S45	S. caespetosus
S06	S. almquistii	S46	S. coeruleorubidus
S07	S. ambofacines	S47	S. galilaceus
S08	S. antibioticus	S48	S. peucetius
S09	S. aureocirculatus	S49	S. peucetius subs. caesius
S10	S. aureofaciens	S50	S. verticillus
S11	S. bolili	S51	S. parvulus
S12	S. cattleya	S52	S. azureus
S13	S. clavuligerus	S53	S. bambergiensis
S14	S. ederensis	S54	S. flocculus
S15	S. fridiae	S55	S. lavendulae
S16	S. fulvoviolaceus	S56	S. virginiae
S17	S. gibsonii	S57	S. lactamdurans
S18	S. graminofaciens	S58	S. hygroscopicus
S19	S. griseus	S59	S. tsukabaensis
S20	S. kanamyceticus	S60	S. viridochromogens
S21	S. lincolnensis	S61	S. sacbiei
S22	S. narbonensis	S62	S. acidiscabie
S23	S. ochraceiscleroticus	S63	S. ipomoeae
S24	S. rumosus subs. paromomycinus	S64	S. turgidiscabies
S25	S. rimosus	S65	S. coelicolor
S26	S. spectabilis	S66	S. lividans
S27	S. spiroverticillatus	S67	S. halstedii
S28	S. venezuelae	S68	S. baanensis
S29	S. xantholiticus	S69	S. clavifer
S30	S. tenebrarius	S70	S. indigoferus
S31	S. albidoflavus	A01	Amycolatopsis mediterranei
S32	S. cacaoi subs. asoensis	A02	Amycolatopsis orientalis subsp. orientalis
S33	S. chrestomyceticus	A03	Saccharopolyspora erytraea
S34	S. nodosus	A04	Micromonospora olivasterospora
S35	S. noursei	A05	Sporichthya polymorpha
S36	S. tendae	A06	Thermomonospora chromogena
S37	S. varsoviensis	E01	Escherichia coli
S38	S. natalensis	P02	Pseudomonas putida
S39	S. albus		
S40	S. avermitilis		

Table 25 List of groups of microorganisms according to similar RFLP pattern after

digested with AatII

G2B	Name of microorganisms	G2B	Name of microorganisms
S01	S. acromogens subs. rubradiris	S41	S. cinnamonensis
S02	S. albofaciens	S42	S. albus subs. pathodicus
S03	S. alboniger	S43	S. albosporeus subs. labilomyceticus
S04	S. albolongus	S44	S. argillaceus
S05	S. albovinaceus	S45	S. caespetosus
S06	S. almquistii	S46	S. coeruleorubidus
S07	S. ambofacines	S47	S. galilaceus
S08	S. antibioticus	S48	S. peucetius
S09	S. aureocirculatus	S49	S. peucetius subs. caesius
S10	S. aureofaciens	S50	S. verticillus
S11	S. bolili	S51	S. parvulus
S12	S. cattleya	S52	S. azureus
S13	S. clavuligerus	S53	S. bambergiensis
S14	S. ederensis	S54	S. flocculus
S15	S. fridiae	S55	S. lavendulae
S16	S. fulvoviolaceus	S56	S. virginiae
S17	S. gibsonii	S57	S. lactamdurans
S18	S. graminofaciens	S58	S. hygroscopicus
S19	S. griseus	S59	S. tsukabaensis
S20	S. kanamyceticus	S60	S. viridochromogens
S21	S. lincolnensis	S61	S. sacbiei
S22	S. narbonensis	S62	S. acidiscabie
S23	S. ochraceiscleroticus	S63	S. ipomoeae
S24	S. rumosus subs. paromomycinus	S64	S. turgidiscabies
S25	S. rimosus	S65	S. coelicolor
S26	S. spectabilis	S66	S. lividans
S27	S. spiroverticillatus	S67	S. halstedii
S28	S. venezuelae	S68	S. baanensis
S29	S. xantholiticus	S69	S. clavifer
S30	S. tenebrarius	S70	S. indigoferus
S31	S. albidoflavus	A01	Amycolatopsis mediterranei
S32	S. cacaoi subs. asoensis	A02	Amycolatopsis orientalis subsp. orientalis
S33	S. chrestomyceticus	A04	Micromonospora olivasterospora
S34	S. nodosus	A05	Sporichthya polymorpha
S35	S. noursei		
S36	S. tendae	G3B	Name of microorganisms
S37	S. varsoviensis	A03	Saccharopolyspora erytraea
S38	S. natalensis	A06	Thermomonospora chromogena
S39	S. albus	E01	Escherichia coli
S40	S. avermitilis	P02	Pseudomonas putida

Table 26 List of groups of microorganisms according to similar RFLP pattern after

digested with Acc65I

G4B	Name of microorganisms	G4B	Name of microorganisms
S01	S. acromogens subs. rubradiris	S41	S. cinnamonensis
S02	S. albofaciens	S42	S. albus subs. pathodicus
S03	S. alboniger	S43	S. albosporeus subs. labilomyceticus
S04	S. albolongus	S44	S. argillaceus
S05	S. albovinaceus	S45	S. caespetosus
S06	S. almquistii	S46	S. coeruleorubidus
S07	S. ambofacines	S47	S. galilaceus
S08	S. antibioticus	S48	S. peucetius
S09	S. aureocirculatus	S49	S. peucetius subs. caesius
S10	S. aureofaciens	S50	S. verticillus
S11	S. bolili	S51	S. parvulus
S12	S. cattleya	S52	S. azureus
S13	S. clavuligerus	S53	S. bambergiensis
S14	S. ederensis	S54	S. flocculus
S15	S. fridiae	S56	S. virginiae
S16	S. fulvoviolaceus	S58	S. hygroscopicus
S17	S. gibsonii	S59	S. tsukabaensis
S18	S. graminofaciens	S60	S. viridochromogens
S19	S. griseus	S61	S. sacbiei
S20	S. kanamyceticus	S62	S. acidiscabie
S21	S. lincolnensis	S63	S. ipomoeae
S22	S. narbonensis	S64	S. turgidiscabies
S23	S. ochraceiscleroticus	S65	S. coelicolor
S24	S. rumosus subs. paromomycinus	S66	S. lividans
S25	S. rimosus	S67	S. halstedii
S26	S. spectabilis	S68	S. baanensis
S27	S. spiroverticillatus	S69	S. clavifer
S28	S. venezuelae	S70	S. indigoferus
S29	S. xantholiticus	A01	Amycolatopsis mediterranei
S30	S. tenebrarius	A02	Amycolatopsis orientalis subsp. orientalis
S31	S. albidoflavus	A03	Saccharopolyspora erytraea
S32	S. cacaoi subs. asoensis	A04	Micromonospora olivasterospora
S33	S. chrestomyceticus	A05	Sporichthya polymorpha
S34	S. nodosus	A06	Thermomonospora chromogena
S35	S. noursei	E01	Escherichia coli
S36	S. tendae		
S37	S. varsoviensis	G5B	Name of microorganisms
S38	S. natalensis	P02	Pseudomonas putida
S39	S. albus	B03	Bacillus subtillis
S40	S. avermitilis		

Table 27 List of groups of microorganisms according to similar RFLP pattern after

digested with Agel

G6B	Name of microorganisms	G6B	Name of microorganisms
S01	S. acromogens subs. rubradiris	S44	S. argillaceus
S02	S. albofaciens	S45	S. caespetosus
S03	S. alboniger	S46	S. coeruleorubidus
S04	S. albolongus	S47	S. galilaceus
S05	S. albovinaceus	S48	S. peucetius
S07	S. ambofacines	S49	S. peucetius subs. caesius
S08	S. antibioticus	S50	S. verticillus
S09	S. aureocirculatus	S51	S. parvulus
S10	S. aureofaciens	S52	S. azureus
S11	S. bolili	S53	S. bambergiensis
S12	S. cattleya	S54	S. flocculus
S13	S. clavuligerus	S55	S. lavendulae
S14	S. ederensis	S56	S. virginiae
S15	S. fridiae	S57	S. lactamdurans
S16	S. fulvoviolaceus	S58	S. hygroscopicus
S17	S. gibsonii	S59	S. tsukabaensis
S18	S. graminofaciens	S60	S. viridochromogens
S19	S. griseus	S61	S. sacbiei
S20	S. kanamyceticus	S62	S. acidiscabie
S21	S. lincolnensis	S63	S. ipomoeae
S22	S. narbonensis	S64	S. turgidiscabies
S23	S. ochraceiscleroticus	S65	S. coelicolor
S24	S. rumosus subs. paromomycinus	S66	S. lividans
S26	S. spectabilis	S67	S. halstedii
S27	S. spiroverticillatus	S68	S. baanensis
S28	S. venezuelae	S69	S. clavifer
S29	S. xantholiticus	S70	S. indigoferus
S31	S. albidoflavus	A01	Amycolatopsis mediterranei
S32	S. cacaoi subs. asoensis	A02	Amycolatopsis orientalis subsp. orientalis
S33	S. chrestomyceticus	A03	Saccharopolyspora erytraea
S34	S. nodosus	A04	Micromonospora olivasterospora
S35	S. noursei	A06	Thermomonospora chromogena
S36	S. tendae	E01	Escherichia coli
S37	S. varsoviensis	P02	Pseudomonas putida
S38	S. natalensis		I
S39	S. albus		
S40	S. avermitilis		
S41	S. cinnamonensis		
S42	S. albus subs. pathodicus		

Table 28 List of groups of microorganisms according to similar RFLP pattern after

digested with Apal

S43

S. albosporeus subs. labilomyceticus
Table 29 List of groups of microorganisms according to similar RFLP pattern after

digested with BmgBI

G7B	Name of microorganisms	G9B	Name of microorganisms
S01	S. acromogens subs. rubradiris	S06	S. almquistii
S02	S. albofaciens	S17	S. aibsonii
S07	S. ambofacines	S23	S. ochraceiscleroticus
S19	S. griseus	S25	S. rimosus
S31	S. albidoflavus	S29	S. xantholiticus
S36	S. tendae	S32	S. cacaoi subs. asoensis
S46	S. coeruleorubidus	S34	S. nodosus
S51	S. parvulus	S35	S. noursei
S60	S. viridochromogens	S37	S. varsoviensis
S65	S. coelicolor	S38	S. natalensis
S66	S. lividans	S39	S. albus
		S41	S. cinnamonensis
G8B	Name of microorganisms	S48	S. peucetius
S03	S. alboniger	S49	S. peucetius subs. caesius
S04	S. albolongus	S50	S. verticillus
S05	S. albovinaceus	S53	S. bambergiensis
S08	S. antibioticus	S54	S. flocculus
S09	S. aureocirculatus	S61	S. sacbiei
S10	S. aureofaciens	S62	S. acidiscabie
S11	S. bolili	S63	S. ipomoeae
S13	S. clavuligerus	S64	S. turgidiscabies
S14	S. ederensis	S70	S. indigoferus
S15	S. fridiae		
S16	S. fulvoviolaceus	G10B	Name of microorganisms
S18	S. graminofaciens	S12	S. cattleya
S20	S. kanamyceticus	S30	S. tenebrarius
S21	S. lincolnensis	S42	S. albus subs. pathodicus
S22	S. narbonensis	S45	S. caespetosus
S24	S. rumosus subs. paromomycinus	S52	S. azureus
S26	S. spectabilis	S57	S. lactamdurans
S27	S. spiroverticillatus	A01	Amycolatopsis mediterranei
S28	S. venezuelae	A02	Amycolatopsis orientalis subsp. orientalis
S33	S. chrestomyceticus	A03	Saccharopolyspora erytraea
S40	S. avermitilis	A04	Micromonospora olivasterospora
S43	S. albosporeus subs. labilomyceticus	A05	Sporichthya polymorpha
S44	S. argillaceus	A06	Thermomonospora chromogena
S47	S. galilaceus	E01	Escherichia coli
S56	S. virginiae	P02	Pseudomonas putida
S58	S. hygroscopicus	B03	Bacillus subtillis
S59	S. tsukabaensis		
S67	S. halstedii		
S68	S. baanensis		
S69	S. clavifer		
1			

Table 30 List of groups of microorganisms according to similar RFLP pattern after

digested with BseYI

0115		0105	No
G11B	Name of microorganisms	G12B	Name of microorganisms
S01	S. acromogens subs. rubradiris	S02	S. albotaciens
S16	S. fulvoviolaceus	S03	S. alboniger
S19	S. griseus	S04	S. albolongus
S26	S. spectabilis	S05	S. albovinaceus
S31	S. albidoflavus	S06	S. almquistii
S36	S. tendae	S07	S. ambofacines
S42	S. albus subs. pathodicus	S08	S. antibioticus
S45	S. caespetosus	S09	S. aureocirculatus
S46	S. coeruleorubidus	S10	S. aureofaciens
S51	S. parvulus	S11	S. bolili
S52	S. azureus	S12	S. cattleya
S60	S. viridochromogens	S13	S. clavuligerus
		S14	S. ederensis
G12B	Name of microorganisms	S15	S. fridiae
S68	S. baanensis	S17	S. gibsonii
S69	S. clavifer	S18	S. graminofaciens
S70	S. indigoferus	S20	S. kanamyceticus
A01	Amycolatopsis mediterranei	S21	S. lincolnensis
A02	Amycolatopsis orientalis subsp. orientalis	S22	S. narbonensis
A03	Saccharopolyspora erytraea	S23	S. ochraceiscleroticus
A04	Micromonospora olivasterospora	S24	S. rumosus subs. paromomycinus
A05	Sporichthya polymorpha	S25	S. rimosus
E01	Escherichia coli	S27	S. spiroverticillatus
P02	Pseudomonas putida	S28	S. venezuelae
B03	Bacillus subtillis	S29	S. xantholiticus
		S30	S. tenebrarius
		S32	S. cacaoi subs. asoensis
		S33	S. chrestomyceticus
		S34	S. nodosus
		S35	S. noursei
		S37	S. varsoviensis
		S38	S. natalensis
		S39	S. albus
		S40	S. avermitilis
		S41	S, cinnamonensis
		S43	S, albosporeus subs, labilomyceticus
		S44	S. araillaceus
		S48	S peucetius
		S49	S. peucetius subs. caesius
		S50	S. verticillus
		\$53	S. bambergiensis
		S54	S flocculus
		855	S. Javendulae
		S56	S. virginige
		000	o. virginiao

S58

S59

S61

S62

S63

S64 S65

S66

S67

S. hygroscopicus

S. tsukabaensis

S. acidiscabie

S. ipomoeae S. turgidiscabies

S. coelicolor

S. lividans

S. halstedii

S. sacbiei

G13B	Name of microorganisms	G13B	Name of microorganisms
S01	S. acromogens subs. rubradiris	S41	S. cinnamonensis
S02	S. albofaciens	S42	S. albus subs. pathodicus
S03	S. alboniger	S43	S. albosporeus subs. labilomyceticus
S04	S. albolongus	S44	S. argillaceus
S05	S. albovinaceus	S45	S. caespetosus
S06	S. almquistii	S46	S. coeruleorubidus
S07	S. ambofacines	S47	S. galilaceus
S08	S. antibioticus	S48	S. peucetius
S09	S. aureocirculatus	S49	S. peucetius subs. caesius
S10	S. aureofaciens	S50	S. verticillus
S11	S. bolili	S51	S. parvulus
S12	S. cattleya	S52	S. azureus
S13	S. clavuligerus	S53	S. bambergiensis
S14	S. ederensis	S54	S. flocculus
S15	S. fridiae	S55	S. lavendulae
S16	S. fulvoviolaceus	S56	S. virginiae
S17	S. gibsonii	S57	S. lactamdurans
S18	S. graminofaciens	S58	S. hygroscopicus
S19	S. griseus	S59	S. tsukabaensis
S20	S. kanamyceticus	S60	S. viridochromogens
S21	S. lincolnensis	S61	S. sacbiei
S22	S. narbonensis	S62	S. acidiscabie
S23	S. ochraceiscleroticus	S63	S. ipomoeae
S24	S. rumosus subs. paromomycinus	S64	S. turgidiscabies
S25	S. rimosus	S65	S. coelicolor
S26	S. spectabilis	S66	S. lividans
S27	S. spiroverticillatus	S67	S. halstedii
S28	S. venezuelae	S68	S. baanensis
S29	S. xantholiticus	S69	S. clavifer
S30	S. tenebrarius	S70	S. indigoferus
S31	S. albidoflavus	A01	Amycolatopsis mediterranei
S32	S. cacaoi subs. asoensis	A02	Amycolatopsis orientalis subsp. orientalis
S33	S. chrestomyceticus	A03	Saccharopolyspora erytraea
S34	S. nodosus	A04	Micromonospora olivasterospora
S35	S. noursei	A05	Sporichthya polymorpha
S36	S. tendae	A06	Thermomonospora chromogena
S37	S. varsoviensis	E01	Escherichia coli
S38	S. natalensis		
S39	S. albus	G14B	Name of microorganisms
S40	S. avermitilis	P02	Pseudomonas putida
		B03	Bacillus subtillis

Table 31 List of groups of microorganisms according to similar RFLP pattern after

digested with BspEl

G15B	Name of microorganisms	G15B	Name of microorganisms
S01	S. acromogens subs. rubradiris	S50	S. verticillus
S02	S. albofaciens	S51	S. parvulus
S03	S. alboniger	S52	S. azureus
S06	S. almquistii	S53	S. bambergiensis
S07	S. ambofacines	S54	S. flocculus
S08	S. antibioticus	S57	S. lactamdurans
S09	S. aureocirculatus	S58	S. hygroscopicus
S10	S. aureofaciens	S59	S. tsukabaensis
S11	S. bolili	S60	S. viridochromogens
S12	S. cattleya	S61	S. sacbiei
S13	S. clavuligerus	S62	S. acidiscabie
S16	S. fulvoviolaceus	S63	S. ipomoeae
S17	S. gibsonii	S64	S. turgidiscabies
S19	S. griseus	S65	S. coelicolor
S21	S. lincolnensis	S66	S. lividans
S23	S. ochraceiscleroticus	A01	Amycolatopsis mediterranei
S24	S. rumosus subs. paromomycinus	A02	Amycolatopsis orientalis subsp. orientalis
S25	S. rimosus	A03	Saccharopolyspora erytraea
S26	S. spectabilis		
S30	S. tenebrarius	G16B	Name of microorganisms
S31	S. albidoflavus	S04	S. albolongus
S32	S. cacaoi subs. asoensis	S05	S. albovinaceus
S33	S. chrestomyceticus	S14	S. ederensis
S34	S. nodosus	S15	S. fridiae
S35	S. noursei	S18	S. graminofaciens
S36	S. tendae	S20	S. kanamyceticus
S37	S. varsoviensis	S22	S. narbonensis
S38	S. natalensis	S27	S. spiroverticillatus
S39	S. albus	S28	S. venezuelae
S40	S. avermitilis	S29	S. xantholiticus
S42	S. albus subs. pathodicus	S41	S. cinnamonensis
S43	S. albosporeus subs. labilomyceticus	S48	S. peucetius
S44	S. argillaceus	S49	S. peucetius subs. caesius
S45	S. caespetosus	S55	S. lavendulae
S46	S. coeruleorubidus	S56	S. virginiae
S47	S. galilaceus	S67	S. halstedii
		S68	S. baanensis
		S69	S. clavifer
		S70	S. indigoferus
		A04	Micromonospora olivasterospora
		A05	Sporichthya polymorpha
		A06	Thermomonospora chromogena

E01

P02

B03

Escherichia coli

Bacillus subtillis

Pseudomonas putida

 $\label{eq:table 32} \mbox{ List of groups of microorganisms according to similar RFLP pattern after}$

digested with BsrGl

Table 33 List of groups of microorganisms according to similar RFLP pattern after
digested with BssSI

G16B	Name of microorganisms	G16B	Name of microorganisms
S01	S. acromogens subs. rubradiris	S41	S. cinnamonensis
S02	S. albofaciens	S43	S. albosporeus subs. labilomyceticus
S03	S. alboniger	S44	S. argillaceus
S04	S. albolongus	S45	S. caespetosus
S05	S. albovinaceus	S46	S. coeruleorubidus
S06	S. almquistii	S48	S. peucetius
S07	S. ambofacines	S49	S. peucetius subs. caesius
S08	S. antibioticus	S50	S. verticillus
S09	S. aureocirculatus	S51	S. parvulus
S10	S. aureofaciens	S52	S. azureus
S11	S. bolili	S53	S. bambergiensis
S12	S. cattleya	S54	S. flocculus
S13	S. clavuligerus	S55	S. lavendulae
S14	S. ederensis	S56	S. virginiae
S15	S. fridiae	S58	S. hygroscopicus
S16	S. fulvoviolaceus	S59	S. tsukabaensis
S17	S. gibsonii	S60	S. viridochromogens
S18	S. graminofaciens	S61	S. sacbiei
S19	S. griseus	S62	S. acidiscabie
S20	S. kanamyceticus	S63	S. ipomoeae
S21	S. lincolnensis	S64	S. turgidiscabies
S22	S. narbonensis	S65	S. coelicolor
S23	S. ochraceiscleroticus	S66	S. lividans
S24	S. rumosus subs. paromomycinus	S67	S. halstedii
S25	S. rimosus	S68	S. baanensis
S26	S. spectabilis	S69	S. clavifer
S27	S. spiroverticillatus	S70	S. indigoferus
S28	S. venezuelae	A03	Saccharopolyspora erytraea
S29	S. xantholiticus	A04	Micromonospora olivasterospora
S30	S. tenebrarius	A05	Sporichthya polymorpha
S31	S. albidoflavus	A06	Thermomonospora chromogena
S32	S. cacaoi subs. asoensis	E01	Escherichia coli
S33	S. chrestomyceticus	P02	Pseudomonas putida
S34	S. nodosus	B03	Bacillus subtillis
S35	S. noursei		
S36	S. tendae	G17B	Name of microorganisms
S37	S. varsoviensis	S57	S. lactamdurans
S38	S. natalensis	A01	Amycolatopsis mediterranei
S39	S. albus	A02	Amycolatopsis orientalis subsp. orientalis
S40	S. avermitilis		

Table	34 Lis	st of g	groups	of mic	roorga	anisms	acco	rding	to	similar	RFLP	pattern	after
digeste	ed wit	th <i>Ea</i>	gl										

G18B	Name of microorganisms	G18B	Name of microorganisms
S01	S. acromogens subs. rubradiris	S41	S. cinnamonensis
S02	S. albofaciens	S42	S. albus subs. pathodicus
S03	S. alboniger	S43	S. albosporeus subs. labilomyceticus
S04	S. albolongus	S44	S. argillaceus
S05	S. albovinaceus	S45	S. caespetosus
S06	S. almquistii	S46	S. coeruleorubidus
S07	S. ambofacines	S47	S. galilaceus
S08	S. antibioticus	S48	S. peucetius
S09	S. aureocirculatus	S49	S. peucetius subs. caesius
S10	S. aureofaciens	S50	S. verticillus
S11	S. bolili	S52	S. azureus
S12	S. cattleya	S53	S. bambergiensis
S13	S. clavuligerus	S54	S. flocculus
S14	S. ederensis	S56	S. virginiae
S15	S. fridiae	S58	S. hygroscopicus
S16	S. fulvoviolaceus	S59	S. tsukabaensis
S17	S. gibsonii	S60	S. viridochromogens
S18	S. graminofaciens	S61	S. sacbiei
S19	S. griseus	S62	S. acidiscabie
S20	S. kanamyceticus	S63	S. ipomoeae
S21	S. lincolnensis	S64	S. turgidiscabies
S22	S. narbonensis	S65	S. coelicolor
S23	S. ochraceiscleroticus	S66	S. lividans
S24	S. rumosus subs. paromomycinus	S67	S. halstedii
S25	S. rimosus	S68	S. baanensis
S26	S. spectabilis	S69	S. clavifer
S27	S. spiroverticillatus	S70	S. indigoferus
S28	S. venezuelae	A02	Amycolatopsis orientalis subsp. orientalis
S29	S. xantholiticus	A03	Saccharopolyspora erytraea
S30	S. tenebrarius	A04	Micromonospora olivasterospora
S31	S. albidoflavus	A05	Sporichthya polymorpha
S32	S. cacaoi subs. asoensis	A06	Thermomonospora chromogena
S33	S. chrestomyceticus	P02	Pseudomonas putida
S34	S. nodosus		
S35	S. noursei		
S36	S. tendae		
S37	S. varsoviensis		
S38	S. natalensis		
S39	S. albus		

S40 S. avermitilis

G19B	Name of microorganisms	G19B	Name of microorganisms
S01	S. acromogens subs. rubradiris	S41	S. cinnamonensis
S02	S. albofaciens	S42	S. albus subs. pathodicus
S03	S. alboniger	S43	S. albosporeus subs. labilomyceticus
S04	S. albolongus	S44	S. argillaceus
S05	S. albovinaceus	S45	S. caespetosus
S06	S. almquistii	S46	S. coeruleorubidus
S07	S. ambofacines	S47	S. galilaceus
S08	S. antibioticus	S48	S. peucetius
S09	S. aureocirculatus	S49	S. peucetius subs. caesius
S10	S. aureofaciens	S50	S. verticillus
S11	S. bolili	S51	S. parvulus
S12	S. cattleya	S52	S. azureus
S13	S. clavuligerus	S53	S. bambergiensis
S14	S. ederensis	S54	S. flocculus
S15	S. fridiae	S55	S. lavendulae
S16	S. fulvoviolaceus	S56	S. virginiae
S17	S. gibsonii	S57	S. lactamdurans
S18	S. graminofaciens	S58	S. hygroscopicus
S19	S. griseus	S59	S. tsukabaensis
S20	S. kanamyceticus	S60	S. viridochromogens
S21	S. lincolnensis	S61	S. sacbiei
S22	S. narbonensis	S62	S. acidiscabie
S23	S. ochraceiscleroticus	S63	S. ipomoeae
S24	S. rumosus subs. paromomycinus	S64	S. turgidiscabies
S25	S. rimosus	S65	S. coelicolor
S26	S. spectabilis	S66	S. lividans
S27	S. spiroverticillatus	S67	S. halstedii
S28	S. venezuelae	S68	S. baanensis
S29	S. xantholiticus	S69	S. clavifer
S30	S. tenebrarius	S70	S. indigoferus
S31	S. albidoflavus	A01	Amycolatopsis mediterranei
S32	S. cacaoi subs. asoensis	A02	Amycolatopsis orientalis subsp. orientalis
S33	S. chrestomyceticus	A03	Saccharopolyspora erytraea
S34	S. nodosus	A04	Micromonospora olivasterospora
S35	S. noursei	A05	Sporichthya polymorpha
S36	S. tendae	A06	Thermomonospora chromogena
S37	S. varsoviensis	E01	Escherichia coli
S38	S. natalensis		
S39	S. albus		
S40	S. avermitilis		

Table 35 List of groups of microorganisms according to similar RFLP pattern after

digested with EcoRI

G20B	Name of microorganisms	G20B	Name of microorganisms
S01	S. acromogens subs. rubradiris	S45	S. caespetosus
S02	S. albofaciens	S46	S. coeruleorubidus
S03	S. alboniger	S47	S. galilaceus
S04	S. albolongus	S48	S. peucetius
S05	S. albovinaceus	S49	S. peucetius subs. caesius
S06	S. almquistii	S50	S. verticillus
S07	S. ambofacines	S51	S. parvulus
S09	S. aureocirculatus	S52	S. azureus
S10	S. aureofaciens	S53	S. bambergiensis
S11	S. bolili	S54	S. flocculus
S12	S. cattleya	S55	S. lavendulae
S13	S. clavuligerus	S56	S. virginiae
S14	S. ederensis	S57	S. lactamdurans
S15	S. fridiae	S58	S. hygroscopicus
S16	S. fulvoviolaceus	S59	S. tsukabaensis
S17	S. gibsonii	S60	S. viridochromogens
S18	S. graminofaciens	S61	S. sacbiei
S19	S. griseus	S63	S. ipomoeae
S20	S. kanamyceticus	S64	S. turgidiscabies
S21	S. lincolnensis	S65	S. coelicolor
S22	S. narbonensis	S66	S. lividans
S23	S. ochraceiscleroticus	S67	S. halstedii
S24	S. rumosus subs. paromomycinus	S68	S. baanensis
S25	S. rimosus	S69	S. clavifer
S26	S. spectabilis	S70	S. indigoferus
S27	S. spiroverticillatus	A02	Amycolatopsis orientalis subsp. orientalis
S28	S. venezuelae	A03	Saccharopolyspora erytraea
S29	S. xantholiticus	A04	Micromonospora olivasterospora
S30	S. tenebrarius	A05	Sporichthya polymorpha
S31	S. albidoflavus	A06	Thermomonospora chromogena
S33	S. chrestomyceticus		
S34	S. nodosus	G21B	Name of microorganisms
S35	S. noursei	S08	S. antibioticus
S36	S. tendae	S32	S. cacaoi subs. asoensis
S37	S. varsoviensis	S62	S. acidiscabie
S38	S. natalensis	A01	Amycolatopsis mediterranei
S39	S. albus		
S40	S. avermitilis	G22B	Name of microorganisms
S41	S. cinnamonensis	E01	Escherichia coli
S42	S. albus subs. pathodicus	P02	Pseudomonas putida
S43	S. albosporeus subs. labilomyceticus	B03	Bacillus subtillis
S44	S. argillaceus		

Table 36 List of groups of microorganisms according to similar RFLP pattern after

digested with EcoRV

G23B	Name of microorganisms	G23B	Name of microorganisms
S01	S. acromogens subs. rubradiris	S43	S. albosporeus subs. labilomyceticus
S02	S. albofaciens	S44	S. argillaceus
S03	S. alboniger	S45	S. caespetosus
S04	S. albolongus	S46	S. coeruleorubidus
S05	S. albovinaceus	S47	S. galilaceus
S06	S. almquistii	S48	S. peucetius
S07	S. ambofacines	S49	S. peucetius subs. caesius
S08	S. antibioticus	S50	S. verticillus
S09	S. aureocirculatus	S51	S. parvulus
S10	S. aureofaciens	S52	S. azureus
S11	S. bolili	S53	S. bambergiensis
S12	S. cattleya	S54	S. flocculus
S13	S. clavuligerus	S55	S. lavendulae
S14	S. ederensis	S56	S. virginiae
S15	S. fridiae	S58	S. hygroscopicus
S16	S. fulvoviolaceus	S59	S. tsukabaensis
S17	S. gibsonii	S60	S. viridochromogens
S18	S. graminofaciens	S61	S. sacbiei
S19	S. griseus	S62	S. acidiscabie
S20	S. kanamyceticus	S63	S. ipomoeae
S21	S. lincolnensis	S64	S. turgidiscabies
S22	S. narbonensis	S65	S. coelicolor
S23	S. ochraceiscleroticus	S66	S. lividans
S24	S. rumosus subs. paromomycinus	S67	S. halstedii
S25	S. rimosus	S68	S. baanensis
S26	S. spectabilis	S69	S. clavifer
S27	S. spiroverticillatus	S70	S. indigoferus
S28	S. venezuelae	A01	Amycolatopsis mediterranei
S29	S. xantholiticus	A02	Amycolatopsis orientalis subsp. orientalis
S31	S. albidoflavus	A04	Micromonospora olivasterospora
S32	S. cacaoi subs. asoensis		
S33	S. chrestomyceticus	G24B	Name of microorganisms
S34	S. nodosus	S30	S. tenebrarius
S35	S. noursei	A03	Saccharopolyspora erytraea
S36	S. tendae	A05	Sporichthya polymorpha
S37	S. varsoviensis	A06	Thermomonospora chromogena
S38	S. natalensis		
S39	S. albus	G25B	Name of microorganisms
S40	S. avermitilis	E01	Escherichia coli
S41	S. cinnamonensis	P02	Pseudomonas putida
S42	S. albus subs. pathodicus	B03	Bacillus subtillis

Table 37 List of groups of microorganisms according to similar RFLP pattern after

digested with *Fsp*I

G26B	Name of microorganisms	G26B	Name of microorganisms
S01	S. acromogens subs. rubradiris	S47	S. galilaceus
S02	S. albofaciens	S48	S. peucetius
S03	S. alboniger	S49	S. peucetius subs. caesius
S04	S. albolongus	S50	S. verticillus
S05	S. albovinaceus	S51	S. parvulus
S07	S. ambofacines	S52	S. azureus
S08	S. antibioticus	S53	S. bambergiensis
S09	S. aureocirculatus	S55	S. lavendulae
S10	S. aureofaciens	S56	S. virginiae
S11	S. bolili	S58	S. hygroscopicus
S13	S. clavuligerus	S59	S. tsukabaensis
S14	S. ederensis	S60	S. viridochromogens
S15	S. fridiae	S61	S. sacbiei
S16	S. fulvoviolaceus	S62	S. acidiscabie
S18	S. graminofaciens	S63	S. ipomoeae
S19	S. griseus	S64	S. turgidiscabies
S20	S. kanamyceticus	S65	S. coelicolor
S21	S. lincolnensis	S66	S. lividans
S23	S. ochraceiscleroticus	S67	S. halstedii
S24	S. rumosus subs. paromomycinus	S68	S. baanensis
S25	S. rimosus	A04	Micromonospora olivasterospora
S26	S. spectabilis		
S27	S. spiroverticillatus	G27B	Name of microorganisms
S28	S. venezuelae	S06	S. almquistii
S29	S. xantholiticus	S12	S. cattleya
S30	S. tenebrarius	S17	S. gibsonii
S31	S. albidoflavus	S22	S. narbonensis
S32	S. cacaoi subs. asoensis	S39	S. albus
S33	S. chrestomyceticus	S54	S. flocculus
S34	S. nodosus	S57	S. lactamdurans
S35	S. noursei	S69	S. clavifer
S36	S. tendae	S70	S. indigoferus
S37	S. varsoviensis	A01	Amycolatopsis mediterranei
S38	S. natalensis	A02	Amycolatopsis orientalis subsp. orientalis
S40	S. avermitilis	A03	Saccharopolyspora erytraea
S41	S. cinnamonensis	A05	Sporichthya polymorpha
S42	S. albus subs. pathodicus		
S43	S. albosporeus subs. labilomyceticus	G28B	Name of microorganisms
S44	S. argillaceus	E01	- Escherichia coli
S45	S. caespetosus	P02	Pseudomonas putida
	S. acondoonubiduo	B03	Bacillus subtillis

Table 38 List of groups of microorganisms according to similar RFLP pattern after

digested with Nael

G29B	Name of microorganisms	G30B	Name of microorganisms	G31B	Name of microorganisms
S01	S. acromogens subs. rubradiris	S03	S. alboniger	S14	S. ederensis
S02	S. albofaciens	S04	S. albolongus	S64	S. turgidiscabies
S07	S. ambofacines	S05	S. albovinaceus		
S10	S. aureofaciens	S06	S. almquistii	G32B	Name of microorganisms
S16	S. fulvoviolaceus	S08	S. antibioticus	S57	S. lactamdurans
S19	S. griseus	S09	S. aureocirculatus	A01	Amycolatopsis mediterranei
S20	S. kanamyceticus	S11	S. bolili	A02	Amycolatopsis orientalis subsp. orientalis
S26	S. spectabilis	S12	S. cattleya	A03	Saccharopolyspora erytraea
S31	S. albidoflavus	S13	S. clavuligerus	A06	Thermomonospora chromogena
S36	S. tendae	S15	S. fridiae	P02	Pseudomonas putida
S42	S. albus subs. pathodicus	S17	S. gibsonii	B03	Bacillus subtillis
S45	S. caespetosus	S18	S. graminofaciens		
S46	S. coeruleorubidus	S21	S. lincolnensis		
S51	S. parvulus	S22	S. narbonensis		
S52	S. azureus	S23	S. ochraceiscleroticus		
S53	S. bambergiensis	S24	S. rumosus subs. paromomycinus		
S60	S. viridochromogens	S25	S. rimosus		
S65	S. coelicolor	S27	S. spiroverticillatus		
S66	S. lividans	S28	S. venezuelae		
A04	Micromonospora olivasterospora	S29	S. xantholiticus		
A05	Sporichthya polymorpha	S30	S. tenebrarius		
		S32	S. cacaoi subs. asoensis		
		S33	S. chrestomyceticus		
		S34	S. nodosus		
		S35	S. noursei		
		S37	S. varsoviensis		
		S38	S. natalensis		
		S39	S. albus		
		S40	S. avermitilis		
		S41	S. cinnamonensis		
		S43	S. albosporeus subs. labilomyceticus		
		S44	S. argillaceus		
		S47	S. galilaceus		
		S48	S. peucetius		
		S49	S. peucetius subs. caesius		
		S50	S. verticillus		
		S54	S. flocculus		
		S55	S. lavendulae		
		S56	S. virginiae		
		S58	S. hygroscopicus		

S59

S61

S62

S63

S67

S68

S69

S70

E01

S. tsukabaensis

S. acidiscabie

S. ipomoeae

S. halstedii

S. clavifer

S. baanensis

S. indigoferus

Escherichia coli

S. sacbiei

Table 39 List of groups of microorganisms according to similar RFLP pattern after

digested with Pstl

G33B	Name of microorganisms	G33B	Name of microorganisms
S01	S. acromogens subs. rubradiris	S41	S. cinnamonensis
S02	S. albofaciens	S42	S. albus subs. pathodicus
S03	S. alboniger	S43	S. albosporeus subs. labilomyceticus
S04	S. albolongus	S44	S. argillaceus
S05	S. albovinaceus	S45	S. caespetosus
S06	S. almquistii	S46	S. coeruleorubidus
S07	S. ambofacines	S47	S. galilaceus
S08	S. antibioticus	S48	S. peucetius
S09	S. aureocirculatus	S49	S. peucetius subs. caesius
S10	S. aureofaciens	S50	S. verticillus
S11	S. bolili	S51	S. parvulus
S12	S. cattleya	S52	S. azureus
S13	S. clavuligerus	S53	S. bambergiensis
S14	S. ederensis	S54	S. flocculus
S15	S. fridiae	S55	S. lavendulae
S16	S. fulvoviolaceus	S56	S. virginiae
S17	S. gibsonii	S57	S. lactamdurans
S18	S. graminofaciens	S58	S. hygroscopicus
S19	S. griseus	S59	S. tsukabaensis
S20	S. kanamyceticus	S60	S. viridochromogens
S21	S. lincolnensis	S61	S. sacbiei
S22	S. narbonensis	S62	S. acidiscabie
S23	S. ochraceiscleroticus	S63	S. ipomoeae
S24	S. rumosus subs. paromomycinus	S64	S. turgidiscabies
S25	S. rimosus	S65	S. coelicolor
S26	S. spectabilis	S66	S. lividans
S27	S. spiroverticillatus	S67	S. halstedii
S28	S. venezuelae	S68	S. baanensis
S29	S. xantholiticus	S69	S. clavifer
S30	S. tenebrarius	S70	S. indigoferus
S31	S. albidoflavus	A01	Amycolatopsis mediterranei
S32	S. cacaoi subs. asoensis	A02	Amycolatopsis orientalis subsp. orientalis
S33	S. chrestomyceticus	A03	Saccharopolyspora erytraea
S34	S. nodosus	A04	Micromonospora olivasterospora
S35	S. noursei	A05	Sporichthya polymorpha
S36	S. tendae	A06	Thermomonospora chromogena
S37	S. varsoviensis		
S38	S. natalensis	G34B	Name of microorganisms
S39	S. albus	E01	Escherichia coli
S40	S. avermitilis	P02	Pseudomonas putida
		B03	Bacillus subtillis

Table 40 List of groups of microorganisms according to similar RFLP pattern after

digested with Sacl

G35B	Name of microorganisms	G35B	Name of microorganisms
S01	S. acromogens subs. rubradiris	S41	S. cinnamonensis
S02	S. albofaciens	S42	S. albus subs. pathodicus
S03	S. alboniger	S43	S. albosporeus subs. labilomyceticus
S04	S. albolongus	S44	S. argillaceus
S05	S. albovinaceus	S45	S. caespetosus
S06	S. almquistii	S46	S. coeruleorubidus
S07	S. ambofacines	S47	S. galilaceus
S08	S. antibioticus	S48	S. peucetius
S09	S. aureocirculatus	S49	S. peucetius subs. caesius
S10	S. aureofaciens	S50	S. verticillus
S11	S. bolili	S51	S. parvulus
S12	S. cattleya	S52	S. azureus
S13	S. clavuligerus	S53	S. bambergiensis
S14	S. ederensis	S54	S. flocculus
S15	S. fridiae	S55	S. lavendulae
S16	S. fulvoviolaceus	S56	S. virginiae
S17	S. gibsonii	S57	S. lactamdurans
S18	S. graminofaciens	S58	S. hygroscopicus
S19	S. griseus	S59	S. tsukabaensis
S20	S. kanamyceticus	S60	S. viridochromogens
S21	S. lincolnensis	S61	S. sacbiei
S22	S. narbonensis	S62	S. acidiscabie
S23	S. ochraceiscleroticus	S63	S. ipomoeae
S24	S. rumosus subs. paromomycinus	S64	S. turgidiscabies
S25	S. rimosus	S65	S. coelicolor
S26	S. spectabilis	S66	S. lividans
S27	S. spiroverticillatus	S67	S. halstedii
S28	S. venezuelae	S68	S. baanensis
S29	S. xantholiticus	S70	S. indigoferus
S30	S. tenebrarius	A01	Amycolatopsis mediterranei
S31	S. albidoflavus	A02	Amycolatopsis orientalis subsp. orientalis
S32	S. cacaoi subs. asoensis	A03	Saccharopolyspora erytraea
S33	S. chrestomyceticus	A05	Sporichthya polymorpha
S34	S. nodosus	B03	Bacillus subtillis
S35	S. noursei		
S36	S. tendae	G36B	Name of microorganisms
S37	S. varsoviensis	A04	Micromonospora olivasterospora
S38	S. natalensis	A06	Thermomonospora chromogena
S39	S. albus	E01	Escherichia coli
S40	S. avermitilis	P02	Pseudomonas putida

Table 41 List of groups of microorganisms according to similar RFLP pattern after

digested with SacII

G37B	Name of microorganisms	G37B	Name of microorganisms
S01	S. acromogens subs. rubradiris	S41	S. cinnamonensis
S02	S. albofaciens	S42	S. albus subs. pathodicus
S03	S. alboniger	S43	S. albosporeus subs. labilomyceticus
S04	S. albolongus	S44	S. argillaceus
S05	S. albovinaceus	S45	S. caespetosus
S06	S. almquistii	S46	S. coeruleorubidus
S07	S. ambofacines	S47	S. galilaceus
S08	S. antibioticus	S48	S. peucetius
S09	S. aureocirculatus	S49	S. peucetius subs. caesius
S10	S. aureofaciens	S50	S. verticillus
S11	S. bolili	S51	S. parvulus
S12	S. cattleya	S52	S. azureus
S13	S. clavuligerus	S53	S. bambergiensis
S14	S. ederensis	S54	S. flocculus
S15	S. fridiae	S55	S. lavendulae
S16	S. fulvoviolaceus	S56	S. virginiae
S17	S. gibsonii	S57	S. lactamdurans
S18	S. graminofaciens	S58	S. hygroscopicus
S19	S. griseus	S59	S. tsukabaensis
S20	S. kanamyceticus	S60	S. viridochromogens
S21	S. lincolnensis	S61	S. sacbiei
S22	S. narbonensis	S62	S. acidiscabie
S23	S. ochraceiscleroticus	S63	S. ipomoeae
S24	S. rumosus subs. paromomycinus	S64	S. turgidiscabies
S25	S. rimosus	S65	S. coelicolor
S26	S. spectabilis	S66	S. lividans
S27	S. spiroverticillatus	S67	S. halstedii
S28	S. venezuelae	S68	S. baanensis
S29	S. xantholiticus	S69	S. clavifer
S30	S. tenebrarius	S70	S. indigoferus
S31	S. albidoflavus	A01	Amycolatopsis mediterranei
S32	S. cacaoi subs. asoensis	A02	Amycolatopsis orientalis subsp. orientalis
S33	S. chrestomyceticus	A03	Saccharopolyspora erytraea
S34	S. nodosus	A05	Sporichthya polymorpha
S35	S. noursei	B03	Bacillus subtillis
S36	S. tendae		
S37	S. varsoviensis	G38B	Name of microorganisms
S38	S. natalensis	A04	Micromonospora olivasterospora
S39	S. albus	A06	Thermomonospora chromogena
S40	S. avermitilis	E01	Escherichia coli
		P02	Pseudomonas putida

Table 42 List of groups of microorganisms according to similar RFLP pattern after

digested with SnaBl

G39B	Name of microorganisms	G39B	Name of microorganisms
S01	S. acromogens subs. rubradiris	S41	S. cinnamonensis
S02	S. albofaciens	S42	S. albus subs. pathodicus
S03	S. alboniger	S43	S. albosporeus subs. labilomyceticus
S04	S. albolongus	S44	S. argillaceus
S05	S. albovinaceus	S45	S. caespetosus
S06	S. almquistii	S46	S. coeruleorubidus
S07	S. ambofacines	S47	S. galilaceus
S08	S. antibioticus	S48	S. peucetius
S09	S. aureocirculatus	S49	S. peucetius subs. caesius
S10	S. aureofaciens	S50	S. verticillus
S11	S. bolili	S51	S. parvulus
S12	S. cattleya	S52	S. azureus
S13	S. clavuligerus	S53	S. bambergiensis
S14	S. ederensis	S54	S. flocculus
S15	S. fridiae	S55	S. lavendulae
S16	S. fulvoviolaceus	S56	S. virginiae
S17	S. gibsonii	S57	S. lactamdurans
S18	S. graminofaciens	S58	S. hygroscopicus
S19	S. griseus	S59	S. tsukabaensis
S20	S. kanamyceticus	S60	S. viridochromogens
S21	S. lincolnensis	S61	S. sacbiei
S22	S. narbonensis	S62	S. acidiscabie
S23	S. ochraceiscleroticus	S63	S. ipomoeae
S24	S. rumosus subs. paromomycinus	S64	S. turgidiscabies
S25	S. rimosus	S65	S. coelicolor
S26	S. spectabilis	S66	S. lividans
S27	S. spiroverticillatus	S67	S. halstedii
S28	S. venezuelae	S68	S. baanensis
S29	S. xantholiticus	S69	S. clavifer
S30	S. tenebrarius	S70	S. indigoferus
S31	S. albidoflavus	A01	Amycolatopsis mediterranei
S32	S. cacaoi subs. asoensis	A02	Amycolatopsis orientalis subsp. orientalis
S33	S. chrestomyceticus	A05	Sporichthya polymorpha
S34	S. nodosus	E01	Escherichia coli
S35	S. noursei	P02	Pseudomonas putida
S36	S. tendae		
S37	S. varsoviensis	G40B	Name of microorganisms
S38	S. natalensis	A03	Saccharopolyspora erytraea
S39	S. albus	A06	Thermomonospora chromogena
S40	S. avermitilis	B03	Bacillus subtillis

Table 43 List of groups of microorganisms according to similar RFLP pattern after

digested with Sspl

G41B	Name of microorganisms	G41B	Name of microorganisms
S02	S. albofaciens	S51	S. parvulus
S03	S. alboniger	S52	S. azureus
S04	S. albolongus	S53	S. bambergiensis
S05	S. albovinaceus	S54	S. flocculus
S06	S. almquistii	S58	S. hygroscopicus
S07	S. ambofacines	S59	S. tsukabaensis
S08	S. antibioticus	S60	S. viridochromogens
S09	S. aureocirculatus	S61	S. sacbiei
S10	S. aureofaciens	S62	S. acidiscabie
S11	S. bolili	S63	S. ipomoeae
S12	S. cattleya	S64	S. turgidiscabies
S14	S. ederensis	S65	S. coelicolor
S15	S. fridiae	S66	S. lividans
S17	S. gibsonii	S67	S. halstedii
S18	S. graminofaciens	S68	S. baanensis
S19	S. griseus	S70	S. indigoferus
S20	S. kanamyceticus		
S21	S. lincolnensis	G42B	Name of microorganisms
S22	S. narbonensis	S30	S. tenebrarius
S23	S. ochraceiscleroticus	A03	Saccharopolyspora erytraea
S24	S. rumosus subs. paromomycinus	A06	Thermomonospora chromogena
S25	S. rimosus	B03	Bacillus subtillis
S26	S. spectabilis		
S27	S. spiroverticillatus		
S28	S. venezuelae		
S29	S. xantholiticus		
S31	S. albidoflavus		
S32	S. cacaoi subs. asoensis		
S33	S. chrestomyceticus		
S34	S. nodosus		
S35	S. noursei		
S36	S. tendae		
S37	S. varsoviensis		
S38	S. natalensis		
S39	S. albus		
S40	S. avermitilis		
S41	S. cinnamonensis		
S42	S. albus subs. pathodicus		
S43	S. albosporeus subs. labilomyceticus		
S44	S. argillaceus		
S45	S. caespetosus		
S46	S. coeruleorubidus		
S47	S. galilaceus		
S48	S. peucetius		
S49	S. peucetius subs. caesius		

Table 44 List of groups of microorganisms according to similar RFLP pattern after

digested with Smal

S50

S. verticillus

4.4 Choice of restriction enzyme to investigate Streptomyces diversity from soil

The choice for restriction enzymes used to investigate diversity of *Streptomyces* from soil was based on these criteria: (i) high average number of restriction sites per species and (ii) the co-relation between phylogenetic distribution and the production of bioactive compounds. The average number of restriction sites per *Streptomyces* species and OTUs detect by using each of the 33 restriction enzymes were listed in Table 45. The results showed a range of an average of 2.00 to 17.00 sites per species for tetrameric restriction enzymes (4 bp cutter enzymes) and 0.5 to 2.00 sites per species for hexameric restriction enzymes (6 bp cutter enzymes). The phylogenetic reconstruction from restriction data were shown in Figure 15.

Restriction	Mean no. of restriction site	OTU detect
enzyme	per taxon	(70 Strepstomyces)
	(70 Strepstomyces)	
Bfa I ^A	2.38	8
Dpn I ^A	3.00	7
BstU I [^]	5.50	8
Hha I ^A	5.57	14
Mse I [^]	4.17	6
Nla III ^A	4.57	7
Rsa I ^A	2.00	3
Taq I ^A	2.40	5
Alu I ^A	5.38	8
Hae III ^A	9.46	15
Mnl I ^A	8.85	13
Hpa II ^A	10.50	8
Aci I ^A	17.00	13

Table 45 Average of restriction sited per taxon of restriction enzyme

Table 45 (continued).

Restriction	Mean no. of restriction site	OTU detect
enzyme	per taxon	(70 Strepstomyces)
	(70 Strepstomyces)	
Aat II ^B (Zra I)	1.00	1
Acc65I ^B (Kpn I)	1.00	1
Age l ^B	1.67	3
Apa ^B I (PspOM I)	2.00	4
BmgBI ^B	1.00	4
BseY I ^B	0.50	2
BspE I ^B	1.00	1
<i>Bsr</i> G I ^B	0.52	2
BssS I ^B	1.75	4
Eag I ^B	1.50	4
EcoRI ^B	1.00	1
<i>Eco</i> RV ^B	1.50	2
Fsp I ^B	1.67	3
Nae I $^{\scriptscriptstyle B}$ (NgoMI V)	2.00	3
Pst I ^B	1.00	5
Sac I ^B	1.00	1
Sac II ^B	1.00	2
SnaB I ^B	1.00	1
Ssp I ^B	1.00	1
Sma ^B (TspM . Xma) 1.70	7

^A tetrameric restriction enzyme

^B hexameric restriction enzyme

Parenthesis indicated the isoschizomers

4.4.1 Phylogenetic tree reconstruction from restriction fragment data

In order to examine whether the simulated RFLP fragment pattern from each restriction enzyme had the co-relation between phylogenetic distribution and the production of bioactive compounds of Streptomyces and Actinomyces, the phylogenetic trees were reconstructed. The results of the phylogenetic tree of *Streptomyces*, *Actinomyces* and outgroup bacteria based on restriction enzyme digestion of the 16S rRNA (StrepBF region) were shown in Figure16. A Phylogenetic tree was reconstructed using PAUP* program, Nei-Li distance method was used to generate the restriction distance matrix. The resulting Neighbor-joining trees.

Figure 17 The Neighbor-joining tree constructed from a restriction distance matrix by Nei-Li method from PAUP* program showing phylogenetic relationships among *Streptomyces*, *Actinomyces*, and outgroup bacteria, based on PCR-RFLP analysis of each tetrameric restriction enzyme (*Bfal*, *Dpnl*, *Bst*Ul, *Hhal*, *Msel*, *Nla*III, *Rsal*, *Taql*, *Alul*, *HaeIII*, *MnII*, *HpaII*, and *AciI*) digestion. Similar RFLP pattern were group. The scale bar indicated 0.05 change.

Figure 17 (continued).

Figure 17 (continued).

Figure 17 (continued).

Figure 17 (continued).

4.5 Genomic DNA extraction

4.5.1 Total genomic DNA extraction from test organisms

The genomic DNA extraction from test organisms (*Streptomyces venezuelae*, *S. narbonensis*, *S. lividans*, *Escherichia coli*, *Bacillus subtillus*, *Pseudomonas putida*) yield a high molecular weight. A nucleic acid analysis at OD 260/280 ratio using spectrophotometer DU800 (Beckman). The DNA was dilute with TE buffer 1/200 fold. The high molecular weight of the genomic DNA was obtained about >10 kb. The OD 260/280 was approximately 1.9 - 2.0 indicated a high purity suitable for PCR amplification. Table 46 and Figure 18 showing DNA concentration from *S. venezuelae* and *S. narbonensis*.

Table 46 Concentration and purity of DNA from *Strepmyces venezuelae and S.narbonensis*

Sample	OD 260	OD260/280	DNA (ng/µl)
S. venezuelae no.1	0.3315	2.0332	3,315
S. venezuelae no.2	0.4737	1.9630	4,737
S. narbonensis no.1	0.0823	2.0060	823
S. narbonensis no.2	0.1057	1.9897	1,057

Figure 18 Genomic DNA from *Streptomyces venezuelae* (lane 2 and 3) and *S. narbonensis* (Lane 4 and 5). Lane 1: 1 Kb DNA ladder. Genomic DNA was carry on with 1% agarose gel electrophesis in 1X TAE buffer at 80 Volt 30 min

4.6 PCR amplification of 16S rDNA from model organisms

An expected size of 1.5 kb fragment from PCR amplification of 16S rDNA using eubacterial specific primer (fD1 + rP2) were observed from *Streptomyces venezuelae*, *S. lividans* and *S. narbonensis* (Figure 19). By using *Streptomyces* specific (StrepB + StrepF) amplification of 16S rDNA, the 1 kb fragment were obtained from *Streptomyces venezuelae*, *S. lividans* and *S. narbonensis* (Figure 20) whereas no amplification from those outgroup species (Figure 21).

Figure 19 1% agarose gel electrophoresis of PCR product (1.5 kb). Lane M :100 bp ladder, lane 2 : *S. narbonensis*, lane 2 and lane3 : *S. venezuelae*, lane 4 :*S. lividans*. -nv was a negative control using double distilled water instead of DNA.

Figure 20 1% agarose gel electrophoresis of PCR product (1 kb) using StrepB and StrepF primer pair. Lane M :1 kb ladder, lane 1 : *S. narbonensis*, Lane 2 and lane3 : *S. venezuelae*, lane 4 :*S. lividans* and -nv was a negative control using double distilled water instead of DNA.

Figure 21 1% agarose gel electrophoresis of PCR product using fD1+rP2 (1.5 kb) and StrepB+StrepF (1 kb) of bacterial culture. Lane M :1 kb ladder, lane 1 : *B. subtilis*, lane 2: *P. putida*, lane 3: *E.coli* XL1Blue, lane 4: *S. narbonensis*, lane 5 : *S. venezuelae*, and lane 6: *S. lividans*.

4.7 Soil DNA extraction

The soil DNA was extracted from 33 soil samples by direct lysis method (Saano, cited in Trevor, 1995). After add 50 μ l of TE buffer the Crude soil DNA were yellowish to dark brown in color indicated co-extraction of humic acid. Table 47 showed the ratio of OD260/OD230 and OD260/OD280 which indicate purity of DNA. Further purification crude DNA was obtained by gel extraction. A 2 μ l of total 30 μ l elution of purified DNA were then analyzed by agarose gel electrophoresis (Figure 22 – 25). A high molecular weight (> 10 kb) of both DNA extraction obtained from crude and purified soil DNA indicated that the DNA extraction method were suitable to obtained a high molecular weight DNA.

Sample	OD260/280	OD260/230	
A01	1.5858	0.5057	
A02	1.8033	0.2385	
A03	1.5485	0.2385	
A04	1.5529	0.3423	
A05	1.8016	0.0186	
A06	1.5235	0.1600	
A07	1.4291	0.1385	
A08	1.6446	0.0929	
A09	1.6415	0.1967	
A10	1.5499	0.1263	
A11	1.6059	0.2066	
A12	1.6113	0.2517	
A13	1.8919	0.5625	
A14	1.9004	0.0467	
A15	1.8591	0.2348	

Table 47 OD 260/280 and OD 260/230 Ratio of soil sample after purified

Figure 22 1% agarose gel elctrophoresis of crude soil DNA from Doi Phuka National Park of Nan province. Lane 1-15 were A01-A15 and lane M: 1 kb DNA ladder.

Figure 23 1% agarose gel electrophoresis of purified soil DNA from Doi Phuka National Park of Nan province. Lane 1-15 were A01-A15 and lane M: 1 kb DNA ladder.

Figure 24 1% agarose gel elctrophoresis of Crude soil DNA from Kao Keaw National Park of Chonburi province (D01- D06) lane1-6, paddy field (I01-I02, H01-H02, and G01-G04) lane 7-14, and mangrove forest (F01-F03, and E01-E04) lane 15-21, respectively. Lane M: 1 kb DNA ladder.

Figure 25 1% agarose gel elctrophoresis of purified soil DNA from paddy field (G01-G04 I01-I02, and H01-H02) lane 1-8, mangrove forest (E01-E04 and F01-F03) lane 9-15, and Kao Keaw National Park of Chonburi province (D01- D06) lane 16-21, respectively. lane M: 1 kb DNA ladder.

4.8 PCR amplification of soil DNA

By using eubacterial primer pair (fD1 + rP2) the expected size of 1.5 kb were obtain from some soil DNA samples from mountain forest of Nan provice. Addition of 5% DMSO in the PCR rection was shown in Figure 26 - 27 resulting in less amplification compared to the PCR reaction without DMSO. Figure 28 – 29 shown the amplification product using purified soil DNA from paddy field, mangrove forest, and Kao Keaw National Park.

Figure 26 1% agarose gel elctrophoresis of PCR product amplified from purified soil DNA from Doi Phuka National Park of Nan province. Lane 1-15 were A01-A15, lane M: 1 kb DNA ladder, lane p was the positive control using *S. narbonensis* DNA as a template.

Figure 27 1% agarose gel elctrophoresis of PCR product amplified from purified soil DNA from Doi Phuka National Park of Nan province with addition of 5% DMSO to the PCR reaction. Lane 1-15 were A01-A15, lane M: 1 kb DNA ladder, lane p was the positive control using *S. narbonensis* DNA as a template.

Figure 28 1% agarose gel elctrophoresis of PCR product amplified from purified soil DNA from paddy field (G01-G04, I01-I02, and H01-H02): lane 1 -8 and mangrove forest (E01-E04 and F01-F03): lane 9-15.

Figure 29 1% agarose gel elctrophoresis of PCR product amplified from purified soil DNA from Kao Keaw National Park of Chonburi province (D01-D06): lane 1-6.
4.9 Nested PCR amplification of 16S rDNA (StrepBF region)

A nested PCR performed by using *Stretomyces* specific primer (StrepB + StrepF) and PCR diluted (5 to 50 fold) from fist amplification products were used as a DNA template. Figure 30 – 32 were amplification product about 1 kb obtained using purified soil DNA from Doi Phuka Nationalpark, paddy field, and mangrove forest, respectively.

Figure 30 1% agarose gel elctrophoresis of PCR product amplified from nested PCR, first amplification product was used as a template from Doi Phuka National Park of Nan province. Lane 1-15 were A01-A15, lane M: 1 kb DNA ladder, lane p is the positive control using *S. narbonensis* DNA as a template.

Figure 31 1% agarose gel elctrophoresis of PCR product amplified from nested PCR, first amplification product was used as a template. Soil DNA samples were from paddy field and mangrove forest. Lane 1 -15 were G01-04, I01, I02, H01, H02, E01-E04, and F01-03, respectively. M was 1 kb DNA ladder.

Figure 32 1% agarose gel elctrophoresis of PCR product amplified from nested PCR, first amplification product was used as a template. Soil DNA samples were from Khokeaw National Park. Lane 1-6 were D01-D06 respectively. M was 1 kb DNA ladder.

4.10 16S rDNA library construction

Single PCR products or pooled PCR samples (2-6 PCR products) were pooled according to soil pH range. The PCR products were purified by gel extraction (Qiagen) and amount of DNA were compared to the know concentration of DNA ladder. The purified fragments were ligated with TA cloning vector (RBC) for 4° C overnight and cloneed into *E. coli* competent cells. Positive clones were screened based on blue-white screening on alpha-complementation of Lac Z' resulting a white colony which contain insert. Table 48 showed pooled or single PCR product used in RFLP analysis.

Location	Sample	Code	soil pH
Mountain	A01	SA01	5.09 - 5.89
forest	A05, A09, A10, and A12	PA02	3.58 – 3.97
(MT)	A07, A08, A11, A13, A14, and A15	PA03	4.04 - 4.94
	D01, D02, and D06	PD01	8.22 - 8.53
	D03	SD03	6.58
	D04	SD04	7.20
	D05	SD05	5.98
Paddy field	G01, G02, G03, and G04	PG01	4.43 – 5.29
(PD)	101	SI01	8.51
	102	SI02	7.93
	H01 and H02	PH01	4.79 – 5.20
Mangrove	E01	SE01	5.88
forest	E02 and E03	PE02	6.81 – 6.89
(MG)	E04	SE04	7.63
	F01, F02, and F03	PF01	7.13 – 7.25

|--|

M 1 2 3 M 4 5 6 7 8 9 10 11 12 13 14 15

Figure 33 1% agarose gel elctrophoresis of purified pooled PCR products or single PCR product to be ligated with TA cloning vector. M: 1 kb DNA ladder, lane1: sample A01, lane2: pooled samples of A05, A09, A10, and A12 lane3: pooled samples of A07, A08, A11, A13, A14, and A15, lane 4: pooled samples of G01, G02, G03, and G04, lane 5: sample l01, lane6: sample l02, lane 7: pooled sample H01 and H02, lane 8: sample E01, lane 9: pooled sample E02 and E03, lane10: sample E04, lane11: pooled sample F01, F02, and F03, lane12: pooled sample D01, D02, and D06, lane13: sample D03, lane14: sample D04, and lane15: sample D05.

4.10.1 Screening of 16S rDNA clones

In the initial screening of 16S rDNA clones (blue-white screening), white *E. coli* colonies that contained correct DNA insertion were identified by direct amplification of the inserted DNA fragment with a stretpomyces 16S rDNA primer (StrepB and StrepF). To reduce experimental time cost, the PCR was carried out with boiled colony PCR as the DNA template. Figure 34 to 39 indicated that colonies with correct PCR product length (1,074 bp or about 1 kb) were easily differentiated from colonies containing plasmid without insert or incorrect insert.

Figure 34 1 % agarose gel electropheresis of boiled colony PCR from SA01. Lane 1 – 20 were clone 1 – 20. Lane M: 1 kb DNA ladder.

Figure 35 1 % agarose gel electropheresis of boiled colony PCR from PA02. Lane 1 – 10 were clone no. 1 – 10. Lane M: 1 kb DNA ladder.

Figure 36 1 % agarose gel electropheresis of boiled colony PCR from SD04 and SD05. Lane 1 -10 were clone no. 1 – 10. Lane M: 1 kb DNA ladder.

Figure 37 1 % agarose gel electropheresis of boiled colony PCR from SE01 and SI01. Lane 1 -10 were clone no. 1 – 10. Lane M: 1 kb DNA ladder.

Figure 38 1 % agarose gel electropheresis of boiled colony PCR from SE04 and PF01. Lane 1 -10 were clone no. 1 – 10. Lane M: 1 kb DNA ladder.

Figure 39 1 % agarose gel electropheresis of boiled colony PCR from PH01 and PG01. Lane 1 -10 were clone no. 1 – 10. Lane M: 1 kb DNA ladder.

4.11 Analysis of species diversity in a model bacterial community by RFLP

In order to test the approach from a computer simulated analysis which suggest that polymorphisms among restriction fragment lengths could be used to characterize *Streptomyces*, *Actinomyces* and other bacterial community, a model community containing three known *Streptomyces* (*S. venezuelae*, *S. narbonensis*, and *S. lividans*, *S. hygroscopicus*, and *S. rimosus*) were constructed. Figure 40 shown the PCR products about 1 kb from different *Streptomyces* species which were subsequenly digested with restriction enzyme (Mspl) using 3% agarose gel in 1X TBE and electrophoresed at 80 Volts for 2.30 hr. compared to 2% agarose gel with the same condtion as shown in Figure 41 – 42.

Figure 40 Boiled single colony PCR obtained directly from culture plate (NS media) using streptomyces specific primer (StrepB+StrepF). Lane M *1 kb DNA ladder*, lane 1: *S. venezuelae*, lane 2: *S. narbonensis*, lane 3: *S. lividans*, lane 4: *S. hygroscopicus*, and lane 5: *S. rimosus*.

Figure 41 3% agarose gel electrophoresis of digested fragments using *Mspl* from *S. venezuelae* (1), *S. narbonensis* (2), *S. lividans* (3), *S. hygroscopicus* (4), and *S. rimosus* (5) in 1X TBE. Electropheresed was 80 Volt 2.30 hr. on 20 x 20 cm size of agarose. M: 100 bp lader. An > indicate a fragment obtain from electrophoresis. (A) was genomic DNA that obtained from extraction method (Kutchma, 1998) and (B) was boiled colony from single colony plated was used as DNA template.

M 1 2 3

Figure 42 2% agarose gel electrophoresis of digested DNA fragment using *Msp*l from *S. venezuelae* (1), *S. narbonensis* (2) and *S. lividans* (3) in 1X TBE. Electropheresed was 30 Volt 20 hr. on 20 x 20 cm size of agarose gel. M: 100 bp lader.

4.12 Restriction Fragment analysis of 16S rDNA

10 – 17 μl of PCR product from 16S rDNA amplification were digested with *Msp*l (isoschizomer *Hpa*II) restriction enzyme with a high average number of restriction sites and phylogenetically related with bioactivity. Boiled colonies PCR amplification products obtained directly from 16S rDNA clone library. Resulting RFLP patern were shown in figure 43 - 46. The 16 OTUs obtained from 100 clones were shown in Figure 47. The summary of RFLP analysis were shown in Table 49.

Figure 43 Restriction fragment length polymorphism patterns of 10 clones from 16S rDNA library (pooled or single PCR products from forest mountain sample in Nan province) after digestion by *Msp*I. Shown was a EtBr stained gel (3% agarose). Lane M represents Low Range DNA ladder, and numerical of each lane represent 10 different 16S rDNA clones. Lower case letters indicated RFLP type.

Figure 44 Restriction fragment length polymorphism patterns of 10 clones from 16S rDNA library (pooled or single PCR products from forest mountain sample in Chonburi province) after digestion by *Msp*I. Shown was a EtBr stained gel (3% agarose). Lane M represents Low Range DNA ladder, and numerical of each lane represent 10 different 16S rDNA clones. Lower case letters indicated RFLP type.

Figure 45 Restriction fragment length polymorphism patterns of 10 clones from 16S rDNA library (pooled or single PCR products from mangrove forest sample) after digestion by *Msp*I. Shown was a EtBr stained gel (3% agarose). Lane M represents Low Range DNA ladder, and numerical of each lane represent 10 different 16S rDNA clones. Lower case letters indicated RFLP type.

Figure 46 Restriction fragment length polymorphism patterns of 10 clones from 16S rDNA library (pooled or single PCR products from paddy field sample) after digestion by *Mspl*. Shown was a EtBr stained gel (3% agarose). Lane M represents Low Range DNA ladder, and numerical of each lane represent 10 different 16S rDNA clones. Lower case letters indicated RFLP type.

Figure 47 Scaled illustration summarized the restriction patterns of 16S rDNA digested with *Msp*I from a EtBr stained gel (3% agarose) representing 16 clones OTUs identified in 100 soil clone libraries. Each of these OTUs contained one or more representative clones indicated by lower case letters (lane a to p). M was low range DNA ladder (Fermentas) given in bp. The table at the bottom of the figure showed the numerical distribution of the soil clones and total OTUs detected.

Location	Sample	No. of clones	Total no. of	RFLP type to	RFLP type	No. of restriction patterns
			RFLP type	clone no. ratio		digested with Mspl
Mountain	SA01	10			a (8), m (1), n (1)	3
forest	PA02	10	12	0.30	a (1), b (5), o (2), l (1), p (1)	5
(MT)	SD04	10			a (8), g (1), h (1)	3
	SD05	10			a (6), i (1), j (1), k (1), l (1)	4
Mangrove	SE04	10			a (7), d (1), e (1), f (1)	4
forest	PF01	10	4	0.13	a (9), f (1)	2
(MG)	SE01	10			a (10)	1
Paddy	SI01	10			a (9), c (1)	2
field	PH01	10	3	0.1	a (10)	1
(PD)	PG01	10			a (9), d (1)	2

 Table 49 Summary of RFLP analysis

CHAPTER V

DISCUSSION AND CONCLUSION

Restriction Fragment Length Polymorphism (RFLP) pattern in the 16S rDNA database

The ability of RFLP analysis to distinguish phylogenetic group of bacteria was theoretically evaluated through a computer simulation of the restriction patterns for 79 bacterial sequences including; 70 sequences in genus Streptomyces, 6 sequences from Actinomyces, and 3 sequences from outgroup bacteria (E. coli, B. subtilis, and P. putida). The sequences were retrieved from RDP database. A streptomyces specific primers from Rintala et al. (2001) was selected to anneal to 16S rDNA sequences in the RDP database. After digestion with thirty-three different restriction enzymes, the average cut site and pattern simulation were determined. From tetrameric (4-bp) restriction enzymes used, they gave 3-15 RFLP patterns (OTUs) with average number of restriction sites 2.00-17.00, where as hexameric (6-bp) restriction enzymes gave 1-5 patterns with average number of restriction sites 0.52-2.00. Therefore, hexameric restriction enzymes were omitted in the following analysis because of their insufficient RFLP data. Although, the Acil (tetrameric restriction enzymes) gave highest average number of restriction sites (17.00), but yielded ambiguous results. It produced many near-coincident double or triple bands and some fragments too small to be resolved by the electrophoresis system. Therefore, Acil was not selected. Some ambiguous results were caused by unexpected size fragments, most commonly those including end points of sequences (Moyer et al., 1996). The 1 kb 16S rDNA sequence yielded restriction fragments in the size range from 4 bp (lower limit of detection was able to detect in gel simulation) to 500 bp. In a DNA sequence, a 4-bp (equivalent to tetrameric) restriction enzyme recognition site would occur every 256 bases. Therefore, the use of a 4-bp theoretically would yield 4 restriction sites with a 1 kb gene fragment. Because of the moderately higher G+C contents of 16S rRNA genes [most bacterial 16S rDNAs have G+C components between 55 and 65% (Moyer et al., 1994)] the use of tetrameric

restriction enzymes such as *Hpa*II (isoshizomer of *Msp*I) and *Ha*eIII which recognizes GC sequence for *in silico* digestion yielded average number of restriction sites 9.6 and 10.5 from seventy *Streptomyces* 16S rDNA sequences (StrepBF region).

Some Streptomyces species could be assigned to a specific 16S rDNA genotype (inferred from unique RFLP pattern which equivalent to OTU), supporting the application of this analysis for identification. Informative characters (0 and 1) were scored from restriction pattern obtained from each of thirteen restriction endonulceases. Thirteen NJ trees (Figure 13) were constructed from the RFLP data sets from each restriction endonuclease (Bfal, Dpnl, BstUl, Hhal, Msel, Nlalli, Rsal, Taql, Alul, Haelli, MnII, Hpall, and Acil), the distance matrix calculation using Nei-Li method from PAUP* program. The results showed that four tetrameric restriction enzymes (*Hhal*, *Rsal*, *Alul*, and Hpall (isoschizomer of Mspl) could clearly rooting the out group species, supported the correct phylogenetic relationship from using 16S RFLP data. Moyer et al. (1996) reported that a combination of three tetrameric restriction enzymes (Hhal, Rsal, and BstUI) gave good resolution based on their computer-simmulated groups and phylegeny of bacterial species based on 16S rDNA (1.5 kb). Furthermore, for the Grampositive phylum, the used of tetrameric restriction enzymes Mbol, Hinfl, Taql, and Haell gave highest percentage of successful phylogenetic affiliations based on RFLP analyzing 16S rDNA (1.5 kb) data. Normally, the choice of restriction enzymes was based on practical matters such as simplicity, commercial availability, and economy (Lanoot et al., 2005; Moyer et al., 1996). However, from the results, three tetrameric restriction enzymes (Hhal, Alul, and Hpall (isoshisomer of Mspl) were candidates for RFLP analysis of soil Streptomyces, and initially, the used enzyme Mspl (isoschizomer of Hpall) for experiment was employed because it gave a high average number of restriction sites (10.5) and gave phylogenetically resolve tree for Streptomyces. The Rsal was omitted because it gave low OTUs (3 OTUs) compared to Hhal, Alul, and Hpall (isoshizomer of Mspl), which gave 14, 8, and 13 OTUs, respectively.

A neighbor-joining tree constructed based on 16S rDNA sequence (StrepBF region) suggested that *Streptomyces* could be group into a major clade whereas *Actinomyces* were in different clade. Two *Streptomyces* species (*S. lactamdurans* and *S. tenebrarius*) were not separated from *Actinomyces* suggested that they were closely related to *Actinomyces*. The bioactivity randomly distributed as shown in figure 14.

However, many 16S rDNA sequences available in databases were not complete that lack the end points, therefore using eubacterial specific primer to anneal to the sequences about less than 1,500 bp would be excluded. The use of *Streptomyces* specific primer which annealed to 16S rDNA about 1,000 bp was sufficiently enough data to generate RFLP patterns by using appropriate restriction enzyme. Intraspecies diversity by RFLP analysis of biotechnologically important *Streptomyces* such as *S. hygroscopicus* was under construction.

2. Analysis of streptomyces diversity in a model community by RFLP

The computer-simulated analysis suggested that polymorphisms among restriction fragment lengths could be used to characterize bioactive producing *Streptomyces*. To test this approach, a model community containing three *Streptomyces* species (*S. venezuelae*, *S. narbonensis*, and *S. lividans*) was constructed. The 16S rDNA (strepBF region) was amplified by PCR. The PCR products were digested with *Mspl* and the products were separated with agarose gel electrophoresis. The predicted outcome based on a computer-simulated restriction analysis of sequences from RDP database indicated that the three bioactive producing *Streptomyces* species used should have the different RFLP patterns (Figure 16). The RFLP analysis of three bioactive producing *Streptomyces* species had the predicted patterns for the fragment above 100 bp suggested that the RFLP analysis by 3% agarose gel electrophoresis had sensitivity to detect polymorphism of fragment length > 50 bp compared to 2% agarose gel which could not give clear fragments patterns. However, limitation of agarose gel to differentiated small DNA fragments below 45 bp (Moyer et al., 1996) or near-coincident bands could be difficult in RFLP analysis.

3. Analysis of Streptomyces diversity in soil from 16S rDNA clones libraries

Nucleic acids were successfully extracted from soil samples with the need of agarose gel extraction purification for PCR amplification. The direct lysis method used in this study was helpful in extracting DNA from soil with little damage. The ratio of OD260/230 of soil DNA extract range from 0.5625 - 0.0186 indicated slightly humic acid contamination. However, by using BSA to prevent inhibition and less amount of DNA (1 µI) in 25 µI PCR reaction would overcome these contamination since the contaminant would be diluted below inhibition level. The 1.5 kb PCR products from the amplification of 16S rDNA using eubacterial specific primers (fD1 + rP2) were checked by agarose gel electrphoresis. Since some sample gave a faint band or produced no PCR product (A01, A02, A03, A04, A05, A06, and A13) the nested PCR which were used as a template for amplification of Streptomyces specific 16S rDNA primer (StrepB + StrepF) was carried on. The 1 kb PCR products were detected from soil samples. The samples which gave no PCR products (A02, A03, A04, A06 and D01) were excluded to further analysis which indicated that Streptomyces population could not be detected in those samples. A total of 100 clones (40 from MT, 30 from MG and 30 from PD) were chosen after they tested positive for alpha-complementation in Beta-galactosidase. The correct 16S rDNA inserts (1 kb) were digested with Mspl to generate RFLP data which equivalent to genotyping or OTUs (Moyer et al., 1994). The 1 kb 16S rDNA insert clones yielded restriction fragments in the size range from 50 bp (lower limit of detection) to 500 bp, 4-8 fragments detected.

The RFLP fingerprint analysis of single or pooled samples (according to pH range) was listed in table 48. At MT, 11 RFLP types were detected from 40 clones, At MG, and PD 4 and 3 RFLP types were detected from 30 clones respectively. The most abundant RFLP type (a type) constituted 58%, 87% and 93% (of total clone library of each location) at MT, MG, and PD respectively. Single-type clones, which occurred only once, were abundant at MT (20%) but were much less common at MG (7%) and PD (7%).

Thus, the 16S rDNA RFLP analysis should contribute to simple classification of natural soil *Streptomyces*. The distribution if 16S rDNAs clones within a library ultimately should approximate the relative distribution of soil bacteria in the habitat. However, the possibility of selection during the DNA extraction process exists, and card must be taken to achieve the highest possible level of efficiency in soil extraction and DNA recovery to avoid selection prior to PCR amplification of the cloned 16S rDNA.

Conclusions

RFLP analysis linked with DNA databases should be particularly helpful in selection of restriction enzyme used in study Stretpomyces diversity such as Mspl (Hpall), Hhal, and Alul, and studies requiring rapid examination of numerous clones from different soil samples. The number of OTUs and abundant of each OTUs were estimated. This approach was applied to the Streptomyces community in soil and showed that the Streptomyces community is dominated by 1 OUT (RFLP type a) and contained at least 16 OTUs, entities analogouse to streptomyces species. In comparison with computer-simulate RFLP which detect at least 9 OTUs from 70 Stretpomyces 16S rDNA strepBF region. Three OTUs (I, m, and f type) were found which corresponded to lavendulae (growth promotant producer, Micromonospora olivasterospora S. (antibacterial producer), and Thermomonospora chromogena, respectively. Rapid examination to estimate soil Streptomyces diversity by using Mspl (tetrameric restriction enzyme) to detect OTUs by an RFLP analysis of PCR-amplified 16S rDNA clone libraries was developed.

REFERENCES

- Ai, H., et al. 2008. Location and PCR analysis of catabolic genes in a novel Streptomyces sp. DUT_AHX capable of degrading nitrobenzene. <u>J Environ Sci</u> (China) 20, 7: 865-70.
- Anderson, A. S. and Wellington, E. M. 2001. The taxonomy of Streptomyces and related genera. Int J Syst Evol Microbiol 51, Pt 3: 797-814.
- Anzai, K., et al. 2008. Taxonomic distribution of Streptomyces species capable of producing bioactive compounds among strains preserved at NITE/NBRC. <u>Appl</u> <u>Microbiol Biotechnol</u> 80, 2: 287-95.
- Atalan, E. 2001. Restriction fragment length polymorphism analysis (RFLP) of some Streptomyces strains from soil <u>Turk J Biol</u>, 25: 394-404.
- Ausubel, F. M., et al. 2002. <u>Short protocols in molecular biology</u>. Canada: John Wiley & Sons.
- Baker, G. C., Smith, J. J. and Cowan, D. A. 2003. Review and re-analysis of domainspecific 16S primers. <u>J Microbiol Methods</u> 55, 3: 541-55.
- Bazevanis, A. D., and Ouelette, B. F. 2005. <u>Bioinformatics: a practical guide to the</u> <u>analysis of genes and proteins</u>. Hoboken: John wiley & Sons.
- Behal, V. 2002. Antibiotics. Biotechnol Annu Rev 8: 227-65.
- Bentley, S. D., et al. 2002. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). <u>Nature</u> 417, 6885: 141-7.
- Berdy, J. 2005. Bioactive microbial metabolites. J. Antibiot 58, 1: 1-26.
- Birch, A., Hausler, A., Ruttener, C. and Hutter, R. 1991. Chromosomal deletion and rearrangement in Streptomyces glaucescens. <u>J Bacteriol</u> 173, 11: 3531-8.
- Buchanan, R. E., and Gibbons, N. E. 1974. <u>Bergeys' manual of determinative</u>. Baltimore: Williams and Wilkins Company.
- Burr, M. D., Clark, S. J., Spear, C. R. and Camper, A. K. 2006. Denaturing gradient gel electrophoresis can rapidly display the bacterial diversity contained in 16S rDNA clone libraries. <u>Microb Ecol</u> 51, 4: 479-86.

- Cai, H., Wei, W., Davis, R. E., Chen, H. and Zhao, Y. 2008. Genetic diversity among phytoplasmas infecting Opuntia species: virtual RFLP analysis identifies new subgroups in the peanut witches'-broom phytoplasma group. <u>Int J Syst Evol</u> <u>Microbiol</u> 58, Pt 6: 1448-57.
- Calcutt, M. J. and Cundliffe, E. 1990. Resistance to pactamycin in clones of Streptomyces lividans containing DNA from pactamycin-producing Streptomyces pactum. <u>Gene</u> 93, 1: 85-9.
- Chang, S. C., Yang, W. C. and Lee, Y. H. 1992. The 16S rRNA gene of Streptomyces lividans TK64 contains internal promoters. <u>Biochim Biophys Acta</u> 1129, 2: 219-22.
- Clegg, C. D., Ritz, K. and Griffiths, B. S. 1997. Direct extraction of microbial community DNA from humified upland soils. <u>Lett Appl Microbiol</u> 25, 1: 30-3.
- Conn, V. M. and Franco, C. M. 2004. Analysis of the endophytic actinobacterial population in the roots of wheat (Triticum aestivum L.) by terminal restriction fragment length polymorphism and sequencing of 16S rRNA clones. <u>Appl Environ Microbiol</u> 70, 3: 1787-94.
- Conn, V. M. and Franco, C. M. 2004. Effect of microbial inoculants on the indigenous actinobacterial endophyte population in the roots of wheat as determined by terminal restriction fragment length polymorphism. <u>Appl Environ Microbiol</u> 70, 11: 6407-13.
- Cook, A. E. and Meyers, P. R. 2003. Rapid identification of filamentous actinomycetes to the genus level using genus-specific 16S rRNA gene restriction fragment patterns. Int J Syst Evol Microbiol 53, Pt 6: 1907-15.
- Daza, A., Martin, J. F. and Gil, J. A. 1990. High transformation frequency of nonsporulating mutants of Streptomyces griseus. <u>FEMS Microbiol Lett</u> 59, 3: 259-64.
- Deman, S. E., Mitsutori, M., and Mcsweeney, C. S. 2005. RAPD, RFLP, T-RFLP, AFLP, RISA. <u>Meth in Gut Microb Ecol Rumin</u>: 151-159.

- Demydchuk, J., Oliynyk, Z. and Fedorenko, V. 1998. Analysis of a kanamycin resistance gene (kmr) from Streptomyces kanamyceticus and a mutant with increased aminoglycoside resistance. <u>J Basic Microbiol</u> 38, 4: 231-9.
- Desai, C. and Madamwar, D. 2007. Extraction of inhibitor-free metagenomic DNA from polluted sediments, compatible with molecular diversity analysis using adsorption and ion-exchange treatments. <u>Bioresour Technol</u> 98, 4: 761-8.
- Dhillon, N., Hale, R. S., Cortes, J. and Leadlay, P. F. 1989. Molecular characterization of a gene from Saccharopolyspora erythraea (Streptomyces erythraeus) which is involved in erythromycin biosynthesis. <u>Mol Microbiol</u> 3, 10: 1405-14.
- Doering-Saad, C., et al. 1992. Diversity among Streptomyces Strains Causing Potato Scab. <u>Appl Environ Microbiol</u> 58, 12: 3932-3940.
- Dyson, P., and Schrempf, H. 1987. Genetic instability and DNA amplification in Streptomyces lividans 66. <u>J Bacteriol</u> 169, 10: 4796-803.
- Ellis, R. J., Morgan, P., Weightman, A. J. and Fry, J. C. 2003. Cultivation-dependent and -independent approaches for determining bacterial diversity in heavy-metalcontaminated soil. <u>Appl Environ Microbiol</u> 69, 6: 3223-30.
- Felsenstein, J. 1989. PHYLIP Phylogeny Inference Package. <u>Cladistics</u> 5: 164-166.
- Felske, A., Akkermans, A. D., and De Vos, W. M. 1998. Quantification of 16S rRNAs in complex bacterial communities by multiple competitive reverse transcription-PCR in temperature gradient gel electrophoresis fingerprints. <u>Appl Environ</u> <u>Microbiol</u> 64, 11: 4581-7.
- Felske, A., Rheims, H., Wolterink, A., Stackebrandt, E. and Akkermans, A. D. 1997. Ribosome analysis reveals prominent activity of an uncultured member of the class Actinobacteria in grassland soils. <u>Microbiology</u> 143 (Pt 9): 2983-9.
- Felske, A., Wolterink, A., van Lis, R., de Vos, W. M. and Akkermans, A. D. 1999. Searching for predominant soil bacteria: 16S rDNA cloning versus strain cultivation. <u>FEMS Microbiol Ecol</u> 30, 2: 137-145.
- Gich, F. B., Amer, E., Figueras, J. B., Abella, C. A., Balaguer, M. D. and Poch, M. 2000.Assessment of microbial community structure changes by amplified ribosomal DNA restriction analysis (ARDRA). <u>Int Microbiol</u> 3, 2: 103-6.

- Griffiths, B. S., Ritz, K. and Glover, L. A. 1996. Broad-Scale Approaches to the Determination of Soil Microbial Community Structure: Application of the Community DNA Hybridization Technique. <u>Microb Ecol</u> 31, 3: 269-80.
- Grigor'ev, A. E. and Danilenko, V. N. 1990. [Structural changes in the composition of amplifying sequence AUD-Sr1 of Streptomyces rimosus after cloning into Escherichia coli]. <u>Antibiot Khimioter</u> 35, 5: 7-10.
- Gutell, R. R., Larsen, N. and Woese, C. R. 1994. Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative perspective. <u>Microbiol Rev</u> 58, 1: 10-26.
- Haddad, A., Camacho, F., Durand, P. and Cary, S. C. 1995. Phylogenetic characterization of the epibiotic bacteria associated with the hydrothermal vent polychaete Alvinella pompejana. <u>Appl Environ Microbiol</u> 61, 5: 1679-87.
- Henderson, D. J., Lydiate, D. J. and Hopwood, D. A. 1989. Structural and functional analysis of the mini-circle, a transposable element of Streptomyces coelicolor A3(2). <u>Mol Microbiol</u> 3, 10: 1307-18.
- Heuer, H., Krsek, M., Baker, P., Smalla, K. and Wellington, E. M. 1997. Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. <u>Appl Environ Microbiol</u> 63, 8: 3233-41.
- Hjort, K., Lembke, A., Speksnijder, A., Smalla, K. and Jansson, J. K. 2007. Community structure of actively growing bacterial populations in plant pathogen suppressive soil. <u>Microb Ecol</u> 53, 3: 399-413.
- Hojati, Z., Motovali-Bashi, M., Golbang, N. and Darvishi, F. 2007. Detection of cloned strR, an antibiotic regulatory gene, using RFLP and nested PCR. <u>Pak J Biol Sci</u> 10, 18: 3079-84.
- Hori, T., Haruta, S., Ueno, Y., Ishii, M. and Igarashi, Y. 2006. Direct comparison of single-strand conformation polymorphism (SSCP) and denaturing gradient gel electrophoresis (DGGE) to characterize a microbial community on the basis of 16S rRNA gene fragments. <u>J Microbiol Methods</u> 66, 1: 165-9.

- Hu, Z., Rohrer, G. A., Stone, R. T. and Beattie, C. W. 1997. Nebulin (NEB) maps to porcine chromosome (SSC) 15. <u>Anim Genet</u> 28, 1: 61-2.
- Huang, Y., et al. 2004. Streptomyces glauciniger sp. nov., a novel mesophilic streptomycete isolated from soil in south China. <u>Int J Syst Evol Microbiol</u> 54, Pt 6: 2085-9.
- Hugenholtz, P. and Pace, N. R. 1996. Identifying microbial diversity in the natural environment: a molecular phylogenetic approach. <u>Trends Biotechnol</u> 14, 6: 190-7.
- Inbar, E., Green, S. J., Hadar, Y. and Minz, D. 2005. Competing factors of compost concentration and proximity to root affect the distribution of streptomycetes. <u>Microb Ecol</u> 50, 1: 73-81.
- Janda, I. and Mikulik, K. 1986. Preparation and sequencing of the cloacin fragment of Streptomyces aureofaciens 16S RNA. <u>Biochem Biophys Res Commun</u> 137, 1: 80-6.
- Jiang, S., Sun, W., Chen, M., Dai, S., Zhang, L., Liu, Y., et al. 2007. Diversity of culturable actinobacteria isolated from marine sponge Haliclona sp. <u>Antonie Van</u> <u>Leeuwenhoek</u> 92, 4: 405-16.
- Jin, Q., Jin, Z., Xu, B., Wang, Q., Lei, Y., Yao, S., et al. 2008. Genomic variability among high pristinamycin-producing recombinants of Streptomyces pristinaespiralis revealed by amplified fragment length polymorphism. <u>Biotechnol Lett</u> 30, 8: 1423-9.
- Jurgens, G. 2002. <u>Molecular phylogeny of Archaea in boreal forest soil, fresh water and</u> <u>temperate estuarine sediment</u>. Docteral dissertation. Department of Applied Chemistry and Microbiology, University of Helsinki.
- Kampfer, P. 2006. The family streptomycetaceae, Part I: Taxomony. <u>Prokayotes</u> 3: 538-604.
- Kanokratana, P., Chanapan, S., Poothanakit, K., and Eurwilaichitr, L. 2004. Diveristy and abundance of bacteria and archaea in the bor khlueng hot spring in Thailand. <u>J.</u> <u>Basic Microbiol</u> 44, 6: 430-444.

- Kataoka, M., Ueda, K., Kudo, T., Seki, T. and Yoshida, T. 1997. Application of the variable region in 16S rDNA to create an index for rapid species identification in the genus Streptomyces. <u>FEMS Microbiol Lett</u> 151, 2: 249-55.
- Kieser, T., Bibb, M. J., Buttner, M. J., Chater, K. F., Hopwood, D. A. 2000. <u>Practical</u> <u>Streptomyces Genetics</u>. Norwich: The John Innes Foundation.
- Kost, C., Lakatos, T., Bottcher, I., Arendholz, W. R., Redenbach, M. and Wirth, R. 2007. Non-specific association between filamentous bacteria and fungus-growing ants. <u>Naturwissenschaften</u> 94, 10: 821-8.
- Kreader, C. A. 1996. Relief of amplification inhibition of PCR with bovine serum albumin or T4 gene 32 protein. <u>Appl Environ Microbiol</u> 62, 3: 1102-1106.
- Kumar, Y., Aiemsum-Ang, P., Ward, A. C. and Goodfellow, M. 2007. Diversity and geographical distribution of members of the Streptomyces violaceusniger 16S rRNA gene clade detected by clade-specific PCR primers. <u>FEMS Microbiol Ecol</u> 62, 1: 54-63.
- Kutchma, A. L., Roberts, M. A., Knaebel, D. B. 1998. Small-scale isolation of genomic DNA from Streptomyces mycelia or spores. <u>Biotechniques</u> 24: 452-457.
- Lakshmipathy, D. T. and Dhanasekaran, D. 2008. Molecular epidemiology of Chikungunya virus in Vellore district, Tamilnadu, India in 2006. <u>East Afr J Public Health</u> 5, 2: 122-5.
- Lane, D. J., Pace, B., Olsen, G. J., Stahl, D. A., Sogin, M. L. and Pace, N. R. 1985. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. <u>Proc</u> <u>Natl Acad Sci U S A</u> 82, 20: 6955-9.
- Lanoot, B., et al. 2005. Grouping of streptomycetes using 16S-ITS RFLP fingerprinting. <u>Res Microbiol</u> 156, 5-6: 755-62.
- Lazzaro, A., Widmer, F., Sperisen, C. and Frey, B. 2008. Identification of dominant bacterial phylotypes in a cadmium-treated forest soil. <u>FEMS Microbiol Ecol</u> 63, 2: 143-55.
- Lee, D. H., Zo, Y. G. and Kim, S. J. 1996. Nonradioactive method to study genetic profiles of natural bacterial communities by PCR-single-strand-conformation polymorphism. <u>Appl Environ Microbiol</u> 62, 9: 3112-20.

- Li, Z. Y. and Liu, Y. 2006. Marine sponge Craniella austrialiensis-associated bacterial diversity revelation based on 16S rDNA library and biologically active Actinomycetes screening, phylogenetic analysis. <u>Lett Appl Microbiol</u> 43, 4: 410-6.
- Lipson, D. A. and Schmidt, S. K. 2004. Seasonal changes in an alpine soil bacterial community in the colorado rocky mountains. <u>Appl Environ Microbiol</u> 70, 5: 2867-79.
- Liu, W. T., Huang, C. L., Hu, J. Y. 2002. Denaturing gradient gel electrophoresis polymorphism for rapid 16S rDNA clones screening and microbial diversity study. <u>J Biosci Bioeng</u> 93, 1: 101-103.
- Liu, W. T., Marsh, T. L., Cheng, H. and Forney, L. J. 1997. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. <u>Appl Environ Microbiol</u> 63, 11: 4516-22.
- Malo, D., Schurr, E., Dorfman, J., Canfield, V., Levenson, R. and Gros, P. 1991. Three brain sodium channel alpha-subunit genes are clustered on the proximal segment of mouse chromosome 2. <u>Genomics</u> 10, 3: 666-72.
- Manteca, A., Pelaez, A. I., del Mar Garcia-Suarez, M., Hidalgo, E., del Busto, B. and Mendez, F. J. 2008. A rare case of lung coinfection by Streptomyces cinereoruber and Haemophilus influenzae in a patient with severe chronic obstructive pulmonary disease: characterization at species level using molecular techniques. <u>Diagn Microbiol Infect Dis</u> 60, 3: 307-11.
- Martin-Laurent, F., et al. 2001. DNA extraction from soils: old bias for new microbial diversity analysis methods. <u>Appl Environ Microbiol</u> 67, 5: 2354-9.
- Martin, M. C., Manteca, A., Castillo, M. L., Vazquez, F. and Mendez, F. J. 2004. Streptomyces albus isolated from a human actinomycetoma and characterized by molecular techniques. <u>J Clin Microbiol</u> 42, 12: 5957-60.
- Martin, P., Dary, A., Andre, A. and Decaris, B. 2000. Identification and typing of Streptomyces strains: evaluation of interspecific, intraspecific and intraclonal differences by RAPD fingerprinting. <u>Res Microbiol</u> 151, 10: 853-64.

- McGregor, D. P., et al. 1996. Simultaneous detection of microorganisms in soil suspension based on PCR amplification of bacterial 16S rRNA fragments. <u>Biotechniques</u> 21, 3: 463-6, 468, 470-1.
- Mehling, A., Wehmeier, U. F. and Piepersberg, W. 1995. Application of random amplified polymorphic DNA (RAPD) assays in identifying conserved regions of actinomycete genomes. <u>FEMS Microbiol Lett</u> 128, 2: 119-25.
- Mehling, A., Wehmeier, U. F. and Piepersberg, W. 1995. Nucleotide sequences of streptomycete 16S ribosomal DNA: towards a specific identification system for streptomycetes using PCR. <u>Microbiology</u> 141 (Pt 9): 2139-47.
- Mellouli, L., Karray-Rebai, I., Sioud, S., Ben Ameur-Mehdi, R., Naili, B. and Bejar, S.
 2004. Efficient transformation procedure of a newly isolated Streptomyces sp.
 TN58 strain producing antibacterial activities. <u>Curr Microbiol</u> 49, 6: 400-6.
- Metsa-Ketela, M., Halo, L., Munukka, E., Hakala, J., Mantsala, P. and Ylihonko, K. 2002.
 Molecular evolution of aromatic polyketides and comparative sequence analysis of polyketide ketosynthase and 16S ribosomal DNA genes from various streptomyces species. <u>Appl Environ Microbiol</u> 68, 9: 4472-9.
- Monciardini, P., Sosio, M. and Cavaletti, L. 2002. New PCR primers for the selective amplification of 16S rDNA from different groups of actinomycetes. <u>FEMS</u> <u>Microbiol Ecol</u> 42: 419-429.
- Moran, M. A., Rutherford, L. T. and Hodson, R. E. 1995. Evidence for indigenous Streptomyces populations in a marine environment determined with a 16S rRNA probe. <u>Appl Environ Microbiol</u> 61, 10: 3695-700.
- Moyer, C. L., Dobbs, F. C. and Karl, D. M. 1994. Estimation of diversity and community stucture through restriction fragment length polymorphism distribution analysis of bacterial 16S rRNA genes from a microbial mat at an active hydrothermal vent system, Loihi seqmount, Hawaii. <u>Appl Environ Microbiol</u> 60, 3: 871-879.
- Moyer, C. L., Tiedje, J. M., Dobbs, F. C. and Karl, D. M. 1996. A computer-simulated restriction fragment length polymorphism analysis of bacterial small-subunit rRNA genes: efficacy of selected tetrameric restriction enzymes for studies of microbial diversity in nature. <u>Appl Environ Microbiol</u> 62, 7: 2501-7.

- Mullis, K., Faloona, F. A., Scharf, S., Saiki, R., Horn, G. and Erlich, H. 1986. Specific enzymatic amplification of DNA in vitro: The polymerase chain reaction. <u>Cold</u> <u>Spring Harb Symp Quant Biol</u> 51: 263-237.
- Muyzer, G., de Waal, E. C. and Uitterlinden, A. G. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. <u>Appl Environ Microbiol</u> 59, 3: 695-700.
- Muyzer, G. and Smalla, K. 1998. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. <u>Antonie Van Leeuwenhoek</u> 73, 1: 127-41.
- Nei, M. and Li, W. H. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. <u>Proc Natl Acad Sci U S A</u> 76, 10: 5269-73.
- Ninawe, S., Lal, R. and Kuhad, R. C. 2006. Isolation of three xylanase-producing strains of actinomycetes and their identification using molecular methods. <u>Curr</u> <u>Microbiol</u> 53, 3: 178-82.
- Nusslein, K. and Tiedje, J. M. 1998. Characterization of the dominant and rare members of a young Hawaiian soil bacterial community with small-subunit ribosomal DNA amplified from DNA fractionated on the basis of its guanine and cytosine composition. <u>Appl Environ Microbiol</u> 64, 4: 1283-9.
- Ohta, T. and Hasegawa, M. 1993. Analysis of the self-defense gene (fmrO) of a fortimicin A (astromicin) producer, Micromonospora olivasterospora: comparison with other aminoglycoside-resistance-encoding genes. <u>Gene</u> 127, 1: 63-9.
- Park, H. S. and Kilbane, J. J., 2nd. 2006. Rapid detection and high-resolution discrimination of the genus Streptomyces based on 16S-23S rDNA spacer region and denaturing gradient gel electrophoresis. <u>J Ind Microbiol Biotechnol</u> 33, 4: 289-97.
- Patel, J. B., Wallace, R. J., Jr., Brown-Elliott, B. A., Taylor, T., Imperatrice, C., Leonard,
 D. G., et al. 2004. Sequence-based identification of aerobic actinomycetes. J
 <u>Clin Microbiol</u> 42, 6: 2530-40.

- Paul, E. 2007. <u>Soil microbiology, ecology and biochemistry</u>. Amsterdam: Academic Press.
- Pernodet, J. L., Boccard, F., Alegre, M. T., Gagnat, J. and Guerineau, M. 1989. Organization and nucleotide sequence analysis of a ribosomal RNA gene cluster from Streptomyces ambofaciens. <u>Gene</u> 79: 33-46.
- Picardeau, M. and Vincent, V. 1997. Characterization of large linear plasmids in mycobacteria. <u>J Bacteriol</u> 179, 8: 2753-6.
- Plohl, M. and Gamulin, V. 1991. Sequence of the 5S rRNA gene and organization of ribosomal RNA operons in Streptomyces rimosus. <u>FEMS Microbiol Lett</u> 61, 2-3: 139-43.
- Raghava, G. P., Solanki, R. J., Soni, V. and Agrawal, P. 2000. Fingerprinting method for phylogenetic classification and identification of microorganisms based on variation in 16S rRNA gene sequences. <u>Biotechniques</u> 29, 1: 108-12, 114-6.
- Riesenfeld, C. S., Goodman, R. M. and Handelsman, J. 2004. Uncultured soil bacteria are a reservoir of new antibiotic resistance genes. <u>Environ Microbiol</u> 6, 9: 981-9.
- Rintala, H., Nevalainen, A., Ronka, E. and Suutari, M. 2001. PCR primers targeting the 16S rRNA gene for the specific detection of streptomycetes. <u>Mol Cell Probes</u> 15, 6: 337-47.
- Rintala, H., Nevalainen, A. and Suutari, M. 2002. Diversity of streptomycetes in waterdamaged building materials based on 16S rDNA sequences. <u>Lett Appl Microbiol</u> 34, 6: 439-43.
- Rondon, M. R., August, P. R., Bettermann, A. D., Brady, S. F., Grossman, T. H., Liles, M.
 R., et al. 2000. Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. <u>Appl Environ Microbiol</u> 66, 6: 2541-7.
- Sabat, G., Rose, P., Hickey, W. J. and Harkin, J. M. 2000. Selective and sensitive method for PCR amplification of Escherichia coli 16S rRNA genes in soil. <u>Appl</u> <u>Environ Microbiol</u> 66, 2: 844-9.
- Saitou, N. 1996. Reconstruction of gene trees from sequence data. <u>Methods Enzymol</u> 266: 427-49.

- Sambrook, J., Fritsch, E. F. and Maniatis, T. 1989. <u>Molecular cloning, a labolatory</u> <u>manual</u>. New York: Cold Spring horbor Laboratory Press.
- Schmalenberger, A., Schwieger, F. and Tebbe, C. C. 2001. Effect of primers hybridizing to different evolutionarily conserved regions of the small-subunit rRNA gene in PCR-based microbial community analyses and genetic profiling. <u>Appl Environ Microbiol</u> 67, 8: 3557-63.
- Schmalenberger, A. and Tebbe, C. C. 2003. Bacterial diversity in maize rhizospheres: conclusions on the use of genetic profiles based on PCR-amplified partial small subunit rRNA genes in ecological studies. <u>Mol Ecol</u> 12, 1: 251-62.
- Schurr, E., Skamene, E. and Gros, P. 1991. Mapping of the gene coding for the muscle protein nebulin (Neb) to the proximal region of mouse chromosome 2. <u>Cytogenet</u> <u>Cell Genet</u> 57, 4: 214-6.
- Sessitsch, A., Reiter, B. and Berg, G. 2004. Endophytic bacterial communities of fieldgrown potato plants and their plant-growth-promoting and antagonistic abilities. <u>Can J Microbiol</u> 50, 4: 239-49.
- Song, J., Lee, S. C., Kang, J. W., Baek, H. J. and Suh, J. W. 2004. Phylogenetic analysis of Streptomyces spp. isolated from potato scab lesions in Korea on the basis of 16S rRNA gene and 16S-23S rDNA internally transcribed spacer sequences. <u>Int J Syst Evol Microbiol</u> 54, Pt 1: 203-9.
- Stackebrandt, E., Liesack, W. and Goebel, B. M. 1993. Bacterial diversity in soil samples from a subtropical Australian environment as determined by 16S rDNA analysis. <u>FASEB J</u> 7: 232-236.
- Stackebrandt, E., Witt, D., Kemmerling, C., Kroppenstedt, R. and Liesack, W. 1991. Designation of Streptomycete 16S and 23S rRNA-based target regions for oligonucleotide probes. <u>Appl Environ Microbiol</u> 57, 5: 1468-77.
- Steingrube, V. A., Wilson, R. W., Brown, B. A., Jost, K. C., Jr., Blacklock, Z., Gibson, J. L., et al. 1997. Rapid identification of clinically significant species and taxa of aerobic actinomycetes, including Actinomadura, Gordona, Nocardia, Rhodococcus, Streptomyces, and Tsukamurella isolates, by DNA amplification and restriction endonuclease analysis. J Clin Microbiol 35, 4: 817-22.

Stohl, W. R. 1997. Biotechnology of antibiotics. New York: Marcel Dekker.

- Sunnucks, P., Wlison, A. C. C. and Beheregaray, L. B. 2000. SSCP is not so difficult: the application and utility of single-stranded conformation polymorphism in evolutionary biology and molecular ecology. <u>Mol Ecol</u> 9: 1699-1710.
- Suzuki, K., Iwata, K. and Yoshida, K. 2001. Genome analysis of Agrobacterium tumefaciens: construction of physical maps for linear and circular chromosomal DNAs, determination of copy number ratio and mapping of chromosomal virulence genes. DNA Res 8, 4: 141-52.
- Swofford, D. L. 2002. <u>PAUP*. Phylogenetic Analysis Using Parsimony (*and Other</u> <u>Methods)</u>. Sunderland: Sinauer Associates.
- Takahashi, Y., Seino, A., Iwai, Y. and Omura, S. 1999. Taxonomic study and morphological differentiation of an actinomycete genus, Kitasatospora. <u>Zentralbl</u> <u>Bakteriol</u> 289, 3: 265-84.
- Tanner, M. A., Goebel, B. M., Dojka, M. A. and Pace, N. R. 1998. Specific ribosomal DNA sequences from diverse environmental settings correlate with experimental contaminants. <u>Appl Environ Microbiol</u> 64, 8: 3110-3.
- Tebbe, C. C. and Vahjen, W. 1993. Interference of humic acids and DNA extracted directly from soil in detection and transformation of recombinant DNA from bacteria and a yeast. <u>Appl Environ Microbiol</u> 59, 8: 2657-65.
- Tiedje, J. M., Assuming-Brempong, S. and Nusslein, K. 1999. Opening the black box of soil microbial diversity. <u>Appl Soi Ecol</u> 13: 109-122.
- Tiquia, S. M., Ichida, J. M., Keener, H. M., Elwell, D. L., Burtt, E. H., Jr. and Michel, F. C., Jr. 2005. Bacterial community profiles on feathers during composting as determined by terminal restriction fragment length polymorphism analysis of 16S rDNA genes. <u>Appl Microbiol Biotechnol</u> 67, 3: 412-9.
- Torsvik, V., Daae, F. L. and Sandda, R. A. 1998. Novel techniques for analyzing microbial diversity in natural and perturbed environment. <u>J Biotechnol</u> 64: 53-62.

Trevors, J. T. and Elsas, J. D. 1995. Nucleic acids in the environment. Berlin: Springer.

- Urakawa, H., Kita-Tsukamoto, K. and Ohwada, K. 1999. 16S rDNA restriction fragment length polymorphism analysis of psychrotrophic vibrios from Japanese coastal water. <u>Can J Microbiol</u> 45, 12: 1001-7.
- Urakawa, H., Kita-Tsukamoto, K. and Ohwada, K. 1999. Microbial diversity in marine sediments from Sagami Bay and Tokyo Bay, Japan, as determined by 16S rRNA gene analysis. <u>Microbiology</u> 145 (Pt 11): 3305-15.
- Van de Peer, Y., Nicolai, S., De Rijk, P. and De Wachter, R. 1996. Database on the structure of small ribosomal subunit RNA. <u>Nucleic Acids Res</u> 24, 1: 86-91.
- Vincze, T., Posfai, J. and Roberts, R. J. 2003. NEBcutter: A program to cleave DNA with restriction enzymes. <u>Nucleic Acids Res</u> 31, 13: 3688-91.
- Watanabe, K., Kodama, Y. and Harayama, S. 2001. Design and evaluation of PCR primers to amplify bacterial 16S ribosomal DNA fragments used for community fingerprinting. <u>J Microbiol Methods</u> 44, 3: 253-62.
- Weisburg, W. G., Barns, S. M., Pelletier, D. A. and Lane, D. J. 1991. 16S ribosomal DNA amplification for phylogenetic study. <u>J Bacteriol</u> 173, 2: 697-703.
- Wellington, E. M., Stackebrandt, E., Sanders, D., Wolstrup, J. and Jorgensen, N. O. 1992. Taxonomic status of Kitasatosporia, and proposed unification with Streptomyces on the basis of phenotypic and 16S rRNA analysis and emendation of Streptomyces Waksman and Henrici 1943, 339AL. <u>Int J Syst</u> <u>Bacteriol</u> 42, 1: 156-60.
- Winding, A., Hund-Rinke, K. and Rutgers, M. 2005. The use of microorganisms in ecological soil classification and assessment concepts. <u>Ecotoxicol Environ Saf</u> 62, 2: 230-48.
- Woese, C. R. 1987. Bacterial evolution. Microbiol Rev, 51: 221-271.
- Xin, Y., Huang, J., Deng, M. and Zhang, W. 2008. Culture-independent nested PCR method reveals high diversity of actinobacteria associated with the marine sponges Hymeniacidon perleve and Sponge sp. <u>Antonie Van Leeuwenhoek</u> 94, 4: 533-42.

- Yeates, C., Gillings, M. R., Davison, A. D., Altavilla, N. and Veal, D. A. 1997. PCR amplification of crude microbial DNA extracted from soil. <u>Lett Appl Microbiol</u> 25, 4: 303-7.
- Yeates, C., Gillings, M. R., Davison, A. D., Altavilla, N. and Veal, D. A. 1998. Methods for microbial DNA extraction from soil for PCR amplification. <u>Biol Proced Online</u> 1: 40-47.
- Zarko-Postawka, M., Hunderuk, M., Mordarski, M. and Zakrzewska-Czerwinska, J. 1997. Organization and nucleotide sequence analysis of the ribosomal gene set (rrnB) from Streptomyces lividans. <u>Gene</u> 185, 2: 231-7.
- Zhang, H., Lee, Y. K., Zhang, W. and Lee, H. K. 2006. Culturable actinobacteria from the marine sponge Hymeniacidon perleve: isolation and phylogenetic diversity by 16S rRNA gene-RFLP analysis. <u>Antonie Van Leeuwenhoek</u> 90, 2: 159-69.
- Zhang, H., Zhang, W., Jin, Y., Jin, M. and Yu, X. 2008. A comparative study on the phylogenetic diversity of culturable actinobacteria isolated from five marine sponge species. <u>Antonie Van Leeuwenhoek</u> 93, 3: 241-8.
- Zhang, R., Jiang, J., Gu, J. D. and Li, S. 2006. Long term effect of methylparathion contamination on soil microbial community diversity estimated by 16S rRNA gene cloning. <u>Ecotoxicology</u> 15, 6: 523-30.
- Zhao, H., Kassama, Y., Young, M., Kell, D. B. and Goodacre, R. 2004. Differentiation of Micromonospora isolates from a coastal sediment in Wales on the basis of Fourier transform infrared spectroscopy, 16S rRNA sequence analysis, and the amplified fragment length polymorphism technique. <u>Appl Environ Microbiol</u> 70, 11: 6619-27.
- Zhou, J., Bruns, M. A. and Tiedje, J. M. 1996. DNA recovery from soil of diverse composition <u>Appl Environ Microbiol</u> 62, 2: 316-322.
- Zhu, P., Li, Q. and Wang, G. 2008. Unique microbial signatures of the alien Hawaiian marine sponge Suberites zeteki. <u>Microb Ecol</u> 55, 3: 406-14.
APPENDICES

APPENDIX A

Location of Streptomyces specific primers (StrepB and StrepF)

	Strep	ъВ																		
			 0 3		 0 5	 0 6	 0 70		 90			 0 12	 0 13				 170		 0 19	0 200
S01	ACAAGCCCTG	GAAACGGGGT	CTAATACCGG	ATA-TGAGCC	TGGGAGGCAT	CTCCCGGG-T	TGTAAAG	CTCCGGC		GGTGCAGGAT	GAGCCCGCGG	CCTATCAGCT	TGTTGGTGAG	GTAACGGCTC	ACCAAGGCGA	CGACGGGTAG	CCGGCCTGAG	AGGGC-GACC	GGCCACACTG	GGACTGAGAC
503	ACAAGCCCTG	GAAACGGGGT	CTAATACCGG	ATA-ACACCT	CCACTCTCCT	GGGTGGAG-G	TTAAAAG	CTCCGGC		GGTGAAGGAT	GAGCCCGCGG	CCTATCAGCT	TGTTGGTGAG	GTAATGGCTC	ACCAAGGCGA	CGACGGGTAG	CCGGCCTGAG	AGGGC-GACC	GGCCACACTG	GGACTGAGAC
S04	ACAAGCCCTG	GAAACGGGGT	CTAATACCGG	ATA-ANACTC	CTGCCTGCAT	GGGTGGGG-G	TTGAAAG	CTCCGGC		GGTGAAGGAT	GAGCCCGCGG	CCTATCAGCT	TGTTGGTGGG	GTAATGGCCT	ACCAAGGCGA	CGACGGGTAG	CCGGCCTGAG	AGGGC-GACC	GGCCACACTG	GGACTGAGAC
S05	ACAAGCCCTG	GAAACGGGGT	CTAATACCGG	ATA-ACACTC	TGTCCCGCAT	GGGACGGG-G	TTGAAAG	CTCCGGC		GGTGAAGGAT	GAGCCCGCGG	CCTATCAGCT	TGTTGGTGGG	GTAATGGCCT	ACCAAGGCGA	CGACGGGTAG	CCGGCCTGAG	AGGGC-GACC	GGCCACACTG	GGACTGAGAC
S06	ACAAGCCCTG	GAAACGGGGT	CTAATACCGG	ATA-TGACAC	GGGATCGCAT	GGTCTCCGTG	TGGAAAG	CTCCGGC		GGTGCAGGAT	GAGCCCGCGG	CCTATCAGCT	TGTTGGTGGG	GTGATGGCCT	ACCAAGGCGA	CGACGGGTAG	CCGGCCTGAG	AGGGC-GACC	GGCCACACTG	GGACTGAGAC
S07	ACAAGCCCTG	GAAACGGGGT	CTAATACCGG	ATACTGATCC	GCTTGGGCAT	CCAGGCGG-T	TCGAAAG	CTCCGGC		GGTGCAGGAT	GAGCCCGCGG	CCTATCAGCT	TGTTGGTGAG	GTAGTGGCTC	ACCAAGGCGA	CGACGGGTAG	CCGGCCTGAG	AGGGC-GACC	GGCCACACTG	GGACTGAGAC
S08	ACAAGCCCTG	GAAACGGGGT	CTAATACCGG	ATA-TCACTC	TTGCAGGCAT	CTGTGAGG-G	TCGAAAG	CTCCGGC		GGTGCAGGAT	GAGCCCGCGG	CCTATCAGCT	TGTTGGTGAG	GTAATGGCTC	ACCAAGGCGA	CGACGGGTAG	CCGGCCTGAG	AGGGC-GACC	GGCCACACTG	GGACTGAGAC
S10	ACAAGCCCTG	GAAACGGGGT	CTAATACCGG	ATACTGACCC	GCTTGGGCAT	CCAAGCGG-T	TCGAAAG	CTCCGGC		GGTGCAGGAT	GAGCCCGCGG	CCTATCAGCI	TGTTGGTGAG	GTAATGGCTC	ACCAAGGCGA	CGACGGGTAG	CCGGCCTGAG	AGGGC-GACC	GGCCACACIG	GGACIGAGAC
S11	ACAAGCCCTG	GAAACGGGGT	CTAATACCGG	ATA-ACACTC	CTGCTCTCAT	GGGCAGGG-G	TTAAAAG	CTCCGGC		GGTGAAGGAT	GAGCCCGCGG	CCTATCAGCT	TGTTGGTGAG	GTAATGGCTC	ACCAAGGCGA	CGACGGGTAG	CCGGCCTGAG	AGGGC-GACC	GGCCACACTG	GGACTGAGAC
S12	ATAACTCCGG	GAAACCGGGG	CTAATACCGG	ATA-CGACCT	TNGGGCGCAT	GCCCTGGG-G	TGGAAAG	TTCCGGC		GGTGCAGGAT	GAGCCCGCGG	CCTATCAGCT	TGTTGGTGGG	GTAATGGCCT	ACCAAGGCGA	CGACGGGTAG	CCGGCCTGAG	AGGGC-GACC	GGCCACACTG	GGACTGAGAC
S13	ACAAGCCCTG	GAAACGGGGT	CTAATACCGG	ATA-CCACCC	GGGGGCGCAT	GCCCTTGG-G	TTGAAAG	CTCCGGC		GGTGCAGGAT	GAGCCCGCGG	CCTATCAGCT	TGTTGGTGGG	GTGATGGCCT	ACCAAGGCGA	CGACGGGTAG	CCGGCCTGAG	AGGGC-GACC	GGCCACACTG	GGACTGAGAC
S14	ACAAGCCCTG	GAAACGGGGT	CTAATACCGG	ATA-ACACTC	CTGCNNGCAT	NTNTGGGG-G	TTGAAAG	CTCCGGC		GGTGAAGGAT	GAGCCCGCGG	CCTATCAGCT	TGTTGGTGAG	GTAGAAGCTC	ACCAAGGCGA	CGACGGGTAG	CCGGCCTGAG	AGGGC-GACC	GGCCACACTG	GGACTGAGAC
S15 S16	ACAAGCCCTG	GAAACGGGGT	CTAATACCGG	ATA-TGAGCCG	TGGGAGGCAT	CTCCCGGG-T	TGTAAAG	CTCCGGC		GGTGCAGGAT	GAGCCCGCGG	CCTATCAGCI	TGTTGGTGAG	GTAATGGCCI	ACCAAGGCGA	CGACGGGTAG	CCGGCCTGAG	AGGGC-GACC	GGCCACACIG	GGACIGAGAC
S17	ACAAGCCCTG	GAAACGGGGT	CTAATACCGG	ATA-TGACAC	GGGATCGCAT	GGTCTCCGTG	TGGAAAG	CTCCGGC		GGTGCAGGAT	GAGCCCGCGG	CCTATCAGCT	TGTTGGTGGG	GTGATGGCCT	ACCAAGGCGA	CGACGGGTAG	CCGGCCTGAG	AGGGC-GACC	GGCCACACTG	GGACTGAGAC
S18	ACAAGCCCTG	GAAACGGGGT	CTAATACCGG	ATA-ACACTG	CGGATCGCAT	GGTCTGCG-G	TTGAAAG	CTCCGGC		GGTGAAGGAT	GAGCCCGCGG	CCTATCAGCT	TGTTGGTGGG	GTGATGGCCT	ACCAAGGCGA	CGACGGGTAG	CCGGCCTGAG	AGGGC-GACC	GGCCACACTG	GGACTGAGAC
S19	ACAAGCCCTG	GAAACGGGGT	CTAATACCGG	ATA-TGACCG	TCTGCCGCAT	GGTGGATG-G	TGTAAAG	CTCCGGC		GGTGCAGGAT	GAGCCCGCGG	CCTATCAGCT	TGTTGGTGAG	GTAGTGGCTC	ACCAAGGCGA	CGACGGGTAG	CCGGCCTGAG	AGGGC-GACC	GGCCACACTG	GGACTGAGAC
S20	ACAAGCCCTG	GAAACGGGGT	CTAATACCGG	ATA-ATACCT	TCTCTCGCAT	GGGAGAGG-G	TTGAAAG	CTCCGGC		GGTGAAGGAT	GAGCCCGCGG	CCTATCAGCT	TGTTGGTGAG	GTAGAAGCTC	ACCAAGGCGA	CGACGGGTAG	CCGGCCTGAG	AGGGC-GACC	GGCCACACTG	GGACTGAGAC
\$21	ACAAGCCCTG	GAAACGGGGT	CTAATACCGG	ATA-CCACTA	GCTTCCCCAT	CIGIGGIG-G	TTGAAAG	CTCCGGC		GGTGAAGGAT	GAGCCCGCGG	CCTATCAGCT	TGTTGGTGAG	GTAATGGCTC	ACCAAGGCGA	CGACGGGTAG	CCGGCCTGAG	AGGGC-GACC	GGCCACACIG	GGACIGAGAC
S23	ACAAGCCCTG	GAAACGGGGT	CTAATACCGG	ATA-TGACAC	ACGACCGCAT	GGTCTGTGTG	TGGAAAG	CTCCGGC		GGTGCAGGAT	GAGCCCGCGG	CCTATCAGCT	TGTTGGTGGG	GTAATGGCCT	ACCAAGGCGA	CGACGGGTAG	CCGGCCTGAG	AGGGC-GACC	GGCCACACTG	GGACTGAGAC
S24	ACAAGCCCTG	GAAACGGGGT	CTAATACCGG	ATA-CGACAC	GGGATCGCAT	GATCTCCGTG	TGGAAAG	CTCCGGC		GGTGCAGGAT	GAGCCCGCGG	CCTATCAGCT	TGTTGGTGGG	GTAATGGCCT	ACCAAGGCGA	CGACGGGTAG	CCGGCCTGAG	AGGGC-GACC	GGCCACACTG	GGACTGAGAC
S25	ACAAGCCCTG	GAAACGGGGT	CTAATACCGG	ATA-TGACAC	ACGACCGCAT	GGTCTGTGTG	TGGAAAG	CTCCGGC		GGTGCAGGAT	GAGCCCGCGG	CCTATCAGCT	TGTTGGTGGG	GTAATGGCCT	ACCAAGGCGA	CGACGGGTAG	CCGGCCTGAG	AGGGC-GACC	GGCCACACTG	GGACTGAGAC
S26	ACAAGCCCTG	GAAACGGGGT	CTAATACCGG	ATA-TGACAC	GGGATCGCAT	GATCTTCGTG	TGGAAAG	CTCCGGC		GGTGCAGGAT	GAGCCCGCGG	CCTATCAGCT	AGTTGGTGAG	GTAACGGCTC	ACCAAGGCGA	CGACGGGTAG	CCGGCCTGAG	AGGGC-GACC	GGCCACACTG	GGACTGAGAC
527	ACAAGCCCTG	GAAACGGGGT	CTAATACCGG	ATA-ACACIC	GOTTOCCCAT	GGGCGGGGG-G	TTAAAAG	CTCCGGC		GGTGAAGGAT	GAGCCCGCGG	CCTATCAGCI	TGTTGGTGGG	GIAAIGGCCI	ACCAAGGCGA	CGACGGGTAG	CCCGCCCTGAG	AGGGC-GACC	GGCCACACIG	GGACIGAGAC
S29	ACAAGCCCTG	GAAACGGGGT	CTAATACCGG	ATA-ACACTG	CGGATCGCAT	GGTCTGCG-G	TTGAAAG	CTCCGGC		GGTGAAGGAT	GAGCCCGCGG	CCTATCAGCT	TGTTGGTGGG	GTGATGGCCT	ACCAAGGCGA	CGACGGGTAG	CCGGCCTGAG	AGGGC-GACC	GGCCACACTG	GGACTGAGAC
S30	ATAAGCCCGG	GAAACTGGGT	CTAATACCGG	ATA-GGACCA	CTGCGGGCAT	CCGTGGT-GG	TGGAAAG	TTCCGGC		GGTGCAGGAT	GGGCCCGCGG	CCTATCAGCT	TGTTGGTGGG	GTGATGGCCT	ACCAAGGCGA	CGACGGGTAG	CCGGCCTGAG	AGGGC-GACC	GGCCACACTG	GGACTGAGAC
S31	ACAAGCCCTG	GAAACGGGGT	CTAATACCGG	ATA-TGACCG	TCTGCCGCAT	GGTGGATG-G	TGTAAAG	CTCCGGC		GGTGCAGGAT	GAGCCCGCGG	CCTATCAGCT	TGTTGGTGAG	GTAGTGGCTC	ACCAAGGCGA	CGACGGGTAG	CCGGCCTGAG	AGGGC-GACC	GGCCACACTG	GGACTGAGAC
\$32	ACAAGCCCTG	GAAACGGGGT	CTAATACCGG	ATA-TCACTT	CCACTCGCAT	GGGTGGGG-G	TCGAAAG	CTCCGGC		GGTGAAGGAT	GAGCCCGCGG	CCTATCAGCT	TGTTGGTGAG	GTAATGGCTC	ACCAAGGCGA	CGACGGGTAG	CCGGCCTGAG	AGGGC-GACC	GGCCACACTG	GGACTGAGAC
\$33	ACAAGCCCTG	GAAACGGGGT	CTAATACCGG	ATA-CGACAC	CTGCCTGCAT	GATCICCGIG	TTGAAAG	CTCCGGC		GGIGCAGGAI	GAGCCCGCGG	CCTATCAGCI	TGTTGGTGGG	GTGATGGCCT	ACCAAGGCGA	CGACGGGTAG	CCCGCCCTGAG	AGGGC-GACC	GGCCACACIG	GGACIGAGAC
\$35	ACAAGCCCTG	GAAACGGGGT	CTAATACCGG	ATA-TGACAC	GGGGTCGCAT	GATCTCCGTG	TGGAAAG	CTCCGGC		GGTGAAGGAT	GAGCCCGCGG	CCTATCAGCT	TGTTGGTGAG	GTAATGGCTC	ACCAAGGCGA	CGACGGGTAG	CCGGCCTGAG	AGGGC-GACC	GGCCACACTG	GGACTGAGAC
S36	ACAAGCCCTG	GAAACGGGGT	CTAATACCGG	ATACTGACCC	TCGCAGGCAT	CTGCGAGG-T	TCGAAAG	CTCCGGC		GGTGCAGGAT	GAGCCCGCGG	CCTATCAGCT	TGTTGGTGAG	GTAATGGCTC	ACCAAGGCGA	CGACGGGTAG	CCGGCCTGAG	AGGGC-GACC	GGCCACACTG	GGACTGAGAC
\$37	ACAAGCCCTG	GAAACGGGGT	CTAATACCGG	ATA-CGACCG	CCGACCGCAT	GGTCTGGTGG	TGGAAAG	CTCCGGC		GGTGCAGGAT	GAGCCCGCGG	CCTATCAGCT	TGTTGGTGGG	GTGATGGCCT	ACCAAGGCGA	CGACGGGTAG	CCGGCCTGAG	AGGGC-GACC	GGCCACACTG	GGACTGAGAC
\$38	ACAAGCCCTG	GAAACGGGGT	CTAATACCGG	ATA-CGACAC	GGGATCGCAT	GATCTCCGTG	TGGAAAG	CTCCGGC		GGTGAAGGAT	GAGCCCGCGG	CCTATCAGCT	TGTTGGTGGG	GTGATGGCCT	ACCAAGGCGA	CGACGGGTAG	CCGGCCTGAG	AGGGC-GACC	GGCCACACTG	GGACTGAGAC
S40	ACAAGCCCTG	GAAACGGGGT	CTAATACCGG	ATA-ATACTC	TCGCAGGCAT	CTGTGAGG-G	TTAAAAG	CTCCGGC		GGTGCAGGAT	GAGCCCGCGG	CCTATCAGCT	TGTTGGTGAG	GTAGTGGCTC	ACCAAGGCGA	CGACGGGTAG	CCGGCCTGAG	AGGGC-GACC	GGCCACACTG	GGACTGAGAC
S41	ACAAGCCCTG	GAAACGGGGT	CTAATACCGG	ATA-ACACTC	CTGCCTGCAT	GGGCGGGG-G	TTAAAAG	CTCCGGC		GGTGAAGGAT	GAGCCCGCGG	CCTATCAGCT	TGTTGGTGGG	GTAATGGCCT	ACCAAGGCGA	CGACGGGTAG	CCGGCCTGAG	AGGGC-GACC	GGCCACACTG	GGACTGAGAC
S42	ACAAGCCCTG	GAAACGGGGT	CTAATACCGG	ATA-TGACCA	ATTTCCGCAT	GGTGGTTG-G	TGGAAAG	CTCCGGC		GGTGCAGGAT	GAGCCCGCGG	CCTATCAGCT	TGTTGGTGGG	GTGATGGCCT	ACCAAGGCGA	CGACGGGTAG	CCGGCCTGAG	AGGGC-GACC	GGCCACACTG	GGACTGAGAC
S43	ACAAGCCCTG	GAAACGGGGT	CTAATACCGG	ATA-ACACTT	CCCTGGGCAT	CTTGGGAA-G	TTAAAAG	CTCCGGC		GGTGAAGGAT	GAGCCCGCGG	CCTATCAGCT	TGTTGGTGGG	GTAATGGCCT	ACCAAGGCGA	CGACGGGTAG	CCGGCCTGAG	AGGGCCGACC	GGCCACACTG	GGACTGAGAC
\$44	ACAAGCCCTG	GAAACGGGGT	CTAATACCGG	ATA-ACACTC	CTCCTCCCAT	GGGCGGGGG-G	TTGAAAG	CTCCGGC		GGTGCAGGAT	GAGCCCGCGG	CCTATCAGCT	TGTTGGTGAG	GTAATGGCTC	ACCAAGGCGA	CGACGGGTAG	CCGGCCTGAG	AGGGC-GACC	GGCCACACIG	GGACIGAGAC
S46	ACAAGCCCTG	GAAACGGGGT	CTAATACCGG	ATACTGACCA	CCTTGGGCAT	CCAAGGTG-T	TCGAAAG	CTCCGGC		GGTGCAGGAT	GAGCCCGCGG	CCTATCAGCT	TGTTGGTGAG	GTAATGGCTC	ACCAAGGCGA	CGACGGGTAG	CCGGCCTGAG	AGGGC-GACC	GGCCACACTG	GGACTGAGAC
S47	ACAAGCCCTG	GAAACGGGGT	CTAATACCGG	ATA-ACACTT	CTGCTCTCAT	GGGCAGGG-G	TTAAAAG	CTCCGGC		GGTGAAGGAT	GAGCCCGCGG	CCTATCAGCT	TGTTGGTGAG	GTAATGGCTC	ACCAAGGCGA	CGACGGGTAG	CCGGCCTGAG	AGGGC-GACC	GGCCACACTG	GGACTGAGAC
S48	ACAAGCCCTG	GAAACGGGGT	CTAATACCGG	ATA-ACACTG	CGGATCGCAT	GGTCTGCG-G	TTGAAAG	CTCCGGC		GGTGAAGGAT	GAGCCCGCGG	CCTATCAGCT	TGTTGGTGGG	GTGATGGCCT	ACCAAGGCGA	CGACGGGTAG	CCGGCCTGAG	AGGGC-GACC	GGCCACACTG	GGACTGAGAC
549	ACAAGCCCTG	GAAACGGGGT	CTAATACCGG	ATA-ACACTG	CGGATCGCAT	GGTCTGCG-G	TIGAAAG	CTCCGGC		GGTGAAGGAT	GAGCCCGCGG	CCTATCAGCT	TGTTGGTGGG	GIGAIGGCCT	ACCAAGGCGA	CGACGGGTAG	CCGGCCTGAG	AGGGC-GACC	GGCCACACIG	GGACIGAGAC
S51	ACAAGCCCTG	GAAACGGGGT	CTAATACCGG	ATACTGACCT	TCACGGGCAT	CTGTGAAG-G	TCGAAAG	CTCCGGC		GGTGCAGGAT	GAGCCCGCGG	CCTATCAGCT	TGTTGGTGAG	GTAATGGCTC	ACCAAGGCGA	CGACGGGTAG	CCGGCCTGAG	AGGGC-GACC	GGCCACACTG	GGACTGAGAC
S52	ACAAGCCCTG	GAAACGGGGT	CTAATACCGG	ATACTGACCA	TCTTGGGCAT	CCAAGGTG-T	TCGAAAG	CTCCGGC		GGTGCAGGAT	GAGCCCGCGG	CCTATCAGCT	TGTTGGTGAG	GTAATGGCTC	ACCAAGGCGA	CGACGGGTAG	CCGGCCTGAG	AGGGC-GACC	GGCCACACTG	GGACTGAGAC
S53	ACAAGCCCTG	GAAACGGGGT	CTAATACCGG	ATG-ACACCT	CCACTCGCAT	GGGTGGAG-G	TTGAAAG	CTCCGGC		GGTGAGGGAT	GAGCCCGCGG	CCTATCAGCT	AGTTGGTGAG	GTAACGGCTC	ACCAAGGCGA	CGACGGGTAG	CCGGCCTGAG	AGGGC-GACC	GGCCACACTG	GGACTGAGAC
S54	ACAAGCCCTG	GAAACGGGGT	CTAATACCGG	ATA-TGACAC	GGGATCGCAT	GGTCTCCGTG	TGGAAAG	CTCCGGC		GGTGCAGGAT	GAGCCCGCGG	CCTATCAGCT	TGTTGGTGGG	GTGATGGCCT	ACCAAGGCGA	CGACGGGTAG	CCGGCCTGAG	AGGGC-GACC	GGCCACACTG	GGACTGAGAC
856	ACAAGCCCTG	GAAACGGGGT	CTAATACCGG	ATA-CCACIC	CIGCCCGCAI	GGGCGGGGG-G	TTGAAAG	CTCCGGC		GGTGAAGGAT	GAGCCCGCGG	CCTATCAGCI	TGTTGGTGGG	GTAATGGCCC	ACCAAGGCGA	CGACGGGTAG	CCGGCCTGAG	AGGGC-GACC	GGCCACACIG	GGACIGAGAC
S57	ATAAGCCCTG	GAAACGGGGT	CTAATACCGG	TTA-TGACTG	CGCATCGCAT	GGTGTGT-GG	TGGAAAG	CTCCGGC		GGTATGGGAT	GAACCCGCGG	CCTATCAGCT	TGTTGGTGGG	GTAAAAGCCT	ACCAAGGCGA	CGACGGGTAG	CCGGCCTGAG	AGGGC-GACC	GGCCACACTG	GGACTGACAC
S58	ACAAGCCCTG	GAAACGGGGT	CTAATACCGG	ATA-CGACCA	CCGACCGCAT	GGTCTGGTGG	TGGAAAG	CTCCGGC		GGTGAAGGAT	GAGCCCGCGG	CCTATCAGCT	TGTTGGTGGG	GTGATGGCCT	ACCAAGGCGA	CGACGGGTAG	CCGGCCTGAG	AGGGC-GACC	GGCCACACTG	GGACTGAGAC
S59	ACAAGCCCTG	GAAACGGGGT	CTAATACCGG	ATA-ATACCT	TCGGGGGGCAT	CCTTGAAG-G	TTGAAAG	CTCCGGC		GGTGCAGGAT	GAGCCCGCGG	CCTATCAGCT	TGTTGGTGGG	GTGATGGCCT	ACCAAGGCGA	CGACGGGTAG	CCGGCCTGAG	AGGGC-GACC	GGCCACACTG	GGACTGAGAC
S60 S61	ACAAGCCCTG	GAAACGGGGT	CTAATACCGG	ATA-CGACAC	TCTCGGGCAT	CCAAGIGG-1	TGGAAAG	CTCCGGC		GGTGAAGGAT	GAGCCCGCGG	CCTATCAGCI	TGTTGGTGAG	GTAACGGCTC	ACCAAGGCGA	CGACGGGTAG	CCGGCCTGAG	AGGGC-GACC	GGCCGCACTG	GGACIGAGAC
S62	ACAAGCCCTG	GAAACGGGGT	CTAATACCGG	ATA-TCACTC	CTGCCTGCAT	GGGCGGGG-G	TCGAAAG	CTCCGGC		GGTGAAGGAT	GAGCCCGCGG	CCTATCAGCT	TGTTGGTGAG	GTAATGGCTC	ACCAAGGCGA	CGACGGGTAG	CCGGCCTGAG	AGGGC-GACC	GGCCACACTG	GGACTGAGAC
S63	ACAAGCCCTG	GAAACGGGGT	CTAATACCGG	ATA-CGACGC	GCTCGGGCAT	CCGATGTGCG	TGGAAAG	CTCCGGC		GGTGAAGGAT	GAGCCCGCGG	CCTATCAGCT	TGTTGGTGAG	GTAACGGCTC	ACCAAGGCGA	CGACGGGTAG	CCGGCCTGAG	AGGGC-GACC	GGCCACACTG	GGACTGAGAC
S64	ACAAGCCCTG	GAAACGGGGT	CTAATACCGG	ATA-ATACTC	CTGCAGGCAT	CTGTGGGG-G	TTAAAAG	CTCCGGC		GGTGAAGGAT	GAGCCCGCGG	CCTATCAGCT	TGTTGGTGAG	GTAGTGGCTC	ACCAAGGCGA	CGACGGGTAG	CCGGCCTGAG	AGGGC-GACC	GGCCACACTG	GGACTGAGAC
865 866	ACAAGCCCTG	GAAACGGGGT	CTAATACCGG	ATACTGACCC	TOGCAGGCAT	CTGCGAGG-T	TCGAAAG	CTCCGGC		GGTGCAGGAT	GAGCCCGCGG	CCTATCAGCT	TGTTGGTGAG	GIAATGGCTC	AUCAAGGCGA	CGACGGGTAG	COGGCCTGAG	AGGGC-GACC	GGCCACACTG	GGACTGAGAC
S67	ACAAGCCCTG	GAAACGGGGT	CTAATACCGG	ATA-ACACTC	TGTCCCGCAT	GGGACGGG-G	TTAAAAG	CTCCGGC		GGTGAAGGAT	GAGCCCGCGG	CCTATCAGCT	TGTGGGTGGG	GTGATGGCIC	ACCAAGGCGA	CGACGGGTAG	CCGGCCTGAG	AGGGC-GACC	GGCCACACTG	GGACTGAGAC
S68	ACAAGCCCTG	GAAACGGGGT	CTAATACCGG	ATA-ACACTO	TGTCCCGCAT	GGGACGGG-G	TTAAAAG	CTCCGGC		GGTGAAGGAT	GAGCCCGCGG	CCTATCAGCT	TGTTGGTGGG	GTAATGGCCT	ACCAAGGCGA	CGACGGGTAG	CCGGCCTGAG	AGGGC-GACC	GGCCACACTG	GGACTGAGAC
S69	ACAAGCCCTG	GAAACGGGGT	CTAATACCGG	ATA-ACACTC	TGTCCCTCAT	GGGGCGGG-G	TTAAAAG	CTCCGGC		GGTGAAGGAT	GAGCCCGCGG	CCTATCAGCT	TGTTGGTGGG	GTAATGGCCT	ACCAAGGCGA	CGACGGGTAG	CCGGCCTGAG	AGGGC-GACC	GGCCACACTG	GGACTGAGAC
S70	ACAAGCCCTG	GAAACGGGGT	CTAATACCGG	ATA-TGACCT	TCCTCCGCAT	GGGGGGTTG-G	TGTAAAG	CTCCGGC		GGTGCAGGAT	GAGCCCGCGG	CCTATCAGCT	TGTTGGTGGG	GTAATGGCCT	ACCAAGGCGA	CGACGGGTAG	CCGGCCTGAG	AGGGC-GACC	GGCCACACTG	GGACTGAGAC
A01	ATAAGCCTCC	GAAACTGCGT	CTAATACCGG	ATA-ICACAA	GTTCTCGCAT	GGGAACT-TG	TGGAAAG	CTCCGGC		GGTACGCGAT	GAGOCOGOGG	CCTATCAGCT	TGTTGGTGGG	GTAATGGCCT	ACCAAGGCGA	CGACGGGTAG	CCGGCCTGAG	AGGGT-GACC	GGCCACACTG	GGACTGAGAC
A03	ATAAGCCCGG	GAAACTGGGT	CTAATACCGG	ATA-GGACAC	ATGGCCGCAT	GGTCTGTGTG	TGGAAAG	TTCCGGC		GGTGCAGGAT	GAGCCCGCGG	CCTATCAGCT	TGTTGGTGGG	GTGATGGCCT	ACCAAGGCGA	CGACGGGTAG	CCGGCCTGAG	AGGGT-GACC	GGCCACACTG	GGACTGAGAC
A04	ATAACCCTCG	GAAACGGGGG	CTAATACCGA	ATA-TTACTG	CTGGCCGCAT	GGCTGG-TGG	TGGAAAG	TTTTTC		GGCCTGGGAT	GGGCTCGCGG	CCTATCAGCT	TGTTGGTGGG	GTGATGGCCT	ACCAAGGCGA	CGACGGGTAG	CCGGCCTGAG	AGGGC-GACC	GGCCACACTG	GGACTGAGAC
A05	ATAACTCCGG	GAAACCGGAG	CTAATACCGG	ATA-TGACAC	CGAGCGGCAT	CGCTCGGTG-	TGGAAAG	TTTTTC		GGCTAGGGAT	GGGCCCGCGG	CCTATCAGCT	TGTTGGTGGG	GTAACGGCCT	ACCAAGGCGA	CGACGGGTAG	CCGGCCTGAG	AGGGC-GACC	GGCCACACTG	GGACTGAGAC
A06	ATAGCCCCGG	GAAACCGGGA	TTAATACCGG	ATA-TGACCG	GGAAGGGCAT	CCTTACCTGG	TGGAAAG	GTTCCCTCGT	TTGGGGTTCT	GGCTGGGGAT	GGGCTCGCGG	CCTATCAGCT	TGTTGGTGGG	GTGATGGCCT	ACCAAGGCGA	CGACGGGTAG	CCGGCCTGAG	AGGGC-GACC	GGCCACACTG	GGACTGAGAC
E01	ATAACTACTG	GAAACGGTAG	CTAATACCGG	AIGGIIGTT-	A-AGACCAAA	GAGGGGGACC	TTCGGGC	CTCTTGC	IACC	CATCGGAT	GTGCCCAGAT	GGGATTAGCT	AGTAGGTGGG	GTAACGGCTC	ACCTAGGCGA	CGATCCCTAG	CTGGTCTGAG	AGGGI-GATC	AGCCACACITG	GACIGAGAC
P02	ACAACGTTTC	GAAAGGAACG	CTAATACCGC	ATA-CGTCCT	ACGGGAGAAA	GCAGGGGACC	TTCGGGC	CTTGCGC		TATCAGAT	GAGCCTAGGT	CGGATTAGCT	AGTTGGTGGG	GTAATGGCTC	ACCAAGGCGA	CGATCCGTAA	CTGGTCTGAG	AGGAT-GATC	AGTCACACTG	GAACTGAGAC
Clust	* *	* **	*******	•			•	•		***	• •	** ****	** **** *	** **	*** ******	••• ••	* * *****	*** ** *	* *****	* ***** **

					<u> </u>												[<u>]</u>]]	
501	ACCCCCCACA	0 221 CTCCTACGGG	0 230	O 24	0 25 GCACAATGGG	0 26	0 271	28) CCCCCCTCAC	0 290 GGATGACGGC) 300 CTTCCCCTTC	D 310	TCAGCAGGGA	0 330 acaac) 34 -CGAGAGT	GACGGTI	350 3 AC CTGCAG-	60 37 AAG	381 33GCGCCCGGC) 391 TAACTACGTG	0 400
S02	ACGGCCCAGA	CTCCTACGGG	AGGCAGCAGT	GGGGAATATT	GCACAATGGG	CGCAAGCCTG	ATGCAGCGAC	GCCGCGTGAG	GGATGACGGC	CTTCGGGTTG	TAAACCTCTT	TCAGCAGGGA	AGAAG	-CGCAAGT	GACGGT/	AC CTGCAG-	AAG	AAGCGCCGGC	TAACTACGTG	CCAGCAGCCG
S03	ACGGCCCAGA	CTCCTACGGG	AGGCAGCAGT	GGGGAATATT	GCACAATGGG	CGAAAGCCTG	ATGCAGCGAC	GCCGCGTGAG	GGATGACGGC	CTTCGGGTTG	TAAACCTCTT	TCAGCAGGGA	AGAAG	-CGAAAGT	GACGGT	AC CTGCAG-	AAG	AAGCGCCGGC	TAACTACGTG	CCAGCAGCCG
S04	ACGGCCCAGA	CTCCTACGGG	AGGCAGCAGT	GGGGAATATT	GCACAATGGG	CGAAAGCCTG	ATGCAGCGAC	GCCGCGTGAG	GGATGACGGC	CTTCGGGTTG	TAAACCTCTT	TCAGCAGGGA	AGAAG	-CGCAAGT	GACGGT	AC CTGCAG-	AAG	AAGCGCCGGC	TAACTACGTG	CCAGCAGCCG
S05	ACGGCCCAGA	CICCIACGGG	AGGCAGCAGI	GGGGAATATT	GCACAATGGG	CGRAAGCCTG	ATGCAGCGAC	GCCGCGTGAG	GGATGACGGC	CTTCGGGTTG	TAAACCTCTT	TCAGCAGGGA	AGAAG	-CGCGAGT	GACGGTI	AC CTGCAG-	AAG	AAGCACCGGC	TAACTACGIG	CCAGCAGCCG
S07	ACGGCCCAGA	CTCCTACGGG	AGGCAGCAGT	GGGGAATATT	GCACAATGGG	CGAAAGCCTG	ATGCAGCGAC	GCCGCGTGAG	GGATGACGGC	CTTCGGGTTG	TAAACCTCTT	TCAGCAGGGA	AGAAG	-CGAAAGT	GACGGT/	AC CTGCAG-	AAG	AAGCGCCGGC	TAACTACGTG	CCAGCAGCCG
S08	ACGGCCCAGA	CTCCTACGGG	AGGCAGCAGT	GGGGAATATT	GCACAATGGG	CGAAAGCCTG	ATGCAGCGAC	GCCGCGTGAG	GGATGACGGC	CTTCGGGTTG	TAAACCTCTT	TCAGCAGGGA	AGAAG	-CGAAAGT	GACGGTI	AC CTGCAG-	AAG	AAGCGCCGGC	TAACTACGTG	CCAGCAGCCG
S09	ACGGCCCAGA	CTCCTACGGG	AGGCAGCAGT	GGGGAATATT	GCACAATGGG	CGAAAGCCTG	ATGCAGCGAC	GCCGCGTGAG	GGATGACGGC	CTTCGGGTTG	TAAACCTCTT	TCAGCAGGGA	AGAAG	-CGAAAGT	GACGGTI	AC CTGCAG-	AAG	AAGCGCCGGC	TAACTACGTG	CCAGCAGCCG
S10 S11	ACGGCCCAGA	CTOCTACGGG	AGGCAGCAGT	GGGGAATATT	GCACAATGGG	CGAAAGCCTG	ATGCAGCGAC	GCCGCGTGAG	GGATGACGGC	CTTCGGGTTG	TAAACCTCTT	TCAGCAGGGA	AGAAG	-CGAAAGT	GACGGTI	AC CTGCAG-	AAG	AAGCGCCGGC	TAACTACGIG	CCAGCAGCOG
S12	ACGGCCCAGA	CTCCTACGGG	AGGCAGCAGT	GGGGAATATT	GCACAATGGG	CGAAAGCCTG	ATGCAGCGAC	GCCGCGTGAG	GGATGACGGC	CTTCGGGTTG	TAAACCTCTT	TCAGCAGGGA	AGAAG	-CGCAAGT	GACGGTJ	AC CTGCAG-	AAG	AAGCACCGGC	TAACTACGTG	CCAGCAGCCG
S13	ACGGCCCAGA	CTCCTACGGG	AGGCAGCAGT	GGGGAATATT	GCACAATGGG	CGAAAGCCTG	ATGCAGCGAC	GCCGCGTGAG	GGATGACGGC	CTTCGGGTTG	TAAACCTCTT	TCAGCAGGGA	AGAAG	-CGAGAGT	GACGGT	AC CTGCAG-	AAG	AAGCGCCGGC	TAACTACGTG	CCAGCAGCCG
S14	ACGGCCCAGA	CTCCTACGGG	AGGCAGCAGT	GGGGAATATT	GCACAATGGG	CGAAAGCCTG	ATGCAGCGAC	GCCGCGTGAG	GGATGACGGC	CTTCGGGTTG	TAAACCTCTT	TCAGCAGGGA	AGAAG	-CGAAAGT	GACGGT	AC CTGCAG-	AAG	AAGCGCCGGC	TAACTACGTG	CCAGCAGCCG
\$15	ACGGCCCAGA	CTOCTACGGG	AGGCAGCAGT	GGGGAATATT	GCACAATGGG	CGAAAGCCTG	ATGCAGCGAC	GCCGCGTGAG	GGATGACGGC	CTTCGGGTTG	TAAACCTCTT	TCAGCAGGGA	AGAAG	-CGAAAGT	GACGGTI	AC CTGCAG-	AAG	AAGCGCCGGC	TAACTACGIG	CCAGCAGCOG
S17	ACGGCCCAGA	CTCCTACGGG	AGGCAGCAGT	GGGGAATATT	GCACAATGGG	CGCAAGCCTG	ATGCAGCGAC	GCCGCGTGAG	GGATGACGGC	CTTCGGGTTG	TAAACCTCTT	TCAGCAGGGA	AGAAG	-CGCGAGT	GACGGT	AC CTGCAG-	AAG	AAGCACCGGC	TAACTACGTG	CCAGCAGCCG
S18	ACGGCCCAGA	CTCCTACGGG	AGGCAGCAGT	GGGGAATATT	GCACAATGGG	CGAAAGCCTG	ATGCAGCGAC	GCCGCGTGAG	GGATGACGGC	CTTCGGGTTG	TAAACCTCTT	TCAGCAGGGA	AGAAG	-CGAAAGT	GACGGT	AC CTGCAG-	AAG	AAGCGCCGGC	TAACTACGTG	CCAGCAGCCG
S19	ACGGCCCAGA	CTCCTACGGG	AGGCAGCAGT	GGGGAATATT	GCACAATGGG	CGAAAGCCTG	ATGCAGCGAC	GCCGCGTGAG	GGATGACGGC	CTTCGGGTTG	TAAACCTCTT	TCAGCAGGGA	AGAAG	-CGAAAGT	GACGGTJ	AC CTGCAG-	AAG	AAGCGCCGGC	TAACTACGTG	CCAGCAGCCG
S20 S21	ACGGCCCAGA	CTCCTACGGG	AGGCAGCAGT	GGGGAATATT	GCACAATGGG	CGAAAGCCTG	ATGCAGCGAC	GCCGCGTGAG	GGATGACGGC	CTTCGGGTTG	TAAACCTCTT	TCAGCAGGGA	AGAAG	-CGAAAGT	GACGGTZ	AC CTGCAG-	AAG AAG	AAGCGCCCGGC	TAACTACGIG	CCAGCAGCOG
S22	ACGGCCCAGA	CTCCTACGGG	AGGCAGCAGT	GGGGAATATT	GCACAATGGG	CGAAAGCCTG	ATGCAGCGAC	GCCGCGTGAG	GGATGACGGC	CTTCGGGTTG	TAAACCTCTT	TCAGCAGGGA	AGAAG	-CGAAAGT	GACGGT	AC CTGCAG-	AAG	AAGCGCCGGC	TAACTACGTG	CCAGCAGCCG
S23	ACGGCCCAGA	CTCCTACGGG	AGGCAGCAGT	GGGGAATATT	GCACAATGGG	CGAAAGCCTG	ATGCAGCGAC	GCCGCGTGAG	GGATGACGGC	CTTCGGGTTG	TAAACCTCTT	TCAGCAGGGA	AGAAG	-CGCAAGT	GACGGTI	AC CTGCAG-	AAG	AAGCGCCGGC	TAACTACGTG	CCAGCAGCCG
S24	ACGGCCCAGA	CTCCTACGGG	AGGCAGCAGT	GGGGAATATT	GCACAATGGG	CGCAAGCCTG	ATGCAGCGAC	GCCGCGTGAG	GGATGACGGC	CTTCGGGTTG	TAAACCTCTT	TCAGCAGGGA	AGAAG	-CGCAAGT	GACGGTI	AC CTGCAG-	AAG	AAGCGCCGGC	TAACTACGTG	CCAGCAGCCG
S25	ACGGCCCAGA	CTCCTACGGG	AGGCAGCAGT	GGGGAATATT	GCACAATGGG	CGCAAGCCTG	ATGCAGCGAC	GCCGCGTGAG	GGATGACGGC	CTTCGGGTTG	TAAACCTCTT	TCAGCAGGGA	AGAAG	-CGCAAGT	GACGGTI	AC CTGCAG-	AAG	AAGCGCCGGC	TAACTACGTG	CCAGCAGCCG
S27	ACGGCCCAGA	CTCCTACGGG	AGGCAGCAGT	GGGGAATATT	GCACAATGGG	CGAAAGCCTG	ATGCAGCGAC	GCCGCGTGAG	GGATGACGGC	CTTCGGGTTG	TAAACCTCTT	TCAGCAGGGA	AGAAG	-CGAAAGT	GACGGT/	AC CTGCAG-	AAG	AAGCGCCGGC	TAACTACGTG	CCAGCAGCCG
S28	ACGGCCCAGA	CTCCTACGGG	AGGCAGCAGT	GGGGAATATT	GCACAATGGG	CGAAAGCCTG	ATGCAGCGAC	GCCGCGTGAG	GGATGACGGC	CTTCGGGTTG	TAAACCTCTT	TCAGCAGGGA	AGAAG	-CGAAAGT	GACGGTI	AC CTGCAG-	AAG	AAGCGCCGGC	TAACTACGTG	CCAGCAGCCG
S29	ACGGCCCAGA	CTCCTACGGG	AGGCAGCAGT	GGGGAATATT	GCACAATGGG	CGAAAGCCTG	ATGCAGCGAC	GCCGCGTGAG	GGATGACGGC	CTTCGGGTTG	TAAACCTCTT	TCAGCAGGGA	AGAAG	-CGAAAGT	GACGGT	AC CTGCAG-	AAG	AAGCGCCGGC	TAACTACGTG	CCAGCAGCCG
S30	ACGGCCCAGA	CTCCTACGGG	AGGCAGCAGT	GGGGAATATT	GCGCAATGGG	CGAAAGCCTG	ACGCAGCGAC	GCCGCGTGAG	GGATGACGGC	CTTCGGGTTG	TAAACCTCTT	TCAGCAGGGA	CGAAG	-CGCAAGT	GACGGTI	AC CTGCAG-	AAG	AAGCGCCGGC	TAACTACGTG	CCAGCAGCCG
S32	ACGGCCCAGA	CTCCTACGGG	AGGCAGCAGT	GGGGAATATT	GCACAATGGG	CGAAAGCCTG	ATGCAGCGAC	GCCGCGTGAG	GGATGACGGC	CTTCGGGTTG	TAAACCTCTT	TCAGCAGGGA	AGAAG	-CGAAAGT	GACGGTJ	AC CTGCAG-	AAG	AAGCGCCGGC	TAACTACGTG	CCAGCAGCCG
S33	ACGGCCCAGA	CTCCTACGGG	AGGCAGCAGT	GGGGAATATT	GGACAATGGG	CGAAAGCCTG	ATGCAGCGAC	GCCGCGTGAG	GGATGACGGC	CTTCGGGTTG	TAAACCTCTT	TCAGCAGGGA	AGAAG	-CGCAAGT	GACGGT	AC CTGCAG-	AAG	AAGCGCCGGC	TAACTACGTG	CCAGCAGCCG
S34	ACGGCCCAGA	CTCCTACGGG	AGGCAGCAGT	GGGGAATATT	GCACAATGGG	CGAAAGCCTG	ATGCAGCGAC	GCCGCGTGAG	GGATGACGGC	CTTCGGGTTG	TAAACCTCTT	TCAGCAGGGA	AGAAG	-CGAGAGT	GACGGTI	AC CTGCAG-	AAG	AAGCGCCGGC	TAACTACGTG	CCAGCAGCCG
S35	ACGGCCCAGA	CTCCTACGGG	AGGCAGCAGT	GGGGAATATT	GCACAATGGG	CGAAAGCCTG	ATGCAGCGAC	GCCGCGTGAG	GGATGACGGC	CTTCGGGTTG	TAAACCTCTT	TCAGCAGGGA	AGAAG	-CGAGAGT	GACGGTI	AC CTGCAG-	AAG	AAGCGCCGGC	TAACTACGTG	CCAGCAGCCG
S37	ACGGCCCAGA	CTCCTACGGG	AGGCAGCAGT	GGGGAATATT	GCACAATGGG	CGCAAGCCTG	ATGCAGCGAC	GCCGCGTGAG	GGATGACGGC	CTTCGGGTTG	TAAACCTCTT	TCAGCAGGGA	AGAAG	-CGCAAGT	GACGGT	AC CTGCAG-	AAG	AAGCGCCCGGC	TAACTACGTG	CCAGCAGCCG
\$38	ACGGCCCAGA	CTCCTACGGG	AGGCAGCAGT	GGGGAATATT	GCACAATGGG	CGAAAGCCTG	ATGCAGCGAC	GCCGCGTGAG	GGATGACGGC	CTTCGGGTTG	TAAACCTCTT	TCAGCAGGGA	AGAAG	-CGAGAGT	GACGGTI	AC CTGCAG-	AAG	AAGCGCCGGC	TAACTACGTG	CCAGCAGCCG
S39	ACGGCCCAGA	CTCCTACGGG	AGGCAGCAGT	GGGGAATATT	GCACAATGGG	CGCAAGCCTG	ATGCAGCGAC	GCCGCGTGAG	GGATGACGGC	CTTCGGGTTG	TAAACCTCTT	TCAGCAGGGA	AGAAG	-CGCGAGT	GACGGT	AC CTGCAG-	AAG	AAGCACCGGC	TAACTACGTG	CCAGCAGCCG
S40 S41	ACGGCCCAGA	CTOCTACGGG	AGGCAGCAGT	GGGGAATATT	GCACAATGGG	CGAAAGCCTG	ATGCAGCGAC	GCCGCGTGAG	GGATGACGGC	CTTCGGGTTG	TAAACCTCTT	TCAGCAGGGA	AGAAG	-CGAAAGT	GACGGTI	AC CTGCAG-	AAG	AAGCGCCGGC	TAACTACGIG	CCAGCAGCCG
S42	ACGGCCCAGA	CTCCTACGGG	AGGCAGCAGT	GGGGAATATT	GCACAATGGG	CGAAAGCCTG	ATGCAGCGAC	GCCGCGTGAG	GGATGACGGC	CTTCGGGTTG	TAAACCTCTT	TCAGCAGGGA	AGAAG	-CGTAAGT	GACGGT/	AC CTGCAG-	AAG	AAGCGCCGGC	TAACTACGTG	CCAGCAGCCG
S43	ACGGCCCAGA	CTCCTACGGG	AGGCAGCAGT	GGGGAATATT	GCACAATGGG	CGAAAGCCTG	ATGCAGCGAC	GCCGCGTGAG	GGATGACGGC	CTTCGGGTTG	TAAACCTCTT	TCAGCAGGGA	AGAAG	-CGAAAGT	GACGGT	AC CTGCAG-	AAG	AAGCGCCGGC	TAACTACGTG	CCAGCAGCCG
S44	ACGGCCCAGA	CTCCTACGGG	AGGCAGCAGT	GGGGAATATT	GC-CAATGGG	CGAAAGCCTG	ATGCAGCGAC	GCCGCGTGAG	GGATGACGGC	CTTCGGGTTG	TAAACCTCTT	TCAGCAGGGA	AGAAG	-CGAAAGT	GACGGTI	AC CTGCAG-	AAG	AAGCGCCGGC	TAACTACGTG	CCAGCAGCCG
S45 S46	ACGGCCCAGA	CTCCTACGGG	AGGCAGCAGT	GGGGAATATT	GCACAATGGG	CGAAAGCCTG	ATGCAGCGAC	GCCGCGTGAG	GGATGACGGC	CTTCGGGTTG	TAAACCTCTT	TCAGCAGGGA	AGAAG	-CGAGAGT	GACGGTZ	AC CTGCAG-	AAG AAG	AAGCGCCCGGC	TAACTACGIG	CCAGCAGCOG
S47	ACGGCCCAGA	CTCCTACGGG	AGGCAGCAGT	GGGGAATATT	GCACAATGGG	CGAAAGCCTG	ATGCAGCGAC	GCCGCGTGAG	GGATGACGGC	CTTCGGGTTG	TAAACCTCTT	TCAGCAGGGA	AGAAG	-CGAAAGT	GACGGT/	AC CTGCAG-	AAG	AAGCGCCGGC	TAACTACGTG	CCAGCAGCCG
S48	ACGGCCCAGA	CTCCTACGGG	AGGCAGCAGT	GGGGAATATT	GCACAATGGG	CGAAAGCCTG	ATGCAGCGAC	GCCGCGTGAG	GGATGACGGC	CTTCGGGTTG	TAAACCTCTT	TCAGCAGGGA	AGAAG	-CGAAAGT	GACGGTI	AC CTGCAG-	AAG	AAGCGCCGGC	TAACTACGTG	CCAGCAGCCG
S49	ACGGCCCAGA	CTCCTACGGG	AGGCAGCAGT	GGGGAATATT	GCACAATGGG	CGAAAGCCTG	ATGCAGCGAC	GCCGCGTGAG	GGATGACGGC	CTTCGGGTTG	TAAACCTCTT	TCAGCAGGGA	AGAAG	-CGAAAGT	GACGGTJ	AC CTGCAG-	AAG	AAGCGCCGGC	TAACTACGTG	CCAGCAGCCG
S50 S51	ACGGCCCAGA	CICCIACGGG	AGGCAGCAGI	GGGGAATATT	GCACAATGGG	CGAAAGCCTG	ATGCAGCGAC	GCCGCGTGAG	GGATGACGGC	CTTCGGGTTG	TAAACCTCTT	TCAGCAGGGA	AGAAG	-CGAAAGT	GACGGTI	AC CTGCAG-	AAG	AAGCGCCGGC	TAACTACGIG	CCAGCAGCCG
S52	ACGGCCCAGA	CTCCTACGGG	AGGCAGCAGT	GGGGAATATT	GCACAATGGG	CGAAAGCCTG	ATGCAGCGAC	GCCGCGTGAG	GGATGACGGC	CTTCGGGTTG	TAAACCTCTT	TCAGCAGGGA	AGAAG	-CGAAAGT	GACGGTI	AC CTGCAG-	AAG	AAGCGCCGGC	TAACTACGTG	CCAGCAGCCG
S53	ACGGCCCAGA	CTCCTACGGG	AGGCAGCAGT	GGGGAATATT	GCACAATGGG	CGCAAGCCTG	ATGCAGCGAC	GCCGCGTGAG	GGATGACGGC	CTTCGGGTTG	TAAACCTCTT	TCAGCAGGGA	AGAAG	-CGCAAGT	GACGGTI	AC CTGCAG-	AAG	AAGCGCCGGC	TAACTACGTG	CCAGCAGCCG
S54	ACGGCCCAGA	CTCCTACGGG	AGGCAGCAGT	GGGGAATATT	GCACAATGGG	CGCAAGCCTG	ATGCAGCGAC	GCCGCGTGAG	GGATGACGGC	CTTCGGGTTG	TAAACCTCTT	TCAGCAGGGA	AGAAG	-CGCAAGT	GACGGTI	AC CTGCAG-	AAG	AAGCACCGGC	TAACTACGTG	CCAGCAGCCG
S56	ACGGCCCAGA	CTCCTACGGG	AGGCAGCAGT	GGGGAATATT	GCACAATGGG	CGAAAGCCTG	ATGCAGCGAC	GCCGCGTGAG	GGATGACGGC	CTTCGGGTTG	TAAACCTCTT	TCAGCAGGGA	AGAAG	-CGAAAGT	GACGGT	AC CTGCAG-	AAG	AAGCGCCCGGC	TAACTACGTG	CCAGCAGCCG
S57	ACGGCCCAGA	CTCCTACGGG	AGGCAGCAGT	GGGGAATATT	GCACAATGGG	CGCAAGCCTG	ATGCAGCGAC	GCCGCGTGAG	GGATGACGGC	CTTCGGGTTG	TAAACCTCTT	TCGACAGGGA	CGAAG	-GGCAACT	GACGGTI	AC CTGTAG-	AAG	AAGCACCGGC	TAACTACGTG	CCAGCAGCCG
S58	ACGGCCCAGA	CTCCTACGGG	AGGCAGCAGT	GGGGAATATT	GCACAATGGG	CGAAAGCCTG	ATGCAGCGAC	GCCGCGTGAG	GGATGACGGC	CTTCGGGTTG	TAAACCTCTT	TCAGCAGGGA	AGAAG	-CGAGAGT	GACGGT	AC CTGCAG-	AAG	AAGCGCCGGC	TAACTACGTG	CCAGCAGCCG
\$59	ACGGCCCAGA	CTOCTACGGG	AGGCAGCAGT	GGGGAATATT	GCACAATGGG	CGAAAGCCTG	ATGCAGCGAC	GCCGCGTGAG	GGATGACGGC	CTTCGGGTTG	TAAACCTCTT	TCAGCAGGGA	AGAAG	-CGAGAGT	GACGGTI	AC CTGCAG-	AAG	AAGCGCCGGC	TAACTACGIG	CCAGCAGCOG
S61	ACGGCCCAGA	CTCCTACGGG	AGGCAGCAGT	GGGGAATATT	GCACAATGGG	CGAAAGCCTG	ATGCAGCGAC	GCCGCGTGAG	GGATGACGGC	CTTCGGGTTG	TAAACCTCTT	TCAGCAGGGA	AGAAG	-CGAAAGT	GACGGTJ	AC CTGCAG-	AAG	AAGCGCCGGC	TAACTACGTG	CCAGCAGCCG
S62	ACGGCCCAGA	CTCCTACGGG	AGGCAGCAGT	GGGGAATATT	GCACAATGGG	CGGAAGCCTG	ATGCAGCGAC	GCCGCGTGAG	GGATGACGGC	CTTCGGGTTG	TAAACCTCTT	TCAGCAGGGA	AGAAG	-CGAAAGT	GACGGT	AC CTGCAG-	AAG	AAGCGCCGGC	TAACTACGTG	CCAGCAGCCG
S63	ACGGCCCAGA	CTCCTACGGG	AGGCAGCAGT	GGGGAATATT	GCACAATGGG	CGCAAGCCTG	ATGCAGCGAC	GCCGCGTGAG	GGATGACGGC	CTTCGGGTTG	TAAACCTCTT	TCAGCAGGGA	AGAAG	-CGCAAGT	GACGGTJ	AC CTGCAG-	AAG	AAGCGCCGGC	TAACTACGTG	CCAGCAGCCG
S65	ACGGCCCAGA	CICCIACGGG	AGGCAGCAGI	GGGGAATATT	GCACAATGGG	CGAAAGCCTG	ATGCAGCGAC	GCCGCGTGAG	GGATGACGGC	CTTCGGGTTG	TAAACCTCTT	TCAGCAGGGA	AGAAG	-CGAAAGT	GACGGTI	AC CTGCAG-	AAG	AAGCGCCGGC	TAACTACGIG	CCAGCAGCCG
S66	ACGGCCCAGA	CTCCTACGGG	AGGCAGCAGT	GGGGAATATT	GCACAATGGG	CGAAAGCCTG	ATGCAGCGAC	GCCGCGTGAG	GGATGACGGC	CTTCGGGTTG	TAAACCTCTT	TCAGCAGGGA	AGAAG	-CGAAAGT	GACGGTJ	AC CTGCAG-	AAG	AAGCGCCGGC	TAACTACGTG	CCAGCAGCCG
S67	ACGGCCCAGA	CTCCTACGGG	AGGCAGCAGT	GGGGAATATT	GCACAATGGG	CGAAAGCCTG	ATGCAGCGAC	GCCGCGTGAG	GGATGACGGC	CTTCGGGTTG	TAAACCTCTT	TCAGCAGGGA	AGAAG	-CGAAAGT	GACGGT	AC CTGCAG-	AAG	AAGCGCCGGC	TAACTACGTG	CCAGCAGCCG
S68	ACGGCCCAGA	CTCCTACGGG	AGGCAGCAGT	GGGGAATATT	GCACAATGGG	CGAAAGCCTG	ATGCAGCGAC	GCCGCGTGAG	GGATGACGGC	CTTCGGGTTG	TAAACCTCTT	TCAGCAGGGA	AGAAG	-CGAAAGT	GACGGT	AC CTGCAG-	AAG	AAGCGCCGGC	TAACTACGTG	CCAGCAGCCG
570	ACGGCCCAGA	CTCCTACGGG	AGGCAGCAGT	GGGGAATATT	GCACAATGGG GCACAATGGG	CGAAAGCCTG	ATGCAGCGAC	GCCGCGTGAG	GGATGACGGC	CTTCGGGTTG	TAAACCTCTT	1 CAGCAGGGA TCAGCAGGGA	AGAAG	-CGCAAGT	GACGGTI	NC CTGCAG-	AAG AAG	AAGCACCGGC	TAACTACGTG	CCAGCAGCUG
A01	ACGGCCCAGA	CTCCTACGGG	AGGCAGCAGT	GGGGAATATT	GCACAATGGG	CGCAAGCCTG	ATGCAGCGAC	GCCGCGTGAG	GGATGACGGC	CTTCGGGTTG	TAAACCTCTT	TCGCCAGGGA	CGAAG	-CGCAAGT	GACGGT	AC CTGGAT-	AAG	AAGCACCGGC	TAACTACGTG	CCAGCAGCCG
A02	ACGGCCCAGA	CTCCTACGGG	AGGCAGCAGT	GGGGAATATT	GCACAATGGG	CGCAAGCCTG	ATGCAGCGAC	GCCGCGTGAG	GGATGACGGC	CTTCGGGTTG	TAAACCTCTT	TCGCCAGGGA	CGAAG	-CGCAAGT	GACGGTJ	AC CTGGAT-	AAG	AAGCACCGGC	TAACTACGTG	CCAGCAGCCG
A03	ACGGCCCAGA	CTCCTACGGG	AGGCAGCAGT	GGGGGAATCTT	GCGCAATGGG	CGAAAGCCTG	ACGCAGCAAC	GCCGCGTGGG	GGATGACGGC	CTTCGGGTTG	TAAACCTCTT	TCGACATCGA	CGAAG	-CCTTCGGGT	GACGGT	AG GTGTAG-	AAG	AAGCACCGGC	TAACTACGTG	CCAGCAGCCG
A05	ACGGCCCAGA	CTCCTACGGG	AGGCAGCAGT	GGGGAATATT	GCGCAATGGG	CGAAAGCCTG	ACGCAGCGAC	GCCGCGTGAG	GGACGAAGGC	CTTCGGGTCG	TAAACCTCTT	TCAGCAGGGA	CGAAG	-CGCAAGT	GACGGT	AC CTGCAG-	AAG	AAGCACCGGC	TAACTACGTG	CCAGCAGCCG
A06			1000100100					00000000000						07	andom om	C CT CCAC	AAG	AAGCGCCCGGC	TAACTACCTC	CCAGCAGCCG
B03	ACGGCCCAGA	CTCCTACGGG	AGGCAGCAGI	GGGGGAATCIT	GCGCAATGGG	CGGAAGCCTG	ACGCAGCGAC	9000001000	GGATGAAGGC	CTTCGGGTTG	TAAACCTCTT	TCAGCAGGGA	CGAAG		GACG1-G11	ic ciacha-	1010	1000000000	11010110010	
	ACGGCCCAGA ACGGCCCAGA	CTCCTACGGG CTCCTACGGG	AGGCAGCAGI	ATGGAATCTT	CCGAAATGGA	CGGAAGCCTG	ACGCAGCGAC	GCCGCGTGAG	TGATGAAGGT	TTTCGGATCG	TAAACCTCTT	TCAGCAGGGA TTGTTAGGGA	AGAACAAGTA	CCGTTCGAAT	AGGGCGGT/	AC CTTGACGGT	A CCTAACCAGA	AAGCCACCGC	TAACTACGTG	CCAGCAGCCG
E01 P02	ACGGCCCAGA ACGGCCCAGA ACGGTCCAGA	CTCCTACGGG CTCCTACGGG CTCCTACGGG CTCCTACGGG	AGGCAGCAGT AGGCAGCAGT AGGCAGCAGT	GGGGAATCTT GGGGAATATT GGGGAATATT	GCGCAATGGG CCGAAATGGA GCACAATGGG GGACAATGGG	CGGAAGCCTG CGAAAGTCTG CGCAAGCCTG	ACGCAGCGAC ACGGAGCAAC ATGCAGCCAT	GCCGCGTGAG GCCGCGTGAG GCCGCGTGTA	TGATGAAGGC TGAAGAAGGC TGAAGAAGGC	CTTCGGGTTG CTTCGGGTTG CTTCGGATTG	TAAAGCTCTT TAAAGCTCTG TAAAGTACTT TAAAGCACTT	TCAGCAGGGA TTGTTAGGGA TCAGCGGGGGA TAAGTTGCCA	GGAAGG-GAG GGAAGG-GAG GGAAGG-CCA	CCGTTCGAAT TAAAGTTAAT GTAAGCTAAT	AGGGCGGTJ ACCTTTGCT	AC CTTGACGGT FC ATTGACGTT	A CCTAACCAGA A CCCGCAGAAG A CCCGACAGAAT	AAGCACCGC AAGCACCGGC	TAACTACGTG TAACTCCGTG	CCAGCAGCCG CCAGCAGCCG CCAGCAGCCG

]]]]	
S01	410 CGGTAATACG TA	420 AGGGCGCAA) 43 GCGTTGTCCG	GAATTATTGG	J 45 GC-GTAAAGA	0 46 GCTCGTAGGC	GGCTTGTCAC	480 GTCGGTTGTG	AAA-GCCCGG	GG-CTTAACC	CCGGG-TCTG	CAGTOGATAC	0 53 GGGCAGGCTA	GAGTTCGGTA	GGGGAGATCG	GAATTOCTGG	J 570 TGTAGCGGTG	AAATGOGCAG	J 59 ATATCAGGAG	GAACACCGGT
S02	CGGTAATACG TA	AGGGCGCAA	GCGTTGTCCG	GAATTATTGG	GC-GTAAAGA	GCTCGTAGGC	GGCTTGTCGC	GTCGGATGTG	AAA-GCCCGG	GG-CTTAACC	CCGGG-TCTG	CATTCGATAC	GGGCAGGCTA	GAGTTCGGTA	GGGGAGATCG	GAATTCCTGG	TGTAGCGGTG	AAATGCGCAG	ATATCAGGAG	GAACACCGGT
S03	CGGTAATACG TA	AGGGCGCAA	GCGTTGTCCG	GAATTATTGG	GC-GTAAAGA	GCTCGTAGGC	GGCTTGTCAC	GTCGGGTGTG	AAA-GCCCGG	GG-CTTAACC	CCGGG-TCTG	CATTCGATAC	GGGCTAGCTA	GAGTGTGGTA	GGGGAGATCG	GAATTCCTGG	TGTAGCGGTG	AAATGCGCAG	ATATCAGGAG	GAACACCGGT
S04	CGGTAATACG TA	AGGGCGCAA	GCGTTGTCCG	GAATTATTGG	GC-GTAAAGA	GCTCGTAGGC	GGCTTGTCAC	GTCGGATGTG	AAA-GCCCGG	GG-CTTAACC	CCGGG-TCTG	CATTCGATAC	GGGCTAGCTA	GAGTGTGGTA	GGGGAGATCG	GAATTCCTGG	TGTAGCGGTG	AAATGCGCAG	ATATCAGGAG	GAACACCGGT
S05 S06	CGGTAATACG TA	AGGGCGCAA	GCGTTGTCCG	GAATTATTGG	GC-GTAAAGA	GCTCGTAGGC	GGCTTGTCGC	GICGGAIGIG	AAA-GCCCGG	GG-CTTAACC	CCGGG-TCTG	CATTCGATAC	GGGCIAGCIA	GAGIGIGGIA	GGGGAGAICG	GAATTCCTGG	TGTAGCGGTG	AAATGCGCAG	ATATCAGGAG	GAACACCGGI
S07	CGGTAATACG TA	AGGGCGCAA	GCGTTGTCCG	GAATTATTGG	GC-GTAAAGA	GCTCGTAGGC	GGCTTGTCAC	GTCGGTTGTG	AAA-GCCCGG	GG-CTTAACC	CCGGG-TCTG	CAGTCGATAC	GGGCAGGCTA	GAGTTCGGTA	GGGGAGATCG	GAATTCCTGG	TGTAGCGGTG	AAATGCGCAG	ATATCAGGAG	GAACACCGGT
S08	CGGTAATACG TA	AGGGCGCAA	GCGTTGTCCG	GAATTATTGG	GC-GTAAAGA	GCTCGTAGGC	GGCTTGTCAC	GTCGGGTGTG	AAA-GCCCGG	GG-CTTAACC	CCGGG-TCTG	CATTCGATAC	GGGCTAGCTA	GAGTGTGGTA	GGGGAGATCG	GAATTCCTGG	TGTAGCGGTG	AAATGCGCAG	ATATCAGGAG	GAACACCGGT
S09	CGGTAATACG TA	AGGGCGCAA	GCGTTGTCCG	GAATTATTGG	GC-GTAAAGA	GCTCGTAGGC	GGCTTGTCAC	GTCGGGTGTG	AAA-GCCCGG	GG-CTTAACC	CCGGG-TCTG	CATTCGATAC	GGGCTAGCTA	GAGTGTGGTA	GGGGAGATCG	GAATTCCTGG	TGTAGCGGTG	AAATGCGCAG	ATATCAGGAG	GAACACCGGT
S10 S11	CGGTAATACG TA	AGGGCGCGAA	GOGTTGTCCG	GAATTATTGG	GC-GTAAAGA	GCTCGTAGGC	GGCTTGTCAC	GTCGGGTGTG	AAA-GCCCGG	GG-CTTAACC	CCGGG-TCTG	CATTOGATAC	GGGCTAGCTA	GAGIICGGIA	GGGGAGATCG	GAATTCCTGG	TGTAGCGGTG	AAATGCGCAG	ATATCAGGAG	GAACACCGGT
S12	CGGTAATACG TA	AGGGTGCGA	GCGTTGTCCG	GAATTATTGG	GC-GTAAAGA	GCTCGTAGGC	GGCTTGTCGC	GTCGGATGTG	AAA-GCCCGG	GG-CTCAACC	CCGGG-TCTG	CATTCGATAC	GGGCAGGCTA	GAGTTCGGTA	GGGGAGATCG	GAATTCCTGG	TGTAGCGGTG	AAATGCGCAG	ATATCAGGAG	GAACACCGGT
S13	CGGTAATACG TA	AGGGCGCAA	GCGTTGTCCG	GAATTATTGG	GC-GTAAAGA	GCTCGTAGGC	GGCTTGTCAC	GTCGGGTGTG	AAA-GCCCGG	GG-CTTAACC	CCGGG-TCTG	CATTCGATAC	GGGCAGGCTA	GAGTGTGGTA	GGGGAGATCG	GAATTCCTGG	TGTAGCGGTG	AAATGCGCAG	ATATCAGGAG	GAACACCGGT
S14	CGGTAATACG TA	AGGGCGCAA	GCGTTGTCCG	GAATTATTGG	GC-GTAAAGA	GCTCGTAGGC	GGTCTGTCAC	GTCGGATGTG	AAA-GCCCGG	GG-CTTAACC	CCGGG-TCTG	CATTCGATAC	GGGCAGACTA	GAGTGTGGTA	GGGGAGATCG	GAATTCCTGG	TGTAGCGGTG	AAATGCGCAG	ATATCAGGAG	GAACACCGGT
S15 S16	CGGTAATACG TA	AGGGCGCAA	GCGTTGTCCG	GAATTATTGG	GC-GTAAAGA	GCTCGTAGGC	GGCTTGTCAC	GICGGGIGIG	AAA-GCCCGG	GG-CTTAACC	TCGGG-TCTG	CATCCGATAC	GGGCTAGCTA	GAGIGIGGIA	GGGGAGAICG	GAATTCCTGG	TGTAGCGGTG	AAATGCGCAG	ATATCAGGAG	GAACACCGGI
S17	CGGTAATACG TA	AGGGTGCGA	GCGTTGTCCG	GAATTATTGG	GC-GTAAAGA	GCTCGTAGGC	GGCTTGTCGC	GTCGGATGTG	AAA-GCCCGG	GG-CTTAACC	CCGGG-TCTG	CATTCGATAC	GGGCAGGCTA	GAGTTCGGCA	GGGGAGATTG	GAATTCCTGG	TGTAGCGGTG	AAATGCGCAG	ATATCAGGAG	GAACACCGGT
S18	CGGTAATACG TA	AGGGCGCAA	GCGTTGTCCG	GAATTATTGG	GC-GTAAAGA	GCTCGTAGGC	GGCTTGTCAC	GTCGGATGTG	AAA-GCCCGG	GG-CTTAACC	CCGGG-TCTG	CATTCGATAC	GGGCAGGCTA	GAGTGTGGTA	GGGGAGATCG	GAATTCCTGG	TGTAGCGGTG	AAATGCGCAG	ATATCAGGAG	GAACACCGGT
S19 820	CGGTAATACG TA	AGGGCGCAA	GCGTTGTCCG	GAATTATTGG	GC-GTAAAGA	GCTCGTAGGC	GGCTTGTCAC	GTCGGTTGTG	AAA-GCCCGG	GG-CTTAACC	CCGGG-TCTG	CAGTCGATAC	GGGCAGGCTA	GAGTTCGGTA	GGGGAGATCG	GAATTCCTGG	TGTAGCGGTG	AAATGCGCAG	ATATCAGGAG	GAACACCGGT
S21	CGGTAATACG TA	AGGGCGCAA	GOGTTGTCCG	GAATTATTGG	GC-GTAAAGA	GCTCGTAGGC	GGCTTGTCAC	GTCGGGTGTG	AAA-GCCCGG	GG-CTTAACC	CCGGG-TCTG	CATTOGATAC	GGGCTAGCTA	GAGIGIGGIA	GGGGAGATCG	GAATTCCTGG	TGTAGCGGTG	AAATGCGCAG	ATATCAGGAG	GAACACCGGT
S22	CGGTAATACG TA	AGGGCGCAA	GCGTTGTCCG	GAATTATTGG	GC-GTAAAGA	GCTCGTAGGC	GGCTTGTCAC	GTCGGGTGTG	AAA-GCCCGG	GG-CTTAACC	CCGGG-TCTG	CATCCGATAC	GGGCAGGCTA	GAGTGTGGTA	GGGGAGATCG	GAATTCCTGG	TGTAGCGGTG	AAATGCGCAG	ATATCAGGAG	GAACACCGGT
S23	CGGTAATACG TA	AGGGCGCAA	GCGTTGTCCG	GAATTATTGG	GC-GTAAAGA	GCTCGTAGGC	GGCTTGTCGC	GTCGGATGTG	AAA-GCCCGG	GG-CTTAACC	CCGGG-TCTG	CATTCGATAC	GGGCAGGCTA	GAGTTCGGTA	GGGGAGATCG	GAATTCCTGG	TGTAGCGGTG	AAATGCGCAG	ATATCAGGAG	GAACACCGGT
S24	CGGTAATACG TA	AGGGCGCAA	GCGTTGTCCG	GAATTATTGG	GC-GTAAAGA	GCTCGTAGGC	GGCTTGTCAC	GTCGGATGTG	AAA-GCCCGG	GG-CTTAACC	CCGGG-TCTG	CATTCGATAC	GGGCAGGCTA	GAGTTCGGTA	GGGGAGATCG	GAATTCCTGG	TGTAGCGGTG	AAATGCGCAG	ATATCAGGAG	GAACACCGGT
525 S26	CGGTAATACG TA	AGGGCGCGAA	GOGTTGTCCG	GAATTATTGG	GC-GTAAAGA	GCTCGTAGGC	GGCTTGTCAC	GTCGGAIGIG	AAA-GCCCGG	GGGCTTAACC	CCGGG-TCTG	CARTCGATAC	GGGCAGGCIA	GAGIICGGIA	GGGGAGATCG	GAATTCCTGG	TGTAGCGGTG	AAATGCGCAG	ATATCAGGAG	GAACACCGGT
S27	CGGTAATACG TA	AGGGCGCAA	GCGTTGTCCG	GAATTATTGG	GC-GTAAAGA	GCTCGTAGGC	GGCTTGTCAC	GTCGGATGTG	AAA-GCCCGG	GG-CTTAACC	CCGGG-TCTG	CATTCGATAC	GGGCAGGCTA	GAGTGTGGTA	GGGGAGATCG	GAATTCCTGG	TGTAGCGGTG	AAATGCGCAG	ATATCAGGAG	GAACACCGGT
S28	CGGTAATACG TA	AGGGCGCAA	GCGTTGTCCG	GAATTATTGG	GC-GTAAAGA	GCTCGTAGGC	GGCTTGTCAC	GTCGGGTGTG	AAA-GCCCGG	GG-CTTAACC	CCGGG-TCTG	CATCCGATAC	GGGCAGGCTA	GAGTGTGGTA	GGGGAGATCG	GAATTCCTGG	TGTAGCGGTG	AAATGCGCAG	ATATCAGGAG	GAACACCGGT
S29	CGGTAATACG TA	AGGGCGCAA	GCGTTGTCCG	GAATTATTGG	GC-GTAAAGA	GCTCGTAGGC	GGCTTGTCGC	GTCGGATGTG	AAA-GCCCGG	GG-CTTAACC	CCGGG-TCTG	CATTCGATAC	GGGCAGGCTA	GAGTGTGGTA	GGGGAGATCG	GAATTCCTGG	TGTAGCGGTG	AAATGCGCAG	ATATCAGGAG	GAACACCGGT
S30 S31	CGGTAATACG TA	AGGGCGCGA	GCGTTGTCCG	GAATTATTGG	GC-GTAAAGA	GCTCGTAGGC	GGCTTGTCAC	GICGACIGIG	AAA-GCCCGG	GG-CTTAACC	CCGGG-TCTG	CAGICGAIAC	GGGCAGGCTA	GAGIICGGIA	GGGGAGACIG	GAATTCCTGG	TGTAGCGGTG	AAATGCGCAG	ATATCAGGAG	GAACACCGGI
S32	CGGTAATACG TA	AGGGCGCAA	GCGTTGTCCG	GAATTATTGG	GC-GTAAAGA	GCTCGTAGGC	GGTCTGTCGC	GTCGGATGTG	AAA-GCCCGG	GG-CTTAACC	CCGGGGTCTG	CATTCGATAC	GGGCAGACTA	GAGTGTGGTA	GGGGAGATCG	GAATTCCTGG	TGTAGCGGTG	AAATGCGCAG	ATATCAGGAG	GAACACCGGT
S33	CGGTAATACG TA	AGGGCGCAA	GCGTTGTCCG	GAATTATTGG	GC-GTAAAGA	GCTCGTAGGC	GGCTTGTCAC	GTCGGATGTG	AAA-GCCCGG	GG-CTTAACC	CCGGG-TCTG	CATTCGATAC	GGGCAGGCTA	GAGTTCGGTA	GGGGAGATCG	GAATTCCTGG	TGTAGCGGTG	AAATGCGCAG	ATATCAGGAG	GAACACCGGT
S34	CGGTAATACG TA	AGGGCGCAA	GCGTTGTCCG	GAATTATTGG	GC-GTAAAGA	GCTCGTAGGC	GGCTTGTCGC	GTCGGATGTG	AAA-GCCCGG	GG-CTTAACC	CCGGG-TCTG	CATTCGATAC	GGGCAGGCTA	GAGTGTGGTA	GGGGAGATCG	GAATTCCTGG	TGTAGCGGTG	AAATGCGCAG	ATATCAGGAG	GAACACCGGT
S36	CGGTAATACG TA	AGGGCGCGAA	GOGTTGTCCG	GAATTATTGG	GC-GTAAAGA	GCTCGTAGGC	GGCTTGTCAC	GTCGGAIGIG	AAA-GCCCGG	GG-CTTAACC	CCGGG-TCTG	CARTOGATAC	GGGCAGGCIA	GAGIICGGIA	GGGGAGATCG	GAATTCCTGG	TGTAGCGGTG	AAATGCGCAG	ATATCAGGAG	GAACACCGGT
S37	CGGTAATACG TA	AGGGCGCAA	GCGTTGTCCG	GAATTATTGG	GC-GTAAAGA	GCTCGTAGGC	GGCTTGTTGC	GTCGGATGTG	AAA-GCCCGG	GG-CTTAACC	CCGGG-TCTG	CATTCGATAC	GGGCAGGCTA	GAGTTCGGTA	GGGGAGATCG	GAATTCCTGG	TGTAGCGGTG	AAATGCGCAG	ATATCAGGAG	GAACACCGGT
S38	CGGTAATACG TA	AGGGCGCAA	GCGTTGTCCG	GAATTATTGG	GC-GTAAAGA	GCTCGTAGGC	GGCTTGTCGC	GTCGGATGTG	AAA-GCCCGG	GG-CTTAACC	CCGGG-TCTG	CATTCGATAC	GGGCAGGCTA	GAGTTCGGTA	GGGGAGATCG	GAATTCCTGG	TGTAGCGGTG	AAATGCGCAG	ATATCAGGAG	GAACACCGGT
S39 640	CGGTAATACG TA	AGGGTGCGA	GCGTTGTCCG	GAATTATTGG	GC-GTAAAGA	GCTCGTAGGC	GGCTTGTCGC	GTCGGATGTG	AAA-GCCCGG	GG-CTTAACC	CCGGG-TCTG	CATTCGATAC	GGGCAGGCTA	GAGTTCGGCA	GGGGAGATTG	GAATTCCTGG	TGTAGCGGTG	AAATGCGCAG	ATATCAGGAG	GAACACCGGT
S41	CGGTAATACG TA	AGGGCGCAA	GCGTTGTCCG	GAATTATTGG	GC-GTAAAGA	GCTCGTAGGC	GGCTTGTCGC	GTCGGATGTG	AAA-GCCCGG	GG-CTTAACC	CCGGG-TCTG	CATTCGATAC	GGGCAGGCTA	GAGIGIGGIA	GGGGAGATCG	GAATTCCTGG	TGTAGCGGTG	AAATGCGCAG	ATATCAGGAG	GAACACCGGT
S42	CGGTAATACG TA	AGGGCGCGA	GCGTTGTCCG	GAATTATTGG	GC-GTAAAGA	GCTCGTAGGC	GGCTTGTTGC	GTCGGTTGTG	AAA-GCCCGG	GG-CTTAACC	CCGGG-TCTG	CAGTCGATAC	GGGCAGGCTA	GAGTTCGGTA	GGGGAGATCG	GAATTCCTGG	TGTAGCGGTG	AAATGCGCAG	ATATCAGGAG	GAACACCGGT
S43	CGGTAATACG TA	AGGGCGCAA	GCGTTGTCCG	GAATTATTGG	GC-GTAAAGA	GCTCGTAGGC	GGCTTGTCAC	GTCGGGTGTG	AAA-GCCCGG	GG-CTTAACC	CCGGG-TCTG	CATTCGATAC	GGGCAGGCTA	GAGTGTGGTA	GGGGAGATCG	GAATTCCTGG	TGTAGCGGTG	AAATGCGCAG	ATATCAGGAG	GAACACCGGT
S44	CGGTAATACG TA	AGGGCGCAA	GCGTTGTCCG	GAATTATTGG	GCCGTAAAGA	GCTCGTAGGC	GGCTTGTCAC	GTCGGGTGTG	AAA-GCCCGG	GG-CTTAACC	CCGGG-TCTG	CATTCGATAC	GGGCTAGCTA	GAGTGTGGTA	GGGGAGATCG	GAATTCCTGG	TGTAGCGGTG	AAATGCGCAG	ATATCAGGAG	GAACACCGGT
S46	CGGTAATACG TA	AGGGCGCGA	GCGTTGTCCG	GAATTATTGG	GC-GTAAAGA	GCTCGTAGGC	GGCTTGTCAC	GTCGGTTGTG	AAA-GCCCGG	GG-CTTAACC	CCGGG-TCTG	CAGTCGATAC	GGGCAGGCTA	GAGTICGGIA	GGGGAGATCG	GAATTCCTGG	TGTAGCGGTG	AAATGCGCAG	ATATCAGGAG	GAACACCGGT
S47	CGGTAATACG TA	AGGGCGCAA	GCGTTGTCCG	GAATTATTGG	GC-GTAAAGA	GCTCGTAGGC	GGCTTGTCAC	GTCGGGTGTG	AAA-GCCCGG	GG-CTTAACC	CCGGG-TCTG	CATTCGATAC	GGGCTAGCTA	GAGTGTGGTA	GGGGAGATCG	GAATTCCTGG	TGTAGCGGTG	AAATGCGCAG	ATATCAGGAG	GAACACCGGT
S48	CGGTAATACG TA	AGGGCGCAA	GCGTTGTCCG	GAATTATTGG	GC-GTAAAGA	GCTCGTAGGC	GGCTTGTCGC	GTCGGATGTG	AAA-GCCCGG	GG-CTTAACC	CCGGG-TCTG	CATTCGATAC	GGGCAGGCTA	GAGTGTGGTA	GGGGAGATCG	GAATTCCTGG	TGTAGCGGTG	AAATGCGCAG	ATATCAGGAG	GAACACCGGT
S49 S50	CGGTAATACG TA	AGGGCGCAA	GOGTTGTCCG	GAATTATTGG	GC-GTAAAGA	GCTCGTAGGC	GGCTTGTCGC	GTCGGATGTG	AAA-GCCCGG	GG-CTTAACC	CCGGG-TCTG	CATTOGATAC	GGGCAGGCTA	GAGIGIGGIA	GGGGAGATCG	GAATTOCTGG	TGTAGCGGTG	AAATGCGCAG	ATATCAGGAG	GAACACCGGT
S51	CGGTAATACG TA	AGGGCGCAA	GCGTTGTCCG	GAATTATTGG	GC-GTAAAGA	GCTCGTAGGC	GGCTTGTCAC	GTCGGTTGTG	AAA-GCCCGG	GG-CTTAACC	CCGGG-TCTG	CAGTCGATAC	GGGCAGGCTA	GAGTTCGGTA	GGGGAGATCG	GAATTCCTGG	TGTAGCGGTG	AAATGCGCAG	ATATCAGGAG	GAACACCGGT
S52	CGGTAATACG TA	AGGGCGCGA	GCGTTGTCCG	GAATTATTGG	GC-GTAAAGA	GCTCGTAGGC	GGCTTGTCGC	GTCGGTTGTG	AAA-GCCCGG	GG-CTTAACC	CCGGG-TCTG	CAGTCGATAC	GGGCAGGCTA	GAGTTCGGTA	GGGGAGATCG	GAATTCCTGG	TGTAGCGGTG	AAATGCGCAG	ATATCAGGAG	GAACACCGGT
S53	CGGTAATACG TA	AGGGCGCGA	GCGTTGTCCG	GAATTATTGG	GC-GTAAAGA	GCTCGTAGGC	GGCCTGTCGC	GTCAATTGTG	AAA-GCCCGG	GG-CTTAACC	CCGGG-TCTG	CAGTCGATAC	GGGCAGGCTA	GAGTGTGGTA	GGGGAGATCG	GAATTCCTGG	TGTAGCGGTG	AAATGCGCAG	ATATCAGGAG	GAACACCGGT
S55	CGGTAATACG TA	AGGGCGCAA	GCGTTGTCCG	GAATTATTGG	GC-GTAAAGA	GCTCGTAGGC	GGCTTGTCAC	GTCGGATGTG	AAA-GCCCGA	GG-CTTAACC	TCGGG-TCTG	CATTCGATAC	GGGCTAGCTA	GAGIGIGGEA	GGGGAGATCG	GAATTCCTGG	TGTAGCGGTG	AAATGCGCAG	ATATCAGGAG	GAA-ACCGGT
S56	CGGTAATACG TA	AGGGCGCAA	GCGTTGTCCG	GAATTATTGG	GC-GTAAAGA	GCTCGTAGGC	GGCTTGTCAC	GTCGGATGTG	AAA-GCCCGA	GG-CTTAACC	TCGGG-TCTG	CATTCGATAC	GGGCTAGCTA	GAGTGTGGTA	GGGGAGATCG	GAATTCCTGG	TGTAGCGGTG	AAATGCGCAG	ATATCAGGAG	GAACACCGGT
S57	CGGTAATACG TA	AGGGTGCGA	GCGTTGTCCG	GAATTATTGG	GC-GTAAAGA	GCTCGTAGGC	GGTTTGTCGC	GTCGGCCGTG	AAA-ACTGGA	GG-CTTAACC	TCCAG-CTTG	CGGTCGATAC	GGGCAGACTT	GAGTTCGGTA	GGGGAGACTG	GAATTCCTGG	TGTAGCGGTG	AAATGCGCAG	ATATCAGGAG	GAACACCGGT
S58	CGGTAATACG TA	AGGGCGCAA	GCGTTGTCCG	GAATTATTGG	GC-GTAAAGA	GCTCGTAGGC	GGCTTGTCAC	GTCGGATGTG	AAA-GCCCGG	GG-CTTAACC	CCGGG-TCTG	CATTCGATAC	GGGCAGGCTA	GAGTTCGGTA	GGGGAGATCG	GAATTCCTGG	TGTAGCGGTG	AAATGCGCAG	ATATCAGGAG	GAACACCGGT
S60	CGGTAATACG TA	AGGGCGCAA	GCGTTGTCCG	GAATTATTGG	GC-GTAAAGA	GCTCGTAGGC	GGCTTGTCAC	GTCGGTTGTG	AAA-GCCCGG	GG-CTTAACC	CCGGG-TCTG	CAGTCGATAC	GGGCAGGCTA	GAGITICGGIA	GGGGAGATCG	GAATTCCTGG	TGTAGCGGTG	AAATGCGCAG	ATATCAGGAG	GAACACCGGT
S61	CGGTAATACG TA	AGGGCGCGA	GCGTTGTCCG	GAATTATTGG	GC-GTAAAGA	GCTCGTAGGC	GGTCTGTCGC	GTCGGATGTA	AAA-GCCCGG	GG-CTTAACC	CCGGG-TCTG	CATTCGATAC	GGGCAGACTA	GAGTGTGGTA	GGGGAGATCG	GAATTCCTGG	TGTAGCGGTG	AAATGCGCAG	ATATCAGGAG	GAACACCGGT
S62	CGGTAATACG TA	AGGGCGCAA	GCGTTGTCCG	GAATTATTGG	GC-GTAAAGA	GCTCGTAGGC	GGCTTGTCGC	GTCGGATGTG	AAA-GCCCGG	GG-CTTAACC	CCGGG-TCTG	CATTCGATAC	GGGCAGGCTA	GAGTTCGGTA	GGGGAGATCG	GAATTCCTGG	TGTAGCGGTG	AAATGCGCAG	ATATCAGGAG	GAACACCGGT
S63 S64	CGGTAATACG TA	AGGGCGCGA	GOGTIGICOG	GAATTATTGG	GC-GTAAAGA GC-GTAAAGA	GCTCGTAGGC	GGTCTGTCGC	GTCGGATGTG	AAA-GCCCGG	GG-CTTAACC GG-CTTAACC	CCGGG-TCTG	CATTOGATAC	GGGCAGACIG	GAGIGIGGIA	GGGGAGATCG	GAATTCCTGG	TGTAGCGGTG	AAATGCGCAG	ATATCAGGAG	GAACACCGGT
S65	CGGTAATACG TA	AGGGCGCAA	GCGTTGTCCG	GAATTATTGG	GC-GTAAAGA	GCTCGTAGGC	GGCTTGTCAC	GTCGGTTGTG	AAA-GCCCGG	GG-CTTAACC	CCGGG-TCTG	CAGTCGATAC	GGGCAGGCTA	GAGTTCGGTA	GGGGAGATCG	GAATTCCTGG	TGTAGCGGTG	AAATGCGCAG	ATATCAGGAG	GAACACCGGT
S66	CGGTAATACG TA	AGGGCGCAA	GCGTTGTCCG	GAATTATTGG	GC-GTAAAGA	GCTCGTAGGC	GGCTTGTCAC	GTCGGTTGTG	AAA-GCCCGG	GG-CTTAACC	CCGGG-TCTG	CAGTCGATAC	GGGCAGGCTA	GAGTTCGGTA	GGGGAGATCG	GAATTCCTGG	TGTAGCGGTG	AAATGCGCAG	ATATCAGGAG	GAACACCGGT
S67	CGGTAATACG TA	AGGGCGCAA	GCGTTGTCCG	GAATTATTGG	GC-GTAAAGA	GCTCGTAGGC	GGCTTGTCAC	GTCGGATGTG	AAA-GCCCGG	GG-CTTAACC	CCGGG-TCTG	CATTCGATAC	GGGCTAGCTA	GAGTGTGGTA	GGGGAGATCG	GAATTCCTGG	TGTAGCGGTG	AAATGCGCAG	ATATCAGGAG	GAACACCGGT
300 S69	CGGTAATACG TZ	AGGGTGCGA	GCGTTGTCCG	GAATTATTGG	GC-GTAAAGA	GCTCGTAGGC	GGCTIGICAC	GTCGGATGTG	AAA-GCTCGG	GG-CTTAACC	CCGAG-TCTG	CATTCGATAC	GGGCTAGCTA	GAGIGIGGIA	GGGGAGATCG	GAATTCCTGG	TGTAGCGGTG	AAATGCGCAG	ATATCAGGAG	GAACACCGGT
s70	CGGTAATACG TA	AGGGTGCGA	GCGTTGTCCG	GAATTATTGG	GC-GTAAAGA	GCTCGTAGGC	GGCCTGTCGC	GTCGGATGTG	AAA-GCCCGG	GG-CTTAACC	CCGGG-TCTG	CATTCGATAC	GGGCAGGCTA	GAGTGTGGTA	GGGGAGATCG	GAATTCCTGG	TGTAGCGGTG	AAATGCGCAG	ATATCAGGAG	GAACACCGGT
A01	CGGTAATACG TA	AGGGTGCGA	GCGTTGTCCG	GATTTATTGG	GC-GTAAAGA	GCTCGTAGGC	GGTTTGTCGC	GTCGGCCGTG	AAA-TCTCCA	CG-CTTAACG	TGGAG-CGTG	CGGTCGATAC	GGGCAGACTT	GAGTTCGGTA	GGGGAGACTG	GAATTCCTGG	TGTAGCGGTG	AAATGCGCAG	ATATCAGGAG	GAACACCGGT
A02	CGGTAATACG TA	AGGGTGCGA	GCGTTGTCCG	GAATTATTGG	GC-GTAAAGA	GCTCGTAGGC	GGTTTGTCGC	GTCGTTCGTG	AAA-ACTCCA	CG-CTTAACG	TGGAG-CGTG	CGGGCGATAC	GGGCAGACTT	GAGTTCGGTA	GGGGAGACTG	GAATTCCTGG	TGTAGCGGTG	AAATGCGCAG	ATATCAGGAG	GAACACCGGT
A03	CGGTAAGACG TA	AGGGCGCGA	GCGTTGTCCG	GATTTATTGG	GC-GTAAAGA	GCTCGTAGGC	GGCTTGTCGC	GTCGACTGTG	AAA-ACCCGC	GG-CTCAACT	GCGGG-CCTG	CAGTCGATAC	GGGCAGGCTA	GAGIICGGTA	GGGGAGACTG	GAATTCCTGG	TGTAGCGGTG	AAATGCGCAG	ATATCAGGAG	GAACACCGGT
A05	CGGTAATACG TA	AGGGTGCAA	GCGTTGTCCG	GAATTATTGG	GC-GTAAAGA	GCTCGTAGGC	GGCTTGTCAC	GTCTGCTGTG	AAA-ACTCGG	GG-CTCAACC	CCGAG-CCTG	CAGTGGATAC	GGGCTAGCTA	GAGTGCGGTA	GGGGAGACTG	GAATTCCTGG	TGTAGCGGTG	AAATGCGCAG	ATATCAGGAG	GAACACCGGT
A06	CGGTAATACG TA	AGGGCGCGA	GCGTTGTCCG	GAATTATTGG	GC-GTAAAGA	GCTCGTAGGC	GGCTGGTCGC	GTCTGCCGTG	AAA-GGCCTG	GG-CTTAACT	CGGGT-TTTG	CGGTGGATAC	GGGCCGGCTA	GAGGTAGGTA	GGGGAGAACG	GAATTCCTGG	TGTAGCGGTG	AAATGCGCAG	ATATCAGGAG	GAACACCGGT
B03	CGGTAATACG TA	AGGTGGCAA	GCGTTGTC-G	GAATTATTGG	GCGTAAAAGG	GCTCGCAGGC	GGTTTCTTAA	GTCTGATGTG	AAACGCCCCC	CGGCTCAACC	GGGGAGGGTT	CATTGGAAAC	TGGGGAACTT	GAGTGCAGAA	GAGGAGAGTG	GAATTCCACG	TGTAGCGGTG	AAATGCGTAG	AGATGTGGAG	GAACACCAGT
P02	CGGTAATACA GA	AGGGTGCAA	GCGTTAATCG	GAATTACTGG	GC-GTAAAGC	GCGCGTAGGT	GGTTCGTTAA	GTTGGATGTG	AAA-GCCCCG	GG-CTCAACC	TGGGA-ACTG	CATCCAAAAC	TGGCGAGCTA	GAGTACGGTA	GAGGGTGGTG	GAATTTCCTG	TGTAGCGGTG	AAATGCGTAG	ATATAGGAAG	GAACACCAGT
Clust	****** ** *	*** ** *	*****	** *** ***	** ****	** ** ***	** *	** **	***	* ** ***			** **	***	* **	***** * *	****** ***	****** **	* ** * **	*** *** **

]						.						[]					
\$01	610	521 2-870707030	CCCGATACTG	ACCCTGACG_	0 650 AGCGAAAGC-	U 66	GAACACGATT	AGATACOCTG	GTAGTC	590 70 ac	700 CCCCTARA (/1U	720 CTACCTCTCC	G_CARCATTC	CACG_TTCT	40 /: C CCTCCCCCA	C-TARCCC	50 // T TAAGTGCCCC	0 /81	73-0000000	·U 800
502	GGCGAAGGCG	3-ATCTCTGG	GCCGATACTG	ACGCTGAGG-	AGCGAAAGC-	GTGGGG-AGC	GAACAGGATT	AGATACCCTG	GTAGTC	CC AC	CGCCGTAAA (2-GTTGGGAA	CTAGGTGTGG	G-CGACATTC	CACG-TCGT	CGTGCCGCAG	C-TAACGC	T TAAGTTCCCC	GCCTGGGGAG	TA-CGGCCG	AAGGCTAAAA
\$03	GGCGAAGGCG	-ATCTCTGG	GCCATTACTG	ACGCTGAGG-	AGCGAAAGC-	GTGGGG-AGC	GAACAGGATT	AGATACCCTG	GTAGTC	C AC	CGCCGTAAA (C-GGTGGGAA	CTAGGTGTTG	G-CGACATTC	CACG-TCGT	C GGTGCCGCAG	C-TAACGCA	T TAAGTTCCCC	GCCTGGGGAG	TA-CGGCCG	AAGGCTAAAA
S04	GGCGAAGGCG (3-ATCTCTGG	GCCATTACTG	ACGCTGAGG-	AGCGAAAGC-	GTGGGG-AGC	GAACAGGATT	AGATACCCTG	GTAGTC	CC AC	CGCCGTAAA (C-GTTGGGAA	CTAGGTGTTG	G-CGACATTC	CACG-TCGT	C GGTGCCGCAG	G C-TAACGCA	T TAAGTTCCCC	GCCTGGGGAG	TA-CGGCCG	AAGGCTAAAA
S05	GGCGAAGGCG	3-ATCTCTGG	GCCCTTACTG	ACGCTGAGG-	AGCGAAAGC-	GTGGGG-AGC	GAACAGGATT	AGATACCCTG	GTAGTC	CC AC	CGCCGTAAA (C-GTTGGGAA	CTAGGTGTTG	G-CGACATTC	CACG-TCGT	C GGTGCCGCAG	G C-TAACGCA	T TAAGTTCCCC	GCCTGGGGAG	TA-CGGCCG0	AAGGCTAAAA
S06	GGCGAAGGCG	3-ATCTCTGG	GCCGATACTG	ACGCTGAGG-	AGCGAAAGC-	GTGGGG-AGC	GAACAGGATT	AGATACCCTG	GTAGTC	C AC	CGCCGTAAA (2-GTTGGGCA	CTAGGTGTGG	G-CGGCATTC	CACG-TCGT	C CGTGCCGCAG	G C-TAACGCA	T TAAGTGCCCC	GCCTGGGGAG	TA-CGGCCGG	AAGGCTAAAA
507	GGCGAAGGCG (3-AICICIGG	GCCGATACIG	ACGCIGAGG-	AGCGAAAGC-	GIGGGG-AGC	GAACAGGAII	AGATACCCIG	GIAGIC	C AC	CCCCGIAAA (-GGIGGGCA	CIAGGIGIGG	G-CAACAIIC	CACG-IIGI	CGIGCCGCAG	C-TAACGCA	T TANGIGUCCU	CCCTGGGGAG	TA-CGGCCGG	AAGGCIAAAA
S09	GGCGAAGGCG (3-ATCTCTGG	GCCATTACTG	ACGCTGAGG-	AGCGAAAGC-	GTGGGG-AGC	GAACAGGATT	AGATACCCTG	GTAGTC	C AC	CGCCGTAAA (2-GGTGGGCA	CTAGGIGIIG	G-CGACATIC G-CGACATIC	CACG-TCGT	C GGTGCCGCAG	C-TAACGC	T TAAGTGCCCC	GCCTGGGGAG	TA-CGGCCG	AAGGCTAAAA
s10	GGCGAAGGCG	-ATCTCTGG	GCCGATACTG	ACGCTGAGG-	AGCGAAAGC-	GTGGGG-AGC	GAACAGGATT	AGATACCCTG	GTAGTC	C AC	CGCCGTAAA (C-GGTGGGCA	CTAGGTGTGG	G-CGACATTC	CACG-TCGT	C CGTGCCGCAG	C-TAACGCA	T TAAGTGCCCC	GCCTGGGGAG	TA-CGGCCG	AAGGCTAAAA
S11	GGCGAAGGCG (3-ATCTCTGG	GCCATTACTG	ACGCTGAGG-	AGCGAAAGC-	GTGGGG-AGC	GAACAGGATT	AGATACCCTG	GTAGTC	CC AC	CGCCGTAAA (C-GGTGGGAA	CTAGGTGTTG	G-CGACATTC	CACG-TCGT	C GGTGCCGCAG	G C-TAACGCA	T TAAGTTCCCC	GCCTGGGGAG	TA-CGGCCG	2 AAGGCTAAAA
S12	GGCGAAGGCG (3-ATCTCTGG	GCCGATACTG	ACGCTGAGG-	AGCGAAAGC-	GTGGGG-AGC	GAACAGGATT	AGATACCCTG	GTAGTC	CC AC	CGCCGTAAA (C-GTTGGGAA	CTAGGTGTGG	G-CGACATTC	CACG-TTGT	C CGTGCCGCAC	G C-TAACGCA	T TAAGTTCCCC	GCCTGGGGAG	TA-CGGCCG	AAGGCTAAAA
S13	GGCGAAGGCG	3-ATCTCTGG	GCCATTACTG	ACGCTGAGG-	AGCGAAAGC-	GTGGGG-AGC	GAACAGGATT	AGATACCCTG	GTAGTC	C AC	CGCCGTAAA (2-GTTGGGAA	CTAGGTGTTG	G-CGACATTC	CACG-TCGT	C GGTGCCGCAG	G C-TAACGCA	T TAAGTTCCCC	GCCTGGGGAG	TA-CGGCCGG	AAGGCTAAAA
S14 S15	GGCGAAGGCG (3-ATCTCIGG	GCCATTACTG	ACGCTGAGG-	AGCGAAAGC-	GTGGGGG-AGC	GAACAGGATT	AGATACCCTG	GTAGIC	C AC	CGCCGTAAA (-GTTGGGAA	CTAGGIGIIG	G-CGACATTC	CACG-TCGT	C GGIGCCGCAG	C-TAACGCA	T TAAGTTCCCC	GCCTGGGGAG	TA-CGGCCG	' AAGGCTAAAA
S16	GGCGAAGGCG	-ATCTCTGG	GCCATTACTG	ACGCTGAGG-	AGCGAAAGC-	GTGGGG-AGC	GAACAGGATT	AGATACCCTG	GTAGTC	C AC	CGCCGTAAA (-GGTGGGAA	CTAGGTGTTG	G-CGACATTC	CACG-TCGT	C GGTGCCGCAG	C-TAACGCA	T TAAGTTCCCC	GCCTGGGGAG	TA-CGGCCG	AAGGCTAAAA
S17	GGCGAAGGCG	G-ATCTCTGG	GCCGATACTG	ACGCTGAGG-	AGCGAAAGC-	GTGGGG-AGC	GAACAGGATT	AGATACCCTG	GTAGTC	CC AC	CGCCGTAAA (C-GTTGGGCA	CTAGGTGTGG	G-CGGCATTC	CACG-TCGT	C CGTGCCGCAG	G C-TAACGCA	T TAAGTGCCCC	GCCTGGGGAG	TA-CGGCCG	: AAGGCTAAAA
S18	GGCGAAGGCG (3-ATCTCTGG	GCCATTACTG	ACGCTGAGG-	AGCGAAAGC-	GTGGGG-AGC	GAACAGGATT	AGATACCCTG	GTAGTC	CC AC	CGCCGTAAA (C-GTTGGGAA	CTAGGTGTTG	G-CGACATTC	CACG-TCGT	C GGTGCCGCAG	G C-TAACGCA	T TAAGTTCCCC	GCCTGGGGAG	TA-CGGCCG	2 AAGGCTAAAA
S19	GGCGAAGGCG	3-ATCTCTGG	GCCGATACTG	ACGCTGAGG-	AGCGAAAGC-	GTGGGG-AGC	GAACAGGATT	AGATACCCTG	GTAGTC	CC AC	CGCCGTAAA (C-GGTGGGCA	CTAGGTGTGG	G-CAACATTC	CACG-TTGT	C CGTGCCGCAC	G C-TAACGCA	T TAAGTGCCCC	GCCTGGGGAG	TA-CGGCCG	AAGGCTAAAA
\$20	GGCGAAGGCG (3-ATCTCTGG	GCCATTACTG	ACGCTGAGG-	AGCGAAAGC-	GTGGGGG-AGC	-AACAGGATT	AGATACCCTG	GTAGTC	C AC	CGCCGTAAA (-GGTGGGAA	CTAGGIGITG	G-CGACATTC	CACG-TCGT	C GGTGCCGCAG	G C-TAACGCA	T TAAGTTCCCC	GCCTGGGGGAG	TA-CGGCCGG	AAGGCTAAAA
522	GGCGAAGGCG (3-ATCTCTGG	GCCATTACTG	ACGCTGAGG-	AGCGAAAGC-	GTGGGG-AGC	GAACAGGATT	AGATACCCTG	GTAGTC	TC AC	CGCCGTAAA (-GTTGGGAA	CTAGGTGTTG	G-CGACATTC	CACG-TCGT	C GGTGCCGCAG	C-TAACGCA	T TRAGTTOCCC	GCCTGGGGAG	TA-CGGCCG	' AAGGCTAAAA
S23	GGCGAAGGCG	-ATCTCTGG	GCCGATACTG	ACGCTGAGG-	AGCGAAAGC-	GTGGGG-AGC	GAACAGGATT	AGATACCCTG	GTAGTC	C AC	CGCCGTAAA (-GTTGGGAA	CTAGGTGTGG	G-CGACATTC	CACG-TCGT	CGTGCCGCAG	C-TAACGCA	T TAAGTTCCCC	GCCTGGGGAG	TA-CGGCCG	AAGGCTAAAA
S24	GGCGAAGGCG	G-ATCTCTGG	GCCGATACTG	ACGCTGAGG-	AGCGAAAGC-	GTGGGG-AGC	GAACAGGATT	AGATACCCTG	GTAGTC	CC AC	CGCCGTAAA (C-GTTGGGAA	CTAGGTGTGG	G-CGACATTC	CACG-TCGT	C CGTGCCGCAG	G C-TAACGCA	T TAAGTTCCCC	GCCTGGGGAG	TA-CGGCCG	: AAGGCTAAAA
S25	GGCGAAGGSG (G-ATCTCTGG	GCCGATACTG	ACGCTGAGG-	AGCGAAAGC-	GTGGGG-AGC	GAACAGGATT	AGATACCCTG	GTAGTC	C AC	CGCCGTAAA (2-GTTGGGAA	CTAGGTGTGG	G-CGACATTC	CACG-TCGT	C CGTGCCGCAC	G C-TAACGCA	T TAAGTTCCCC	GCCTGGGGAG	TA-CGGCCG0	: AAGGCTAAAA
S26	GGCGAAGGCG	3-ATCTCTGG	GCCGATACTG	ACGCTGAGG-	AGCGAAAGC-	GTGGGG-AGC	GAACAGGATT	AGA-ACCCTG	GTAGTC	C AC	CGCCGTAAA (2-GGTGGGCA	CTAGGTGTGG	G-CGACATTC	CACG-TCGT	C CGTGCCGCAG	G C-TAACGCA	T TAAGTGCCCC	GCCTGGG-AG	TA-CGGCCGG	AAGGCTAAAA
527	GGCGAAGGCG (3-AICICIGG	GCCATTACIG	ACGCIGAGG-	AGCGAAAGC-	GIGGGG-AGC	GAACAGGATT	AGATACCCTG	GIAGIC	C AC	CGCCGIAAA (-GIIGGGAA	CTAGGIGIIG	G-CGACATIC	CACG-TCGT	C GGIGCCGCAG	C-TAACGCA	T TAAGTTOCCC	GCCIGGGGAG	TA-CGGCCGG	AAGGCIAAAA
S29	GGCGAAGGCG	3-ATCTCTGG	GCCATTACTG	ACGCTGAGG-	AGCGAAAGC-	GTGGGG-AGC	GAACAGGATT	AGATACCCTG	GTAGTC	CC AC	CGCCGTAAA (2-GTTGGGAA	CTAGGTGTTG	G-CGACATTC	CACG-TCGT	C GGTGCCGCAG	C-TAACGC	T TAAGTTCCCC	GCCTGGGGAG	TA-CGGCCG	AAGGCTAAAA
\$30	GGCGAAGGCG	G-GTCTCTGG	GCCGATACTG	ACGCTGAGG-	AGCGAAAGC-	GTGGGG-AGC	GAACAGGATT	AGATACCCTG	GTAGTC	C AC	CGCCGTAAA (-GTTGGGCG	CTAGGTGTGG	GGTCCTTC	CACG-GGTT	C CGTGCCGTAC	C-TAACGCA	T TAAGCGCCCC	GCCTGGGGAG	TA-CGGCCG	: AAGGCTAAAA
S31	GGCGAAGGCG (3-ATCTCTGG	GCCGATACTG	ACGCTGAGGG	AGCGAAAGC-	GTGGGG-AGC	GAACAGGATT	AGATACCCTG	GTAGTC	CC AC	CGCCGTAAA (C-GGTGGGCA	CTAGGTGTGG	G-CAACATTC	CACG-TTGT	C CGTGCCGCAC	G C-TAACGCA	T TAAGTGCCCC	GCCTGGGGAG	TA-CGGCCG0	: AAGGCTAAAA
S32	GGCGAAGGCG (3-ATCTCTGG	GCCATTACTG	ACGCTGAGG-	AGCGAAAGC-	GTGGGG-AGC	GAACAGGATT	AGATACCCTG	GTAGTC	CC AC	CGCCGTAAA (C-GGTGGGAA	CTAGGTGTTG	G-CGACATTC	CACG-TCGT	C GGTGCCGCAG	G C-TAACGCA	T TAAGTTCCCC	GCCTGGGGAG	TA-CGGCCG	AAGGCTAAAA
S33	GGCGAAGGCG	3-ATCTCTGG	GCCGATACTG	ACGCTGAGG-	AGCGAAAGC-	GTGGGG-AGC	GAACAGGATT	AGATACCCTG	GTAGTC	C AC	CGCCGTAAA (2-GTTGGGAA	CTAGGTGTGG	G-CGACATTC	CACG-TCGT	C CGTGCCGCAG	G C-TAACGCA	T TAAGTTCCCC	GCCTGGGGAG	TA-CGGCCGG	AAGGCTAAAA
\$35	GGCGAAGGCG (3-ATCTCIGG	GCCGATACTG	ACGCTGAGG-	AGCGAAAGC-	GTGGGGG-AGC	GAACAGGATT	AGATACCCTG	GTAGIC	C AC	CGCCGTAAA (-GTTGGGAA	CTAGGIGIIG	G-CGACATTC	CACG-TCGT	C CGTGCCGCAG	C-TAACGCA	T TAAGTTCCCC	GCCTGGGGAG	TA-CGGCCG	' AAGGCTAAAA
\$36	GGCGAAGGCG	-ATCTCTGG	GCCGATACTG	ACGCTGAGG-	AGCGAAAGC-	GTGGGG-AGC	GAACAGGATT	AGATACCCTG	GTAGTC	C AC	CGCCGTAAA (-GGTGGGCA	CTAGGTGTGG	G-CAACATTC	CACG-TTGT	CGTGCCGCAG	C-TAACGCA	T TAAGTGCCCC	GCCTGGGGAG	TA-CGGCCG	AAGGCTAAAA
S37	GGCGAAGGCG	G-ATCTCTGG	GCCGATACTG	ACGCTGAGG-	AGCGAAAGC-	GTGGGG-AGC	GAACAGGATT	AGATACCCTG	GTAGTC	CC AC	CGCCGTAAA (C-GTTGGGAA	CTAGGTGTGG	G-CGACATTC	CACG-TCGT	C CGTGCCGCAG	G C-TAACGCA	T TAAGTTCCCC	GCCTGGGGAG	TA-CGGCCG	: AAGGCTAAAA
S38	GGCGAAGGCG	G-ATCTCTGG	GCCGATACTG	ACGCTGAGG-	AGCGAAAGC-	GTGGGG-AGC	GAACAGGATT	AGATACCCTG	GTAGTC	C AC	CGCCGTAAA (2-GTTGGGAA	CTAGGTGTGG	G-CGACATTC	CACG-TCGT	C CGTGCCGCAC	G C-TAACGCA	T TAAGTTCCCC	GCCTGGGGAG	TA-CGGCCG0	: AAGGCTAAAA
S39	GGCGAAGGCG	3-ATCTCTGG	GCCGATACTG	ACGCTGAGG-	AGCGAAAGC-	GTGGGG-AGC	GAACAGGATT	AGATACCCTG	GTAGTC	C AC	CGCCGTAAA (2-GTTGGGCA	CTAGGTGTGG	G-CGGCATTC	CACG-TCGT	C CGTGCCGCAG	G C-TAACGCA	T TAAGTGCCCC	GCCTGGGGAG	TA-CGGCCGG	AAGGCTAAAA
540	GGCGAAGGCG (3-AICICIGG	GCCATTACIG	ACGCIGAGG-	AGCGAAAGC-	GIGGGG-AGC	GAACAGGATT	AGATACCCTG	GIAGIC	C AC	CGCCGIAAA (-GGIGGGAA	CTAGGIGIIG	G-CGACATIC	CACG-TCGT	C GGIGCCGCAG	C-TAACGCA	T TAAGTTOCCC	GCCIGGGGAG	TA-CGGCCGG	1 BAGGCIAAAA
S42	GGCGAAGGCG	-ATCTCTGG	GCCGATACTG	ACGCTGAGG-	AGCGAAAGC-	GTGGGG-AGC	GAACAGGATT	AGATACCCTG	GTAGTC	C AC	CGCCGTAAA (-GTTGGGAA	CTAGGTGTGG	G-TCACATTC	CACG-TGGT	CGTGCCGCA	C-TAACGCA	T TAAGTTCCCC	GCCTGGGGAG	TA-CGGCCG	AAGGCTAAAA
S43	GGCGAAGGCG (-ATCTCTGG	GCCATTACTG	ACGCTGAGG-	AGCGAAAGC-	GTGGGG-AGC	GAACAGGATT	AGATACCCTG	GTAGTC	C AC	CGCCGTAAA (C-GTTGGGAA	CTAGGTGTTG	G-CGACATTC	CACG-TCGT	C GGTGCCGCAG	G C-TAACGC	T TAAGTTCCCC	GCCTGGGGAG	TA-CGGCCG	2 AAGGCTAAAA
S44	GGCGAAGGCG (3-ATCTCTGG	GCCATTACTG	ACGCTGAGG-	AGCGAAAGC-	GTGGGG-AGC	GAACAGGATT	AGATACCCTG	GTAGTC	CC AC	CGCCGTAAA (C-GGTGGGAA	CTAGGTGTTG	G-CGACATTC	CACG-TCGT	C GGTGCCGCAG	G C-TAACGCA	T TAAGTTCCCC	GCCTGGGGAG	TA-CGGCCG	AAGGCTAAAA
S45	GGCGAAGGCG	3-ATCTCTGG	GCCGATACTG	ACGCTGAGG-	AGCGAAAGC-	GTGGGG-AGC	GAACAGGATT	AGATACCCTG	GTAGTC	CC AC	CGCCGTAAA (C-GGTGGGCA	CTAGGTGTGG	G-CAACATTC	CACG-TTGT	C CGTGCCGCAC	G C-TAACGCA	T TAAGTGCCCC	GCCTGGGGAG	TA-CGGCCG	AAGGCTAAAA
S46 S47	GGCGAAGGCG (3-ATCTCTGG	GCCGATACTG	ACGCTGAGG-	AGCGAAAGC-	GTGGGGG-AGC	GAACAGGATT	AGATACCCTG	GTAGTC	C AC	CGCCGTAAA (-GGTGGGCA	CTAGGIGIGG	G-CAACATTC	CACG-TIGT	CGTGCCGCAG	G C-TAACGCA	T TAAGIGCCCC	GCCTGGGGGAG	TA-CGGCCGG	AAGGCTAAAA
S48	GGCGAAGGCG	3-ATCTCTGG	GCCATTACTG	ACGCTGAGG-	AGCGAAAGC-	GTGGGG-AGC	GAACAGGATT	AGATACCCTG	GTAGTC	CC AC	CGCCGTAAA (2-GTTGGGAA	CTAGGTGTTG	G-CGACATTC	CACG-TCGT	C GGTGCCGCAG	C-TAACGC	T TAAGTTCCCC	GCCTGGGGAG	TA-CGGCCG	AAGGCTAAAA
S49	GGCGAAGGCG	-ATCTCTGG	GCCATTACTG	ACGCTGAGG-	AGCGAAAGC-	GTGGGG-AGC	GAACAGGATT	AGATACCCTG	GTAGTC	C AC	CGCCGTAAA (C-GTTGGGAA	CTAGGTGTTG	G-CGACATTC	CACG-TCGT	C GGTGCCGCAG	C-TAACGCA	T TAAGTTCCCC	GCCTGGGGAG	TA-CGGCCG	AAGGCTAAAA
S50	GGCGAAGGCG (3-ATCTCTGG	GCCGATACTG	ACGCTGAGG-	AGCGAAAGC-	GTGGGG-AGC	GAACAGGATT	AGATACCCTG	GTAGTC	CC AC	CGCCGTAAA (C-GTTGGGAA	CTAGGTGTGG	G-CGACATTC	CACG-TCGT	C CGTGCCGCAC	G C-TAACGCA	T TAAGTTCCCC	GCCTGGGGAG	TA-CGGCCG0	: AAGGCTAAAA
S51	GGCGAAGGCG	3-ATCTCTGG	GCCGATACTG	ACGCTGAGG-	AGCGAAAGC-	GTGGGG-AGC	GAACAGGATT	AGATACCCTG	GTAGTC	CC AC	CGCCGTAAA (C-GGTGGGCA	CTAGGTGTGG	G-CAACATTC	CACG-TTGT	C CGTGCCGCAC	G C-TAACGCA	T TAAGTGCCCC	GCCTGGGGAG	TA-CGGCCG	AAGGCTAAAA
852	GGCGAAGGCG	3-ATCTCTGG	GCCGATACIG	ACGCTGAGG-	AGCGAAAGC-	GTGGGGG-AGC	GAACAGGATT	AGATACCCTG	GTAGTC	C AC	CCCCGTAAA (-GGTGGGCA	CTAGGTCTGG	G-CAACATTC	CACG-TIGT	CGTGCCGCAG	G C-TAACGCA	T TAAGIGCCCC	GCCTGGGGGAG	TA-CGGCCGG	2 AAGGCTAAAA
\$54	GGCGAAGGCG	3-ATCTCTGG	GCCGATACTG	ACGCTGAGG-	AGCGAAAGC-	GTGGGG-AGC	GAACAGGATT	AGATACCCTG	GTAGTC	CC AC	CGCCGTAAA (2-GTTGGGCA	CTAGGTGTGG	G-CGGCATTC	CACG-TCGT	CGTGCCGCAG	C-TAACGC	T TAAGTGCCCC	GCCTGGGGAG	TA-CGGCCG	AAGGCTAAAA
\$55	GGGGAAGGGG (GATCTTTGG	GCC-TTATTG	AC-CCGAGG-	AGTAAAAACA	GTGGGG-AGG	GGACCAGGTT	ATCTACCCCG	TTAATACTI	rc co	CCCTATAAA (CCGGTGTGTT	TTATGTTGTT	G-AGTTATTG	CGTGGTTGT	G GGGGGCACAT	CATCACGCT	T TAATTTCCCC	ACTTGGGGGA	TTTCGCCCG	ACGCCAAAAA
S56	GGCGAAGGCG (3-ATCTCTGG	GCCATTACTG	ACGCTGAGG-	AGCGAAAGC-	GTGGGG-AGC	GAACAGGATT	AGATACCCTG	GTAGTC	CC AC	CGCCGTAAA (C-GTTGGGAA	CTAGGTGTTG	G-CGACATTC	CACG-TCGT	C GGTGCCGCAG	G C-TAACGCA	T TAAGTTCCCC	GCCTGGGGAG	TA-CGGCCG	AAGGCTAAAA
S57	GGCGAAGGCG	3-GTCTCTGG	GCCGATACTG	ACGCTGAGG-	AGCGAAAGC-	GTGGGG-AGC	GAACAGGATT	AGATACCCTG	GTAGTC	CC AC	CGCTGTAAA (C-GTTGGGCG	CTAGGTGTGG	GCGACATC	CACG-TTGT	C CGTGCCGTAC	G C-TAACGCA	T TAAGCGCCCC	GCCTGGGGAG	TA-CGGCCG0	AAGGCTAAAA
558	GGCGAAGGCG (3-ATCTCTGG	GCCGATACTG	ACGCTGAGG-	AGCGAAAGC-	GIGGGG-AGC	GAACAGGATT	AGATACCCTG	GTAGTC	C AC	CCCCGTAAA (-GTTGGGAA	CIAGGIGIGG	G-CGACATTC	CACG-TCGT	CGTGCCGCAG	C-TAACGCA	T TAAGTTCCCC	GCCTGGGGAG	IN-CGGCCG	ARGGCTARAA
S60	GGCGAAGGCG (3-ATCTCTGG	GCCGATACTG	ACGCTGAGG-	AGCGAAAGC-	GTGGGG-AGC	GAACAGGATT	AGATACCCTG	GTAGTC	C AC	CGCCGTAAA (C-GGTGGGGCA	CTAGGTGTGG	G-CAACATTC	CACG-TTGT	C CGTGCCGCAG	G C-TAACGCA	T TAAGTGCCCC	GCCTGGGGGAG	TA-CGGCCG	AAGGCTAAAA
S61	GGCGAAGGCG	-ATCTCTGG	GCCATTACTG	ACGCTGAGG-	AGCGAAAGC-	GTGGGG-AGC	GAACAGGATT	AGATACCCTG	GTAGTC	CC AC	CGCCGTAAA	-GGTGGGAA	CTAGGTGTTG	G-CGACATTC	CACG-TCGT	C GGTGCCGCAG	C-TAACGCA	T TAAGTTCCCC	GCCTGGGGAG	TA-CGGCCG	AAGGCTAAAA
S62	GGCGAAGGCG	3-ATCTCTGG	GCCGATACTG	ACGCTGAGG-	AGCGAAAGC-	GTGGGG-AGC	GAACAGGATT	AGATACCCTG	GTAGTC	CC AC	CGCCGTAAA (C-GGTGGGAA	CTAGGTGTTG	G-CGACATTC	CACG-TCGT	C GGTGCCGCAG	G C-TAACGCA	T TAAGTTCCCC	GCCTGGGGAG	TA-CGGCCG	: AAGGCTAAAA
S63	GGCGAAGGCG	J-ATCTCTGG	GUCATTACTG	ACGCTGAGG-	AGCGAAAGC-	GIGGGG-AGC	GAACAGGATT	AGATACCCTG	GTAGTC	C AC	LGCCGTAAA (GGTGGGAA	CTAGGTGTTG	G-CGACATTC	CACG-TCGT	GGTGCCGCAG	C-TAACGCA	T TAAGTTCCCC	GUCTGGGGAG	TA-CGGCCG	AAGGCTAAAA
564	GGCGAAGGCG (3-ATCTCTGG	GCCGATACTC	ACGCTGAGG-	AGCGAAAGC-	GIGGGG-AGC	GAACAGGATT	AGATACCCTG	GTAGTC	C AC	CCCCGTAAA (-GGTGGGAA	CIAGGIGITG	G-CGACATTC	CACG-TCGT	C GGTGCCGCAG	C-TAACGCA	T TAAGTTCCCC	GCCTGGGGAG	IN-CGGCCG	ARGGCTARAA
S66	GGCGAAGGCG (3-ATCTCTGG	GCCGATACTG	ACGCTGAGG-	AGCGAAAGC-	GTGGGG-AGC	GAACAGGATT	AGATACCCTG	GTAGTC	TC AC	CGCCGTAAA (-GGTGGGCA	CTAGGTGTGG	G-CAACATTC	CACG-TTGT	C CGIGCCGCAG	C-TAACGCA	T TAAGTGCCCC	GCCTGGGGAG	TA-CGGCCG	' AAGGCTAAAA
S67	GGCGAAGGCG	-ATCTCTGG	GCCATTACTG	ACGCTGAGG-	AGCGAAAGC-	GTGGGG-AGC	GAACAGGATT	AGATACCCTG	GTAGTC	CC AC	CGCCGTAAA	-GTTGGGAA	CTAGGTGTTG	G-CGACATTC	CACG-TCGT	C GGTGCCGCAG	C-TAACGCA	T TAAGTTCCCC	GCCTGGGGAG	TA-CGGCCG	AAGGCTAAAA
S68	GGCGAAGGCG (G-ATCTCTGG	GCCATTACTG	ACGCTGAGG-	AGCGAAAGC-	GTGGGG-AGC	GAACAGGATT	AGATACCCTG	GTAGTC	CC AC	CGCCGTAAA (C-GTTGGGAA	CTAGGTGTTG	G-CGACATTC	CACG-TCGT	C GGTGCCGCAG	G C-TAACGCA	T TAAGTTCCCC	GCCTGGGGAG	TA-CGGCCG	2 AAGGCTAAAA
S69	GGCGAAGGCG	G-ATCTCTGG	GCCATTACTG	ACGCTGAGG-	AGCGAAAGC-	GTGGGG-AGC	GAACAGGATT	AGATACCCTG	GTAGTC	CC AC	CGCCGTAAA (C-GTTGGGAA	CTAGGTGTTG	G-CGACATTC	CACG-TCGT	C GGTGCCGCAG	G C-TAACGCA	T TAAGTTCCCC	GCCTGGGGAG	TA-CGGCCG	AAGGCTAAAA
370	GGCGAAGGCG (3-ATCTCTGG	GCCGATACTC	ACGCTGAGG-	AGCGAAAGC-	GIGGGG-AGC	GAACAGGATT	AGATACCCTG	GTAGTC	C AC	CGCCGTAAA (-GTTGGGAA	CIAGGIGITG	G-CGACATTC	CACG-TCGT	C GGTGCCGCAG	C-TAACGCA	T TAAGTTCCCC	GCCTGGGGAG	IN-CGGCCG	ARGGCTARAA
A01	GGCGAAGGCG	3-GTCTCTGG	GCCGATACTG	ACGCTGAGG-	AGCGAAAGC-	GTGGGG-AGC	GAACAGGATT	AGATACCCTG	GTAGTC	C AC	CGCTGTAAA (2-GTTGGGCG	CTAGGTGTGG	GCGACATC	CACG-TTGT	C CGTGCCGTAG	C-TAACGCA	T TAAGCGCCCC	GCCTGGGGAG	TA-CGGCCG	AAGGCTAAAA
A03	GGCGAAGGCG	G-GTCTCTGG	GCCGATACTG	ACGCTGAGG-	AGCGAAAGC-	GTGGGG-AGC	GAACAGGATT	AGATACCCTG	GTAGTC	CC AC	CGCCGTAAA (C-GTTGGGCG	CTAGGTGTGG	GGACTGTTTC	CACG-GTTC	C TGTGCCGTAG	G C-TAACGCA	T TAAGCGCCCC	GCCTGGGGAG	TA-CGGCCG	AAGGCTAAAA
A04	GGCGAAGGCG (G-GTCTCTGG	GCCGATACTG	ACGCTGAGG-	AGCGAAAGC-	GTGGGG-AGC	GAACAGGATT	AGATACCCTG	GTAGTC	CC AC	CGCTGTAAA (C-GTTGGGCG	CTAGGTGTGG	GG-GGCCTCT	CCGG-TTCC	C TGTGCCGCAG	G C-TAACGCA	T TAAGCGCCCC	GCCTGGGGAG	TA-CGGCCG	2 AAGGCTAAAA
A05	GGCGAAGGCG (G-GTCTCTGG	ACCGATACTG	ACGCTGAGG-	AGCGAAAGC-	GTGGGG-AGC	GAACAGGATT	AGATACCCTG	GTAGTC	C AC	CGCCGTAAA (2-GTTGGGCG	CTAGGTGTGG	GG-ATCTTTC	CACG-ATCT	C CGTGCCGCAC	G C-TAACGCA	T TAAGCGCCCC	GCCTGGGGAG	TA-CGGCCG	AAGGCTAAAA
A06	GGCGAAGGCG	G-TTCTCTGG	GCCTATCCTG	ACGCTGAGG-	AGCGAAAGC-	GTGGGG-AGC	GAACAGGATT	AGATACCCTG	GTAGTC	C AC	CGCTGTAAA (2-GTTGGGCG	CTAGGTGTGG	GG-TTCTTCC	ACGG-GTCC	C -GTGCCGTAG	G C-TAACGCA	T TAAGCGCCCC	GCCTGGGGAG	TA-CGGCCGG	AAGGCTAAAA
E01	GGCGAAGGCG	S-COCCCCTCC	ACGAAGACTC	ACGCTCACC-	TGCGAAAGC-	GTGGGGG-AGC	AAACAGGATT	AGATACCCTG	GTAGTC	C AC	CGCCGIAMA (-GATGTCCA	CIANGIGITA	GTGCCCTT	GAGGCCT	S GOTTOCCOM	C-TAACGCA	T TAAGTCGACTCC	GCCTGGGGGAG	TA-CGGCCCC	AAGGTTAAAA
P02	GGCGAAGGCG	A-CCACCTGG	ACTGATACTG	ACACTGAGG-	TGCGAAAGC-	GTGGGG-AGC	AAACAGGATT	AGATACCCTG	GTAGTC	CC AC	CGCCGTAAA (C-GATGTCAA	CTAGCCGTTG	GAATCCTT	GAGATTT	T AGTGGCGCAG	G C-TAACGCA	T TAAGTTGACC	GCCTGGGGGAG	TA-CGGCCG	AAGGTTAAAA
Clust	** ***** *	***		** * ***		****** **	** * **		** *	* *	* * ****		*	•				* *** **	* ****	* ** **	* ***

S01	CTCAAAGGAA	TTGACGGGGG	CCCGCACAAG	CGGCGGAGCA	TGTGGCTTAA	TTCGACGCAA	CGCGAAGAAC	CTTACCAAGG	CTTGACATAC	ACCGGAAAGC	ATCAGAGATG	GTGCCCCC	CTTGTGGTCG	GTGT-ACAGG	TGGTGCATGG	CTGTCGTCAG	CTCGTGTCGT	GAGATGTTGG	GTTAAGTCCC	GCAACGAGCG
S02	CTCAAAGGAA	TTGACGGGGG	CCCGCACAAG	CGGCGGAGCA	TGTGGCTTAA	TTCGACGCAA	CGCGAAGAAC	CTTACCAAGG	CTTGACATAC	ACCGGAAAAC	CCTGGAGACA	GGGTCCCC	CTTGTGGTCG	GTGT-ACAGG	TGGTGCATGG	CTGTCGTCAG	CTCGTGTCGT	GAGATGTTGG	GTTAAGTCCC	GCAACGAGCG
S03	CTCAAAGGAA	TTGACGGGGG	CCCGCACAAG	CAGCGGAGCA	TGTGGCTTAA	TTCGACGCAA	CGCGAAGAAC	CTTACCAAGG	CTTGACATAC	ACCGGAAAGC	ATCAGAGATG	GTGCCCCC	CTTGTGGTCG	GTGT-ACAGG	TGGTGCATGG	CTGTCGTCAG	CTCGTGTCGT	GAGATGTTGG	GTTAAGTCCC	GCAACGAGCG
S04	CTCAAAGGAA	TTGACGGGGG	CCCGCACAAG	CAGCGGAGCA	TGTGGCTTAA	TTCGACGCAA	CGCGAAGAAC	CTTACCAAGG	CTTGACATAT	ACCGGAAAGC	ATCAGAGATG	GTGCCCCC	CTTGTGGTCG	GTAT-ACAGG	TGGTGCATGG	CTGTCGTCAG	CTCGTGTCGT	GAGATGTTGG	GTTAAGTCCC	GCAACGAGCG
S05	CTCAAAGGAA	TTGACGGGGG	CCCGCACAAG	CAGCGGAGCA	TGTGGCTTAA	TTCGACGCAA	CGCGAAGAAC	CTTACCAAGG	CTTGACATAT	ACCGGAAAGC	ATCAGAGATG	GTGCCCCC	CTTGTGGTCG	GTAT-ACAGG	TGGTGCATGG	CTGTCGTCAG	CTCGTGTCGT	GAGATGTTGG	GTTAAGTCCC	GCAACGAGCG
S06	CTCAAAGGAA	TTGACGGGGG	CCCGCACAAG	CGGCGGAGCA	TGTGGCTTAA	TTCGACGCAA	CGCGAAGAAC	CTTACCAAGG	CTTGACATAC	ACCGGAAAGC	CGTAGAGATA	CGGCCCCC	CTTGTGGTCG	GTGT-ACAGG	TGGTGCATGG	CTGTCGTCAG	CTCGTGTCGT	GAGATGTTGG	GTTAAGTCCC	GCAACGAGCG
507	CTCAAAGGAA	TTGACGGGGGG	CCCGCACAAG	CAGCGGAGCA	TCTCCCTTAA	TTCGACGCAA	CGCGAAGAAC	CTTACCAAGG	CITGACATAC	ACCEGGARAGE	CCCAGAGATA	GTCGCCCC	CITGIGGICG	GIGI-ACAGG	TOGTOCATOG	CIGICGICAG	CTOGTGTCGT	GAGATGTTCC	GTTAAGTCCC	GCAACGAGCG
S09	CTCAAAGGAA	TTGACGGGGG	CCCGCACAAG	CAGCGGAGCA	TGTGGCTTAA	TTCGACGCAA	CGCGAAGAAC	CTTACCAAGG	CTTGACATAC	ACCGGAAAGC	ATCAGAGATG	GTGCCCCC	CTTGTGGTCG	GTGT-ACAGG	TGGTGCATGG	CTGTCGTCAG	CTCGTGTCGT	GAGATGTTGG	GTTAAGTCCC	GCAACGAGCG
s10	CTCAAAGGAA	TTGACGGGGG	CCCGCACAAG	CGGCGGAGCA	TGTGGCTTAA	TTCGACGCAA	CGCGAAGAAC	CTTACCAAGG	CTTGACATAC	ACCGGAAAGC	ATCAGAGATG	GTGCCCCC	CTTGTGGTCG	GTGT-ACAGG	TGGTGCATGG	CTGTCGTCAG	CTCGTGTCGT	GAGATGTTGG	GTTAAGTCCC	GCAACGAGCG
S11	CTCAAAGGAA	TTGACGGGGG	CCCGCACAAG	CAGCGGAGCA	TGTGGCTTAA	TTCGACGCAA	CGCGAAGAAC	CTTACCAAGG	CTTGACATAC	ACCGGAAAGC	ATCAGAGATG	GTGCCCCC	CTTGTGGTCG	GTGT-ACAGG	TGGTGCATGG	CTGTCGTCAG	CTCGTGTCGT	GAGATGTTGG	GTTAAGTCCC	GCAACGAGCG
S12	CTCAAAGGAA	TTGACGGGGG	CCCGCACAAG	AGGCGGAGCA	TGTGGCTTAA	TTCGACGCAA	CGCGAAGAAC	CTTACCAAGG	CTTGACATAC	ACCGGAAANN	NCNNGAGACN	GGNNCCCC	CTTGTGGTCG	GTGT-ACAGG	TGGTGCATGG	CTGTCGTCAG	CTCGTGTCGT	GAGATGTTGG	GTTAAGTCCC	GCAACGAGCG
S13	CTCAAAGGAA	TTGACGGGGG	CCCGCACAAG	CAGCGGAGCA	TGTGGCTTAA	TTCGACGCAA	CGCGAAGAAC	CTTACCAAGG	CTTGACATAC	ACCGGAAAGC	ATTAGAGATA	GTGCCCCC	CTTGTGGTCG	GTGT-ACAGG	TGGTGCATGG	CTGTCGTCAG	CTCGTGTCGT	GAGATGTTGG	GTTAAGTCCC	GCAACGAGCG
S14	CTCAAAGGAA	TTGACGGGGG	CCCGCACAAG	CAGCGGAGCA	TGTGGCTTAA	TTCGACGCAA	CGCGAAGAAC	CTTACCAAGG	CTTGACATCG	CCCGGAAAGC	ATCAGAGATG	GTGCCCCC	CTTGTGGTCG	GGTG-ACAGG	TGGTGCATGG	CTGTCGTCAG	CTCGTGTCGT	GAGATGTTGG	GTTAAGTCCC	GCAACGAGCG
S15 e16	CTCAAAGGAA	TIGACGGGGGG	CCCGCACAAG	CAGCGGAGCA	TGTGGCTTAA	TTCGACGCAA	CGCGAAGAAC	CTTACCAAGG	CTTGACATAT	ACCGGAAAGC	ATTAGAGATA	GIGCCCCC	CTTGTGGTGG	GTAT-ACAGG	TGGTGCATGG	CTGTCGTCAG	CTCGTGTCGT	GAGATGTTGG	GITAAGTCCC	GCAACGAGCG
S17	CTCAAAGGAA	TTGACGGGGGG	CCCGCACAAG	CGGCGGAGCA	TGTGGCTTAA	TTCGACGCAA	CGCGAAGAAC	CTTACCAAGG	CTTGACATAC	ACCGGAAAGC	CGTAGAGATA	CGGCCCCC	CTTGTGGTCG	GTGT-ACAGG	TGGTGCATGG	CTGTCGTCAG	CTOGTGTOGT	GAGATGTTGG	GTTAAGTCCC	GCAACGAGCG
S18	CTCAAAGGAA	TTGACGGGGG	CCCGCACAAG	CAGCGGAGCA	TGTGGCTTAA	TTCGACGCAA	CGCGAAGAAC	CTTACCAAGG	CTTGACATAT	ACCGGAAAGC	ATCAGAGATG	GTGCCCCC	CTTGTGGTCG	GTAT-ACAGG	TGGTGCATGG	CTGTCGTCAG	CTCGTGTCGT	GAGATGTTGG	GTTAAGTCCC	GCAACGAGCG
S19	CTCAAAGGAA	TTGACGGGGG	CCCGCACAAG	CGGCGGAGCA	TGTGGCTTAA	TTCGACGCAA	CGCGAAGAAC	CTTACCAAGG	CTTGACATAC	ACCGGAAACG	TCTGGAGACA	GGCGCCCC	CTTGTGGTCG	GTGT-ACAGG	TGGTGCATGG	CTGTCGTCAG	CTCGTGTCGT	GAGATGTTGG	GTTAAGTCCC	GCAACGAGCG
S20	CTCAAAGGAA	TTGACGGGGG	CCCGCACAAG	CAGCGGAGCA	TGTGGCTTAA	TTCGACGCAA	CGCGAAGAAC	CTTACCAAGG	CTTGACATAT	ACCGGAAAGC	ATCAGAGATG	GTGCCCCC	CTTGTGGTCG	GTAT-ACAGG	TGGTGCATGG	CTGTCGTCAG	CTCGTGTCGT	GAGATGTTGG	GTTAAGTCCC	GCAACGAGCG
S21	CTCAAAGGAA	TTGACGGGGG	CCCGCACAAG	CAGCGGAGCA	TGTGGCTTAA	TTCGACGCAA	CGCGAAGAAC	CTTACCAAGG	CTTGACATAC	ACCGGAAACG	GCCAGAGATG	GTCGCCCC	CTTGTGGTCG	GTGT-ACAGG	TGGTGCATGG	CTGTCGTCAG	CTCGTGTCGT	GAGATGTTGG	GTTAAGTCCC	GCAACGAGCG
S22	CTCAAAGGAA	TTGACGGGGG	CCCGCACAAG	CAGCGGAGCA	TGTGGCTTAA	TTCGACGCAA	CGCGAAGAAC	CTTACCAAGG	CTTGACATAT	ACCGGAAAGC	ATTAGAGATA	GTGCCCCC	CTTGTGGTCG	GTAT-ACAGG	TGGTGCATGG	CTGTCGTCAG	CTCGTGTCGT	GAGATGTTGG	GTTAAGTCCC	GCAACGAGCG
S23	CTCAAAGGAA	TTGACGGGGG	CCCGCACAAG	CAGCGGAGCA	TGTGGCTTAA	TTCGACGCAA	CGCGAAGAAC	CTTACCAAGG	CTTGACATAC	ACCGGAAAGC	ACTGGAGACA	GTGCCCCC	CTTGTGGTCG	GTGT-ACAGG	TGGTGCATGG	CTGTCGTCAG	CTCGTGTCGT	GAGATGTTGG	GTTAAGTCCC	GCAACGAGCG
524	CICANAGGAA	TTCACGGGGGG	CCCGCACAAG	CGGCGGAGCA	TCTCCCTTAA	TTCGACGCAA	CGCGAAGAAC	CTTACCAAGG	CIIGACAIAC	ACCGGAMMAC	TCTCCACACA	GGGICCCC	CITGIGGICG	GIGI-ACAGG	TCCTCCATCC	CIGICGICAG	CICGIGICGI	CACATCTTCC	GITAAGICCC	CCAACGAGCG
S26	CTCAAAGGAA	TTGACGGGGGG	CCCGCACAAG	CGGCGGAGCA	TGTGGCTTAA	TTCGACGCAA	CGCGAAGAAC	CTTACCAAGG	CTTGACATAC	ACCEGANACE	GCCAGAGATG	GTCGCCCC	CTTGGTCG	GTGT-ACAGG	TGGTGCATGG	CTGTCATCAG	CTCGTGCT	GAGATGTTGG	GTTAAGTCCC	GCAACGAGCG
S27	CTCAAAGGAA	TTGACGGGGG	CCCGCACAAG	CAGCGGAGCA	TGTGGCTTAA	TTCGACGCAA	CGCGAAGAAC	CTTACCAAGG	CTTGACATAT	ACCGGAAAGC	ATCAGAGATG	GTGCCCCC	CTTGTGGTCG	GTAT-ACAGG	TGGTGCATGG	CTGTCGTCAG	CTCGTGTCGT	GAGATGTTGG	GTTAAGTCCC	GCAACGAGCG
S28	CTCAAAGGAA	TTGACGGGGG	CCCGCACAAG	CAGCGGAGCA	TGTGGCTTAA	TTCGACGCAA	CGCGAAGAAC	CTTACCAAGG	CTTGACATAT	ACCGGAAAGC	ATTAGAGATA	GTGCCCCC	CTTGTGGTCG	GTAT-ACAGG	TGGTGCATGG	CTGTCGTCAG	CTCGTGTCGT	GAGATGTTGG	GTTAAGTCCC	GCAACGAGCG
S29	CTCAAAGGAA	TTGACGGGGG	CCCGCACAAG	CAGCGGAGCA	TGTGGCTTAA	TTCGACGCAA	CGCGAAGAAC	CTTACCAAGG	CTTGACATAT	ACCGGAAAGC	ATCAGAGATG	GTGCCCCC	CTTGTGGTCG	GTAT-ACAGG	TGGTGCATGG	CTGTCGTCAG	CTCGTGTCGT	GAGATGTTGG	GTTAAGTCCC	GCAACGAGCG
S30	CTCAAAGGAA	TTGACGGGGG	CCCGCACAAG	CGGCGGAGCA	TGTGGATTAA	TTCGATGCAA	CGCGAAGAAC	CTTACCTGGG	CTTGACATAC	ACCGGAAACC	CCTAGAGATG	GGGGCCCC	CTTGTGGTCG	GTGT-ACAGG	TGGTGCATGG	CTGTCGTCAG	CTCGTGTCGT	GAGATGTTGG	GTTAAGTCCC	GCAACGAGCG
S31	CTCAAAGGAA	TTGACGGGGG	CCCGCACAAG	CGGCGGAGCA	TGTGGCTTAA	TTCGACGCAA	CGCGAAGAAC	CTTACCAAGG	CTTGACATAC	ACCGGAAACG	TCTGGAGACA	GGCGCCCC	CTTGTGGTCG	GTGT-ACAGG	TGGTGCATGG	CTGTCGTCAG	CTCGTGTCGT	GAGATGTTGG	GTTAAGTCCC	GCAACGAGCG
532	CTCAAAGGAA	TIGACGGGGGG	CCCGCACAAG	CAGCGGAGCA	TGTGGCTTAA	TTCGACGCAA	CGCGAAGAAC	CTTACCAAGG	CTTGACATAC	ACCEGGAAAGC	ATTAGAGATA	GIGCCCCC	CTTGTGGTGG	GIGT-ACAGG	TGGTGCATGG	CTGTCGTCAG	CTCGTGTCGT	GAGATGTTGG	GITAAGTCCC	GCAACGAGCG
\$34	CTCAAAGGAA	TTGACGGGGGG	CCCGCACAAG	CAGCGGAGCA	TCTCCCTTAA	TTCGACGCAA	CGCGAAGAAC	CTTACCAAGG	CTTGACATAC	ACCEGRANARC	CCCAGAGATG	GTCGCCCC	CTTGTGGTCG	GTGT-ACAGG	TOGTOCATOG	CTGTCGTCAG	CTOGTGTCGT	GAGATGTTGG	GTTAAGTCCC	GCAACGAGCG
\$35	CTCAAAGGAA	TTGACGGGGGG	CCCGCACAAG	CAGCGGAGCA	TGTGGCTTAA	TTCGACGCAA	CGCGAAGAAC	CTTACCAAGG	CTTGACATAC	ACCGGAAAGC	ATTAGAGATA	GTGCCCCC	CTTGTGGTCG	GTGT-ACAGG	TGGTGCATGG	CTGTCGTCAG	CTOGTGTOGT	GAGATGTTGG	GTTAAGTCCC	GCAACGAGCG
\$36	CTCAAAGGAA	TTGACGGGGG	CCCGCACAAG	CGGCGGAGCA	TGTGGCTTAA	TTCGACGCAA	CGCGAAGAAC	CTTACCAAGG	CTTGACATAC	ACCGGAAAGC	ATCAGAGATG	GTGCCCCC	CTTGTGGTCG	GTGT-ACAGG	TGGTGCATGG	CTGTCGTCAG	CTCGTGTCGT	GAGATGTTGG	GTTAAGTCCC	GCAACGAGCG
S37	CTCAAAGGAA	TTGACGGGGG	CCCGCACAAG	CAGCGGAGCA	TGTGGCTTAA	TTCGACGCAA	CGCGAAGAAC	CTTACCAAGG	CTTGACATAC	ACCGGAAACG	GCCAGAGATG	GTCGCCCC	CTTGTGGTCG	GTGT-ACAGG	TGGTGCATGG	CTGTCGTCAG	CTCGTGTCGT	GAGATGTTGG	GTTAAGTCCC	GCAACGAGCG
S38	CTCAAAGGAA	TTGACGGGGG	CCCGCACAAG	CAGCGGAGCA	TGTGGCTTAA	TTCGACGCAA	CGCGAAGAAC	CTTACCAAGG	CTTGACATAC	ACCGGAAAGC	GCTAGAGATA	GTGCCCCC	CTTGTGGTCG	GTGT-ACAGG	TGGTGCATGG	CTGTCGTCAG	CTCGTGTCGT	GAGATGTTGG	GTTAAGTCCC	GCAACGAGCG
S39	CTCAAAGGAA	TTGACGGGGG	CCCGCACAAG	CGGCGGAGCA	TGTGGCTTAA	TTCGACGCAA	CGCGAAGAAC	CTTACCAAGG	CTTGACATAC	ACCGGAAAGC	CGTAGAGATA	CGGCCCCC	CTTGTGGTCG	GTGT-ACAGG	TGGTGCATGG	CTGTCGTCAG	CTCGTGTCGT	GAGATGTTGG	GTTAAGTCCC	GCAACGAGCG
S40	CTCAAAGGAA	TTGACGGGGG	CCCGCACAAG	CAGCGGAGCA	TGTGGCTTAA	TTCGACGCAA	CGCGAAGAAC	CTTACCAAGG	CTTGACATAC	ACCGGAAAGC	ATTAGAGATA	GTGCCCCC	CTTGTGGTCG	GTGT-ACAGG	TGGTGCATGG	CTGTCGTCAG	CTCGTGTCGT	GAGATGTTGG	GTTAAGTCCC	GCAACGAGCG
541	CTCAAAGGAA	TTGACGGGGGG	CCCGCACAAG	CGGCGGAGCA	TCTCCCTTAA	TTCGACGCAA	CGCGAAGAAC	CTTACCAAGG	CITGACATAC	ACCEGGAMAGE	CCTCGAGACA	GGGTCCCC	CITGIGGICG	GTGT-ACAGG	TOGTOCATOG	CIGICGICAG	CTOGTGTCGT	GAGATGTTCC	GTTAAGTCCC	GCAACGAGCG
s43	CTCAAAGGAA	TTGACGGGGG	CCCGCACAAG	CAGCGGAGCA	TGTGGCTTAA	TTCGACGCAA	CGCGAAGAAC	CTTACCAAGG	CTTGACATAC	ACCGGAAAGC	ATTAGAGATA	GTGCCCCC	CTTGTGGTCG	GTGT-ACAGG	TGGTGCATGG	CTGTCGTCAG	CTCGTGTCGT	GAGATGTTGG	GTTAAGTCCC	GCAACGAGCG
S44	CTCAAAGGAA	TTGACGGGGG	CCCGCACAAG	CAGCGGAGCA	TGTGGCTTAA	TTCGACGCAA	CGCGAAGAAC	CTTACCAAGG	CTTGACATAC	ACCGGAAAAC	CCTGGAGACA	GGGTCCCC	CTTGTGGTCG	GTGT-ACAGG	TGGTGCATGG	CTGTCGTCAG	CTCGTGTCGT	GAGATGTTGG	GTTAAGTCCC	GCAACGAGCG
S45	CTCAAAGGAA	TTGACGGGGG	CCCGCACAAG	CGGCGGAGCA	TGTGGCTTAA	TTCGACGCAA	CGCGAAGAAC	CTTACCAAGG	CTTGACATAC	ACCGGAAAAC	CCTGGAGACA	GGGTCCCC	CTTGTGGTCG	GTGT-ACAGG	TGGTGCATGG	CTGTCGTCAG	CTCGTGTCGT	GAGATGTTGG	GTTAAGTCCC	GCAACGAGCG
S46	CTCAAAGGAA	TTGACGGGGG	CCCGCACAAG	CGGCGGAGCA	TGTGGCTTAA	TTCGACGCAA	CGCGAAGAAC	CTTACCAAGG	CTTGACATAC	ACCGGAAACG	TCCAGAGATG	GGCGCCCC	CTTGTGGTCG	GTGT-ACAGG	TGGTGCATGG	CTGTCGTCAG	CTCGTGTCGT	GAGATGTTGG	GTTAAGTCCC	GCAACGAGCG
S47	CTCAAAGGAA	TTGACGGGGG	CCCGCACAAG	CAGCGGAGCA	TGTGGCTTAA	TTCGACGCAA	CGCGAAGAAC	CTTACCAAGG	CTTGACATAC	ACCGGAAAGC	ATCAGAGATG	GTGCCCCC	CTTGTGGTCG	GTGT-ACAGG	TGGTGCATGG	CTGTCGTCAG	CTCGTGTCGT	GAGATGTTGG	GTTAGTCC	GCA-CGAGCG
548	CTCAAAGGAA	TIGACGGGGGG	CCCGCACAAG	CAGCGGAGCA	TGTGGCTTAA	TTCGACGCAA	CGCGAAGAAC	CTTACCAAGG	CTTGACATAT	ACCGGAAAGC	ATCAGAGATG	GTGCCCCC	CITIGIGGICG	GTAT-ACAGG	TGGTGCATGG	CTGTCGTCAG	CTCGTGTCGT	GAGATGTTGG	GTTAAGTCCC	GCAACGAGCG
549	CTCAAAGGAA	TTGACGGGGGG	CCCGCACAAG	CAGCGGAGCA	TCTCCCTTAA	TTCGACGCAA	CGCGAAGAAC	CTTACCAAGG	CITGACATAC	ACCCCCAAAAGC	TCCAGAGATG	GIGCCCCC	CITGIGGICG	GTGT-ACAGG	TOGTOCATOG	CIGICGICAG	CTOGTGTCGT	GAGATGTTCC	GTTAAGTCCC	GCAACGAGCG
S51	CTCAAAGGAA	TTGACGGGGG	CCCGCACAAG	CGGCGGAGCA	TGTGGCTTAA	TTCGACGCAA	CGCGAAGAAC	CTTACCAAGG	CTTGACATAC	ACCGGAAACG	TCCAGAGATG	GGCGCCCC	CTTGTGGTCG	GTGT-ACAGG	TGGTGCATGG	CTGTCGTCAG	CTCGTGTCGT	GAGATGTTGG	GTTAAGTCCC	GCAACGAGCG
S52	CTCAAAGGAA	TTGACGGGGG	CCCGCACAAG	CGGCGGAGCA	TGTGGCTTAA	TTCGACGCAA	CGCGAAGAAC	CTTACCAAGG	CTTGACATAC	ACCGGAAAAC	CCTGGAGACA	GGGTCCCC	CTTGTGGTCG	GTGT-ACAGG	TGGTGCATGG	CTGTCGTCAG	CTCGTGTCGT	GAGATGTTGG	GTTAAGTCCC	GCAACGAGCG
S53	CTCAAAGGAA	TTGACGGGGG	CCCGCACAAG	CAGCGGAGCA	TGTGGCTTAA	TTCGACGCAA	CGCGAAGAAC	CTTACCAAGG	CTTGACATAC	ACCGGAAACG	TCTGGAGACA	GGCGCCCC	CTTGTGGTCG	GTGT-ACAGG	TGGTGCATGG	CTGTCGTCAG	CTCGTGTCGT	GAGATGTTGG	GTTAAGTCCC	GCAACGAGCG
S54	CTCAAAGGAA	TTGACGGGGG	CCCGCACAAG	CGGCGGAGCA	TGTGGCTTAA	TTCGACGCAA	CGCGAAGAAC	CTTACCAAGG	CTTGACATAC	ACCGGAAAGC	CGTAGAGATA	CGGCCCCC	CTTGTGGTCG	GTGT-ACAGG	TGGTGCATGG	CTGTCGTCAG	CTCGTGTCGT	GAGATGTTGG	GTTAAGTCCC	GCAACGAGCG
S55	CTCAAGGGAA	TTGACGGGGG	CCCGCACAAG	CGGCGGAGCA	TGTGGCTTAA	TTCGACGCAA	CGCGAAGAAC	CTTACCAAGG	CTTGACATAT	ACCGGAAAGC	ATTAGAGATA	GTGCCCCC	CTTGTGGTCG	GTAT-ACAGG	TGGTGCATGG	CTGTCGTCAG	CTCGTGTCGT	GAGATGTTGG	GTTAAGTCCC	GCAACGAGCG
850	CTCANAGGAN	TTCLCCCCCC	CCCGCACAAG	CGGCGGAGCA	TOTOCATTAN	TTCCATCCAA	CCCCAACAAC	CTIACCARGG	CTTCACATAC	CCCLCLCLCLC	CCTACACATA	GIGCCCC	CTTOTOCTO	GINI-ACAGG	TOCTOCATOO	CTCTCCTCAC	CICGIGICGI	CACATCTTCC	GTTANGICCC	CCARCOAGCG
S58	CTCAAAGGAA	TTGACGGGGGG	CCCGCACAAG	CAGCGGAGCA	TGTGGCTTAA	TTCGACGCAA	CGCGAAGAAC	CTTACCAAGG	CTTGACATAC	ACCEGAAACE	TCTGGAGACA	GGCGCCCCC	CTTGTGGTCG	GTGT-ACAGG	TGGTGCATGG	CTGTCGTCAG	CTOGTGTOGT	GAGATGTTGG	GTTAAGTCCC	GCAACGAGCG
s59	CTCAAAGGAA	TTGACGGGGG	CCCGCACAAG	CAGCGGAGCA	TGTGGCTTAA	TTCGACGCAA	CGCGAAGAAC	CTTACCAAGG	CTTGACATAC	ACCGGAAAGC	ATTAGAGATA	GTGCCCCC	CTTGTGGTCG	GTGT-ACAGG	TGGTGCATGG	CTGTCGTCAG	CTCGTGTCGT	GAGATGTTGG	GTTAAGTCCC	GCAACGAGCG
S60	CTCAAAGGAA	TTGACGGGGG	CCCGCACAAG	CGGCGGAGCA	TGTGGCTTAA	TTCGACGCAA	CGCGAAGAAC	CTTACCAAGG	CTTGACATAC	ACCGGAAAGC	ATTAGAGATA	GTGCCCCC	CTTGTGGTCG	GTGT-ACAGG	TGGTGCATGG	CTGTCGTCAG	CTCGTGTCGT	GAGATGTTGG	GTTAAGTCCC	GCAACGAGCG
S61	CTCAAAGGAA	TTGACGGGGG	CCCGCACAAG	CAGCGGAGCA	TGTGGCTTAA	TTCGACGCAA	CGCGAAGAAC	CTTACCAAGG	CTTGACATAC	ACCGGAAACG	GCCAGAGATG	GTCGCCCC	CTTGTGGTCG	GTGT-ACAGG	TGGTGCATGG	CTGTCGTCAG	CTCGTGTCGT	GAGATGTTGG	GTTAAGTCCC	GCAACGAGCG
S62	CTCAAAGGAA	TTGACGGGGG	CCCGCACAAG	CAGCGGAGCA	TGTGGCTTAA	TTCGACGCAA	CGCGAAGAAC	CTTACCAAGG	CTTGACATAC	ACCGGAAACG	GCCAGAGATG	GTCGCCCC	CTTGTGGTCG	GTGT-ACAGG	TGGTGCATGG	CTGTCGTCAG	CTCGTGTCGT	GAGATGTTGG	GTTAAGTCCC	GCAACGAGCG
563	CTCAAAGGAA	TIGACGGGGGG	CCCGCACAAG	CAGCGGAGCA	TGTGGCTTAA	TTCGACGCAA	CGCGAAGAAC	CTTACCAAGG	CTTGACATAC	GCCGGGAAAAC	CCTGGAGACA	GGGTCCCC	CTTGTGGTGG	GIGT-ACAGG	TGGTGCATGG	CTGTCGTCAG	CTCGTGTCGT	GAGATGTTGG	GITAAGTCCC	GCAACGAGCG
S65	CTCAAAGGAA	TTGACGGGGGG	CCCGCACAAG	CAGCGGAGCA	TGTGGCTTAA	TTCGACGCAA	CGCGAAGAAC	CTTACCAAGG	CTTGACATAC	ACCGGAAAGC	ATCAGAGATG	TTGCCCCC	CTTGTGGTCG	GTGT-ACAGG	TGGTGCATGG	CTGTCGTCAG	CTOGTGTOGT	GAGATGTTGG	GTTAAGTCCC	GCAACGAGCG
S66	CTCAAAGGAA	TTGACGGGGG	CCCGCACAAG	CGGCGGAGCA	TGTGGCTTAA	TTCGACGCAA	CGCGAAGAAC	CTTACCAAGG	CTTGACATAC	ACCGGAAAGC	ATCAGAGATG	GTGCCCCC	CTTGTGGTCG	GTGT-ACAGG	TGGTGCATGG	CTGTCGTCAG	CTCGTGTCGT	GAGATGTTGG	GTTAAGTCCC	GCAACGAGCG
S67	CTCAAAGGAA	TTGACGGGGG	CCCGCACAAG	CAGCGGAGCA	TGTGGCTTAA	TTCGACGCAA	CGCGAAGAAC	CTTACCAAGG	CTTGACATAT	ACCGGAAAGC	ATCAGAGATG	GTGCCCCC	CTTGTGGTCG	GTAT-ACAGG	TGGTGCATGG	CTGTCGTCAG	CTCGTGTCGT	GAGATGTTGG	GTTAAGTCCC	GCAACGAGCG
S68	CTCAAAGGAA	TTGACGGGGG	CCCGCACAAG	CAGCGGAGCA	TGTGGCTTAA	TTCGACGCAA	CGCGAAGAAC	CTTACCAAGG	TTTGAGATAT	ACCGGAAAGC	ATCAGAGATG	GTGCCCCC	CTTGTGGTCG	GTAT-ACAGG	TGGTGCATGG	CTGTCGTCAG	CTCGTGTCGT	GAGATGTTGG	GTTAAGTCCC	GCAACGAGCG
S69	CTCAAAGGAA	TTGACGGGGG	CCCGCACAAG	CAGCGGAGCA	TGTGGCTTAA	TTCGACGCAA	CGCGAAGAAC	CTTACCAAGG	CTTGACATAT	ACCGGAAAGC	ATCAGAGATG	GTGCCCCC	CTTGTGGTCG	GTAT-ACAGG	TGGTGCATGG	CTGTCGTCAG	CTCGTGTCGT	GAGATGTTGG	GTTAAGTCCC	GCAACGAGCG
S70	CTCAAAGGAA	TTGACGGGGG	CCCGCACAAG	CAGCGGAGCA	TGTGGCTTAA	TTCGACGCAA	CGCGAAGAAC	CTTACCAAGG	CTTGACATAT	ACCGGAAACG	GCCAGAGATG	GTCGCCCC	CTTGTGGTCG	GTAT-ACAGG	TGGTGCATGG	TTGTCGTCAG	CTCGTGTCGT	GAGATGTTGG	GTTAAGTCCC	GCAACGAGCG
A02	CICAAAGGAA	TTGACGGGGG	CCCGCACAAG	CGGCGGGAGCA	TGTGGATTAA	TTCGATGCAA	CGCGAAGAAC	CITACCIGGG	CITGACATGC	GCCAGACATC	CICAGAGATG	GGGCTTCC	CTIGIGGTTG	GIGT-ACAGG	TOGTGCATGG	CIGICGICAG	CICGIGICGT	GAGATGTTCC	GITAAGTCCC	GCAACGAGCG
A03	CTCAAAGCAA	TTGACGGGGGG	CCCGCACAAG	CGGCGGAGCA	TGTGGATTAA	TTCGATGCAA	CGCGAAGAAC	CTTACCTGGG	TTTGACATCC	ACTAGACTCC	CTCAGAGATG	GGGTTTCC	CTTGTGGTTG	GTGT-ACAGG	TGGTGCATCC	CTGTCGTCAG	CTCGTGTCGT	GAGATGTTCC	GTTAAGTCCC	GCAACGAGCG
A04	CTCAAAGGAA	TTGACGGGGG	CCCGCACAAG	CGGCGGAGCA	TGCGGATTAA	TTCGATGCAA	CGCGAAGAAC	CTTACCTGGG	TTTGACATCG	CCGGAAATCC	TCCAGAGATG	GGGGGTCC	TTCGGGGCCG	G-TG-ACAGG	TGGTGCATGG	CTGTCGTCAG	CTCGTGTCGT	GAGATGTTGG	GTTAAGTCCC	GCAACGAGCG
A05	CTCAAAGGAA	TTGACGGGGG	CCCGCACAAG	CGGCGGAGCA	TGTGGCTTAA	TTCGACGCAA	CGCGAAGAAC	CTTACCAAGG	CTTGACATAT	ACCGAAAACT	GGCAGAGATG	TCAGGTCC	-GCAAGGGCG	GTAT-ACAGG	TGGTGCATGG	TTGTCGTCAG	CTCGTGTCGT	GAGATGTTGG	GTTAAGTCCC	GCAACGAGCG
A06	CTCAAAGGAA	TTGACGGGGG	CCCGCACAAG	CGGCGGAGCA	TGTTGCTTAA	TTCGACGCAA	CGCGAAGAAC	CTTACCAAGG	TTTGACATCA	CCCGGATCGC	TCCAGAGATG	GGGTTTCCC-	TTCGGGGCTG	GGTG-ACAGG	TGGTGCATGG	CTGTCGTCAG	CTCGTGTCGT	GAGATGTTGG	GTTAAGTCCC	GCAACGAGCG
B03	CTCAAAGAAT	TAGACGG	-CCGCACAAG	CGGTGGAGCA	TGTGGTTTAA	TTCGAAGCAA	CGCAGAAC	CTTACCAGGT	CTT-ACATCC	TCTGACAATC	-CTAGAGATA	GGACGTCCCC	TTCGGGGGGCA	GAGTGACAGG	TGGTGCATGG	TTGTCGTCAG	CTCGTGTCGT	GAGATGTTGG	GTTAAGTCCC	GCAACGAGCG
E01	CTCAAATGAA	TTGACGGGGG	CCCGCACAAG	CGGTGGAGCA	TGTGGTTTAA	TTCGATGCAA	CGCGAAGAAC	CTTACCTGGT	CTTGACATCC	AC-AGAACTT	TCCAGAGATG	GATTGGTGCC	TTCGGGAACT	GTGAGACAGG	TGCTGCATGG	CTGTCGTCAG	CTCGTGTTGT	GAAATGTTGG	GTTAAGTCCC	GCAACGAGCG
Clust	***** *	* *****	*******	* ******	1G1GG111AA	***** ****	*** *****	****** *	** * **	NG-NGAACTT	****	GATIGGIGCC	*	CIGACACAGG	** ******	**** ****	****** *	** ******	**** **	* * ******

					 40 10								20 11	
S01	CAACCCTTGT	C-CCGTGTTG	CCAGCAGGCC	CTTGTG	GTGCTGGGGA	CTCACGGGAG	ACCGCCGGGG	TC-AACTCGG	A-GGAAGGTG	GGGACGACGT	CAAGTCATCA	TGCCCCTTAT	GTCTTGGGCT	GCACACGT
S02	CAACCCTTGT	T-CTGTGTTG	CCAGCACGTC	CTTTCG-GGG	ATGGTGGGGA	CTCACAGGAG	ACTGCCGGGG	TC-AACTCGG	A-GGAAGGTG	GGGACGACGT	CAAGTCATCA	TGCCCCTTAT	GTCTTGGGCT	GCACACGT
S03	CAACCCTTGT	T-CTGTGTTG	CCAGCATGCC	CTTCGGG	GTGATGGGGA	CTCACAGAAG	ACCGCCGGGG	TC-AACTCGG	A-GGAAGGTG	GGGACGACGT	CAAGTCATCA	TGCCCCTTAT	GTCTTGGGCT	GCACACGT
S04	CAACCCTTGT	T-CTGTGTTG	CCAGCATGCC	TTTCGGG	GTGATGGGGA	CTCACAGGAG	ACTGCCGGGG	TC-AACTCGG	A-GGAAGGTG	GGGACGACGT	CAAGTCATCA	TGCCCCTTAT	GTCTTGGGCT	GCACACGT
S05	CAACCCTTGT	T-CTGTGTTG	CCAGCATGCC	CTTCGGG	GTGATGGGGA	CTCACAGGAG	ACTGCCGGGG	TC-AACTCGG	A-GGAAGGTG	GGGACGACGT	CAAGTCATCA	TGCCCCTTAT	GTCTTGGGCT	GCACACGT
S06	CAACCCTTGT	C-CTGTGTTG	CCAGCAACTC	CTTTCG-GGG	AGGTTGGGGA	CTCACGGGAG	ACTGCCGGGG	TC-AACTCGG	A-GGAAGGTG	GGGACGACGT	CAAGTCATCA	TGCCCCTTAT	GTCTTGGGCT	GCACACGT
507	CAACCOTTGT	C-CCGTGTTG	CCAGCAAGCC	CTTCGGG	GIGIIGGGGA	CTCACGGGAG	ACCGCCGGGG	TC-AACTCGG	A-GGAAGGTG	GGGACGACGT	CAAGTCATCA	TGCCCCTTAT	GTCTTGGGCT	GCACACGT
508	CAACCOTTGT	T-CIGIGIIG	CCAGCATGTC	CTTCGGG	ATGATGGGGA	CTCACAGGAG	ACCGCCGGGG	TC-AACTCGG	A-GGAAGGTG	GGGACGACGT	CAAGTCATCA	TGCCCCTTAT	GTCTTGGGCT	GCACACGT
509	CAACCOTTGT	T-CIGIGITG	CCAGCATGCC	CTTCGGG	GTGATGGGGA	CTCACAGGAG	ACCGCCGGGGG	TC-AACTCGG	A-GGAAGGTG	GGGACGACGT	CAAGTCATCA	TGCCCCTTAT	GTCTTGGGCT	GCACACGT
510	CAACCOTTGT	C-CCGTGTTG	CCAGCAGGCC	CTTGTG	GTGTTGGGGGA	CTCACGGGAG	ACCGCCGGGGG	TC-AACTCGG	A-GGAAGGTG	GGGACGACGT	CAAGTCATCA	TGCCCCTTAT	GTCTTGGGCT	GCACACGT
511	CAACCCIIGI	a amamama	CCAGCAIGCC	CIICGGG	GIGAIGGGGA	CICACAGGAG	ACCGCCGGGG	TC-AACTCGG	A-GGAAGGIG	GGGACGACGI	CAAGICAICA	TGCCCCTTAT	GICIIGGGCI	GCACACGI
612	CAACCCIIGI	C-CIGIGIIG	CCAGCATGCC	CTTCGGG	GIGAIGGGGA	CICACGGGAG	ACTGCCGGGG	TC-AACTCGG	A-GGAAGGIG	GGGACGACGI	CAAGICAICA	TCCCCCTIAI	GICIIGGGCI	GCACACGI
614	CAACCCIIGI	C-CIGIGIIG	CCAGCATGCC	CTTCGGG	GIGAIGGGGA	CICACAGGAG	ACCGCCGGGGG	TC-AACTCGG	A-GGAAGGIG	GGGACGACGI	CAAGICAICA	TCCCCCTIAI	GICIIGGGCI	GCACACGI
514	CAACCCIIGI	a cmamanna	CCAGCAIGCC	CTICGGG	GIGAIGGGGA	CICACAGGAG	ACIGCCGGGG	TC-AACTCGG	A-GGAAGGIG	GGGACGACGI	CAAGICAICA	TGCCCCTTAT	GICIIGGGCI	GCACACGI
515	CAACCCIIGI	C-CIGIGIIG	CCAGCAIGCC	CIICGGG	GIGAIGGGGA	CICACAGGAG	ACCGCCGGGG	TC-AACTCGG	A-GGAAGGIG	GGGACGACGI	CAAGICAICA	TGCCCCTTAT	GICIIGGGCI	GCACACGI
510	CAACCCIIGI	C-CCGIGIIG	CCAGCAGGCC	CIIGIG	GIGCIGGGGA	CICACGGGAG	ACCGCCGGGG	TC-AACTCGG	A-GGAAGGIG	GGGACGACGI	CAAGICAICA	TGCCCCTTAT	GICIIGGGCI	GCACACGI
51/ 010	CAACCCIIGI	C-CIGIGIIG	CCAGCAACIC	CTITICG-GGG	AGGIIGGGGA	CICACGGGAG	ACIGCCGGGG	TC-AACTCGG	A-GGAAGGIG	GGGACGACGI	CAAGICAICA	TGCCCCTTAT	GICIIGGGCI	GCACACGI
S10 C10	CAACCCIIGI	C-COCTCTTC	CCAGCAIGCC	CTTCGGG	GIGAIGGGGA	CICACAGGAG	ACTGCCGGGG	TC-AACTCGG	A-GGAAGGIG	GGGACGACGI	CAAGICAICA	TCCCCCTIAI	GICIIGGGCI	GCACACGI
620	CAACCCTIGI	T_CTCTCTTC	CCAGCAGGCC	CTIGIG	CTCLTCCCCA	CTCACGGGAG	ACCCCCCCCCC	TC-MACICOG	A-GGAAGGIG	CCCLCCLCCT	CANCECATCA	TCCCCCTINI	CTOTTCOCCT	CCACACCT
021	CAACCCTIGI	C_CTCTCTTC	CCAGCATGCC	CTTCGGG	CTCATCCCCA	CTCACAGGAG	ACCCCCCCCCC	TC-MACICOG	A-GGAAGGIG	CCCLCCLCCT	CANCECATCA	TCCCCCTINI	CTOTTCOCCT	CCACACCT
\$22	CARCCOTTOT	C_CTGTGTTC	CCAGCATCCC	CTTCGGG	GTGATGGGGA	CTCACAGGAG	ACCGCCGGGGG	TC-AACTCCC	A_GGAAGGTG	GGGACGACGT	CAACTCATCA	TGCCCCTTAT	GTCTTGGGCCT	GCACACOT
523	CARCCOTTOT	T_CTGTGTTTC	CCAGCATCCC	CTTCGGG	GTGATGGGGA	CTCACAGGAG	ACTGCCGGGGG	TC-AACTCCC	A_GGAAGGTG	GGGACGACGT	CAACTCATCA	TGCCCCTTAT	GTCTTGGGCCT	GCACACOT
s24	CARCCOTTOT	T_CTGTGTTC	CCAGCATCCC	CTTCGGG	GTGATGGGGA	CTCACAGGAG	ACTGCCGGGG	TC-AACTCCC	A_GGAAGGTG	GGGACGACGT	CAACTCATCA	TGCCCCTTAT	GTCTTGGGCCT	GCACACOT
S25	CAACCETTGT	TTCTGTGTGTG	CCAGCATGCC	TTTCGGG	GTGATGGGGA	CTCACAGGAG	ACTGCCGGGG	TC-AACTCGG	A_CGAAGGTG	CCCACCACCT	CAACTCATCA	TGCCCCCTTAT	GTCTTGGGCT	GCACACGT
s26	CARCCOTTOT	C_CC_TGTTC	CCACAAGCCC	COTTC	GTGCTGGCCA	CTCACGGGAG	ACTGCCGGGG	TOCALCTOCC	A GGAAGGIG	GGGACGACGT	CAACTCATCA	TGCCCCTTAT	GTCTTGGGCCT	GCACACOT
\$27	CARCCOTTOT	T_CTGTGTGTC	CCAGCACCCC	CTTC000	GTGGTGGGGA	CTCACAGGAG	ACTGCCGGGGG	TC-AACTCCC	1_0010010	GGGLGGLCGL	CARCTCATCA	TGCCCCTTAT	GTCTTGGGCCT	GCACACOT
020	CAACCCTIGI	C_CTCTCTTC	CONSCREDECC	CTTCGGG	CTONTOCOCA	CTCACAGGAG	ACCCCCCCCCC	TC-MACICOG	A-GGAAGGIG	CCCLCCLCCT	CANCECATCA	TCCCCCTINI	CTOTTCOCCT	CCACACCI
\$29	CARCCOTTOT	T_CTGTGTTTC	CCAGCATCCC	CTTCGGG	GTGATGGGGA	CTCACAGGAG	ACTGCCGGGGG	TC-AACTCCC	A_GGAAGGTG	GGGACGACGT	CAACTCATCA	TGCCCCTTAT	GTCTTGGGCCT	GCACACOT
S30	CAACCCTTGT	T_CONTGTTG	CCAGOGOGTG		ATGGCGGGGGA	CTCATGGGAG	ACTGCCGGGG	TC-AACTCGG	A-GGAAGGIG	GGGATGACGT	CAAGTCATCA	TGCCCCCTTAT	GTCCAGGGCT	TCACACAT
s31	CAACCCTTCT	C-CCGTGTTG	CCAGCAGGOC	CTTGTG	GTGCTGGGGA	CTCACGGGAG	ACCGCCGGGGG	TC-AACTCGG	A-GGAAGCTG	GGGACGACGT	CAAGTCATCA	TGCCCCTTAT	GTCTTGGGCT	GCACACGT
\$32	CAACCETTGT	T-CTGTGTTG	CCAGCATGCC	CTTCGGG	GTGATGGGGA	CTCACAGGAG	ACTGCCGGGG	TC-AACTCGG	A-GGAAGGTG	GGGACGACGT	CAAGTCATCA	TGCCCCTTAT	GTCTTGGGCT	GCACACGT
533	CAACCETTGT	T-CTGTGTTG	CCAGCATGCC	CTTCGGG	GTGATGGGGA	CTCACAGGAG	ACTGCCGGGG	TC-AACTCGG	A-GGAAGGTG	GGGACGACGT	CAAGTCATCA	TGCCCCTTAT	GTCTTGGGCT	GCACACGT
34	CAACCETTGT	T-CTGTGTTG	CCAGCATGCC	TTTCGGG	GTGATGGGGA	CTCACAGGAG	ACTGCCGGGG	TC-AACTCGG	A-GGAAGGTG	GGGACGACGT	CAAGTCATCA	TGCCCCTTAT	GTCTTGGGCT	GCACACGT
35	CAACCETTGT	T-CTGTGTTG	CCAGCATGCC	TTTCGGG	GTGATGGGGA	CTCACAGGAG	ACTGCCGGGG	TC-AACTCGG	A-GGAAGGTG	GGGACGACGT	CAAGTCATCA	TGCCCCTTAT	GTCTTGGGCT	GCACACGT
36	CAACCCTTGT	C-CCGTGTTG	CCAGCAGGCC	CTTGTG	GTGCTGGGGA	CTCACGGGAG	ACCGCCGGGG	TC-AACTCGG	A-GGAAGGTG	GGGACGACGT	CAAGTCATCA	TGCCCCTTAT	GTCTTGGGCT	GCACACGT
37	CAACCCTTGT	T-CTGTGTTG	CCAGCATGCC	TTTCGGG	GTGATGGGGA	CTCACAGGAG	ACTGCCGGGG	TC-AACTCGG	A-GGAAGGTG	GGGACGACGT	CAAGTCATCA	TGCCCCTTAT	GTCTTGGGCT	GCACACGT
38	CAACCETTGT	T-CTGTGTTG	CCAGCATGCC	TTTCGGG	GTGATGGGGA	CTCACAGGAG	ACTGCCGGGG	TC-AACTCGG	A-GGAAGGTG	GGGACGACGT	CAAGTCATCA	TGCCCCTTAT	GTCTTGGGCT	GCACACGT
239	CAACCETTGT	C_CTGTGTTG	CCAGCAACTC	CTTTCG_GGG	AGGTTGGG_A	CTCACGGGAG	ACTGCCGGGG	TC-AACTCGG	A-GGAAGGTG	GGGACGACGT	CAAGTCATCA	TGCCCCTTAT	GTCTTGGGCT	GCACACGT
540	CAACCETTGT	T_CTGTGTTG	CCAGCATGCC	CTTCGGG	GTGATGGGGA	CTCACAGGAG	ACCGCCGGGG	TC-AACTCGG	A-GGAAGGTG	GGGACGACGT	CAAGTCATCA	TGCCCCTTAT	GTCTTGGGCT	GCACACGT
241	CAACCCTTGT	C_CTGTGTTG	CCAGCATGCC	CTTCGGG	GTGATGGGGA	CTCACAGGAG	ACCGCCGGGG	TC-AACTCGG	A-GGAAGGIG	GGGACGACGT	CAAGTCATCA	TGCCCCCTTAT	GTCTTGGGCT	GCACACGI
642	CAACCETTGT	C-TOGTOTTG	CCAGCAGGCC	CTTGTG	GTGCTGGGGA	CTCACGGGAG	ACCGCCGGGG	TC-AACTCGG	A-GGAAGGTG	GGGACGACGT	CAAGTCATCA	TGCCCCTTAT	GTCTTGGGCT	GCACACGT
243	CAACCETTGT	C_CTGTGTTG	CCAGCATGOC	CTTCGGG	GTGATGGGGA	CTCACAGGAG	ACCGCCGGGG	TC-AACTCGG	A-GGAAGGTG	GGGACGACGT	CAAGTCATCA	TGCCCCTTAT	GTCTTGGGCT	GCACACGT
944	CAACCETTGT	T_CTGTGTTG	CCAGCATGCC	CTTCGGG	GTGATGGGGA	CTCACAGGAG	ACCGCCGGGG	TC-AACTCGG	A-GGAAGGTG	GGGACGACGT	CAAGTCATCA	TGCCCCTTAT	GTCTTGGGCT	GCACACGT
s45	CAACCETTGT	C-CCGTGTTG	CCAGCAGGCC	CTTGTG	GTGCTGGGGA	CTCACGGGAG	ACCGCCGGGG	TC-AACTCGG	A-GGAAGGTG	GGGACGACGT	CAAGTCATCA	TGCCCCTTAT	GTCTTGGGCT	GCACACGT
546	CAACCCTTGT	C-CCGTGTTG	CCAGCAGGCC	CTTGTG	GTGCTGGGGA	CTCACGGGAG	ACCGCCGGGG	TC-AACTCGG	A-GGAAGGTG	GGGACGACGT	CAAGTCATCA	TGCCCCTTAT	GTCTTGGGCT	GCACACGT
547	CAACCCTTGT	T-CTGTGTTG	CCAGCATGCC	CTTCGGG	GTGATGGGGA	CTCACAGGAG	ACCGCCGGGG	TC-AACTCGG	A-GGAAGGTG	GGGACGACGT	CAAGTCATCA	TGCCCCTTAT	GTCTTGGGCT	GCACACGT
548	CAACCCTTGT	T-CTGTGTTG	CCAGCATGCC	CTTCGGG	GTGATGGGGA	CTCACAGGAG	ACTGCCGGGG	TC-AACTCGG	A-GGAAGGTG	GGGACGACGT	CAAGTCATCA	TGCCCCTTAT	GTCTTGGGCT	GCACACGT
549	CAACCCTTGT	T-CTGTGTTG	CCAGCATGCC	CTTCGGG	GTGATGGGGA	CTCACAGGAG	ACTGCCGGGG	TC-AACTCGG	A-GGAAGGTG	GGGACGACGT	CAAGTCATCA	TGCCCCTTAT	GTCTTGGGCT	GCACACGT
550	CAACCCTTGT	T-CTGTGTTG	CCAGCATGCC	TTTCGGG	GTGATGGGGA	CTCACAGGAG	ACTGCCGGGG	TC-AACTCGG	A-GGAAGGTG	GGGACGACGT	CAAGTCATCA	TGCCCCTTAT	GTCTTGGGCT	GCACACGT
551	CAACCCTTGT	C-CCGTGTTG	CCAGCAGGCC	CTTGTG	GTGCTGGGGA	CTCACGGGAG	ACCGCCGGGG	TC-AACTCGG	A-GGAAGGTG	GGGACGACGT	CAAGTCATCA	TGCCCCTTAT	GTCTTGGGCT	GCACACGT
52	CAACCCTTGT	C-CCGTGTTG	CCAGCAGGCC	CTTGTG	GTGCTGGGGA	CTCACGGGAG	ACCGCCGGGG	TC-AACTCGG	A-GGAAGGTG	GGGACGACGT	CAAGTCATCA	TGCCCCTTAT	GTCTTGGGCT	GCACACGT
353	CAACCCTTGT	C-CCGTGTTG	CCAGCAAGCC	CTTCGGG	GTGTTGGGGA	CTCACGGGAG	ACCGCCGGGG	TC-AACTCGG	A-GGAAGGTG	GGGACGACGT	CAAGTCATCA	TGCCCCTTAT	GTCTTGGGCT	GCACACGT
554	CAACCCTTGT	C-CTGTGTTG	CCAGCAACTC	CTTCGGG	AGGTTGGGGA	CTCACGGGAG	ACTGCCGGGG	TC-AACTCGG	A-GGAAGGTG	GGGACGACGT	CAAGTCATCA	TGCCCCTTAT	GTCTTGGGCT	GCACACGT
555	CAACCCTTGT	C-CTGTGTTG	CCAGCATGCC	CTTCGGG	GTGATGGGGA	CTCACAGGAG	ACCGCCGGGG	TC-AACTCGG	A-GGAAGGTG	GGGACGACGT	CAAGTCATCA	TGCCCCTTAT	GTCTTGGGCT	GCACACGT
556	CAACCCTTGT	C-CTGTGTTG	CCAGCATGCC	CTTCGGG	GTGATGGGGA	CTCACAGGAG	ACCGCCGGGG	TC-AACTCGG	A-GGAAGGTG	GGGACGACGT	CAAGTCATCA	TGCCCCTTAT	GTCTTGGGCT	GCACACGT
57	CAACCCTTAT	C-CTATGTTG	CCAGCG-GTT		CGGCCGGGGA	CTCGTGGGAG	ACTGCCGGGG	TC-AACTCGG	A-GGAAGGTG	GGGATGACGT	CAAGTCATCA	TGCCCCTTAT	GTCCAGGGCT	TCACACAT
58	CAACCCTTGT	T-CTGTGTTG	CCAGCATGCC	CTTCGGG	GTGATGGGGA	CTCACAGGAG	ACTGCCGGGG	TC-AACTCGG	A-GGAAGGTG	GGGACGACGT	CAAGTCATCA	TGCCCCTTAT	GTCTTGGGCT	GCACACGT
59	CAACCCTTGT	C-CCGTGTTG	CCAGCAAGCC	CCCTTGTGGG	GTGTTGGGGA	CTCACGGGAG	ACCGCCGGGG	TC-AACTCGG	A-GGAAGGTG	GGGACGACGT	CAAGTCATCA	TGCCCCTTAT	GTCTTGGGCT	GCACACGT
60	CAACCCTTGT	C-CCGTGTTG	CCAGCAGGCC	CTTGTG	GTGCTGGGGA	CTCACGGGAG	ACCGCCGGGG	TC-AACTCGG	A-GGAAGGTG	GGGACGACGT	CAAGTCATCA	TGCCCCTTAT	GTCTTGGGCT	GCACACGT
61	CAACCCTTGT	T-CTGTGTTG	CCAGCATGCC	CTTCGGG	GTGATGGGGA	CTCACAGGAG	ACTGCCGGGG	TC-AACTCGG	A-GGAAGGTG	GGGACGACGT	CAAGTCATCA	TGCCCCTTAT	GTCTTGGGCT	GCACACGT
62	CAACCCTTGT	C-CTGTGTTG	CCAGCGTGCC	CTTCGGG	GTGACGGGGA	CTCACAGGAG	ACCGCCGGGG	TC-AACTCGG	A-GGAAGGTG	GGGACGACGT	CAAGTCATCA	TGCCCCTTAT	GTCTTGGGCT	GCACACGT
563	CAACCCTTGT	T-CTGTGTTG	CCAGCACGCC	CTTCGGG	GTGGTGGGGA	CTCACAGGAG	ACTGCCGGGG	TC-AACTCGG	A-GGAAGGTG	GGGACGACGT	CAAGTCATCA	TGCCCCTTAT	GTCTTGGGCT	GCACACGT
64	CAACCCTTGT	T-CTGTGTTG	CCAGCATGCC	CTTCGGG	GTGATGGGGA	CTCACAGGAG	ACTGCCGGGG	TC-AACTCGG	A-GGAAGGTG	GGGACGACGT	CAAGTCATCA	TGCCCCTTAT	GTCTTGGGCT	GCACACGT
\$65	CAACCCTTGT	C-CCGTGTTG	CCAGCAAGCC	CTTCGGG	GTGTTGGGGA	CTCACGGGAG	ACCGCCGGGG	TC-AACTCGG	A-GGAAGGTG	GGGACGACGT	CAAGTCATCA	TGCCCCTTAT	GTCTTGGGCT	GCACACGI
66	CAACCCTTGT	C-CCGTGTTG	CCAGCAAGCC	CTTCGGG	GTGTTGGGGA	CTCACGGGAG	ACCGCCGGGG	TC-AACTCGG	A-GGAAGGTG	GGGACGACGT	CAAGTCATCA	TGCCCCTTAT	GTCTTGGGCT	GCACACGI
67	CAACCCTTGT	T-CTGTGTTG	CCAGCATGCC	CTTCGGG	GTGATGGGGA	CTCACAGGAG	ACTGCCGGGG	TC-AACTCGG	A-GGAAGGTG	GGGACGACGT	CAAGTCATCA	TGCCCCTTAT	GTCTTGGGCT	GCACACGT
68	CAACCCTTGT	T-CTGTGTTG	CCAGCATGCC	CTTCGGG	GTGATGGGGA	CTCACAGGAG	ACTGCCGGGG	TC-AACTCGG	A-GGAAGGTG	GGGACGACGT	CAAGTCATCA	TGCCCCTTAT	GTCTTGGGCT	GCACACGT
69	CAACCCTTGT	T-CTGTGTTG	CCAGCATGCC	CTTCGGG	GTGATGGGGA	CTCACAGGAG	ACTGCCGGGG	TC-AACTCGG	A-GGAAGGTG	GGGACGACGT	CAAGTCATCA	TGCCCCTTAT	GTCTTGGGCT	GCACACGI
70	CAACCCTTGT	T-CTGTGTTG	CCAGCATGCC	TTTCGGG	GTGATGGGGA	CTCACAGGAG	ACTGCCGGGG	TC-AACTCGG	A-GGAAGGTG	GGGACGACGT	CAAATCATCA	TGCCCCTTAT	GTCTTGGGCT	GCACACGT
.01	CAACCCTTAT	C-CTACGTTG	CCAGCGCGTG		ATGGCGGGGA	CTCGTGGGAG	ACTGCCGGGG	TC-AACTCGG	A-GGAAGGTG	GGGATGACGT	CAAGTCATCA	TGCCCCTTAT	GTCCAGGGCT	TCACACAT
102	CAACCCTTAT	C-CTACGTTG	CCAGCGCGTT		ATGGCGGGGA	CTCGTGGGAG	ACTGCCGGGG	TC-AACTCGG	A-GGAAGGTG	GGGATGACGT	CAAGTCATCA	TGCCCCTTAT	GTCCAGGGCT	TCACACAT
.03	CAACCCTTGT	C-CTGTGTTG	CCAGCACGTA		ATGGTGGGGA	CTCGCGGGAG	ACTGCCGGGG	TC-AACTCGG	A-GGAAGGTG	GGGATGACGT	CAAGTCATCA	TGCCCCTTAT	GTCCAGGGCT	TCACACAT
404	CAACCCTCGT	T-CGATGTTG	CCAGCGCGTT		ATGGCGGGGA	CTCATCGAAG	ACTGCCGGGG	TC-AACTCGG	A-GGAAGGTG	GGGATGACGT	CAAGTCATCA	TGCCCCTTAT	GTCCAGGGCT	TCACGCAT
405	CAACCCTCGT	T-CTATGTTG	CCAGCGCGTA		ATGGCGGGGA	CTCATAGGAG	ACTGCCGGGG	TC-AACTCGG	A-GGAAGGTG	GGGATGACGT	CAAATCATCA	TGCCCCTTAT	GTCTTGGGCT	GCACACAT
406	CAACCCTTGT	T-CCATGTTG	CCAGCACGCC	CGTTTGG	GTGGTGGGGA	CTCATGGGAG	ACTGCCGGGG	TC-AACTCGG	A-GGAAGGTG	GGGATGACGT	CAAGTCATCA	TGCCCCTTAT	GCCTTGGGCT	GCAAACAT
803	CAACCCTTGA	T-CTTAGTTG	CCAGCATTCA		GTTGGGCA	CTCTAAGGTG	AGTGCCGGTG	AC-AAACCGG	A-GGAAGGTG	GGGATGACGT	CAAATCATCA	TGCCCCTTAT	GACCTGGGCT	ACACACGT
201	CAACCCTTAT	C-CTTTGTTG	CCAGCG-GTC		CGGCCGGGAA	CTCAAAGGAG	ACTGCCAGTG	AT-AAACTGG	A-GGAAGGTG	GGGATGACGT	CAAGTCATCA	TGGCCCTTAC	GACCAGGGCT	ACACACGT
202	CAACCCTTGT	C-CTTAGTTA	CCAGCACGTT		ATGGTGGGCA	CTCTAAGGAG	ACTGCCGGTG	AC-AAACCGG	A-GGAAGGTG	GGGATGACGT	CAAGTCATCA	TGGCCCTTAC	GGCCTGGGCT	ACACACGT
Clust	******	***	***					** **		**** *****		** ******		** * *
													-	

StrepF

APPENDIX B

Phylogenetic tree reconstruction method using PAUP* 4.0 b 10

To construct the NJ tree from distance matrix (restriction fragment 0/1) or alignment file of DNA data. A reliable of the tree calculated by bootstrap value the tree by following procedure below.

- 1. Open program
- 2. The buffer window display show up.
- 3. Open file data matrix in form of nexsus or txt format from file menu
- 4. Select edit then select excecute from file menu
- 5. Select distant from Analysis menu to calculate pair wise distance.
- Select NJ/UPGMA from Analysis then a pop up box for selection of clustering method. Select NJ. If Select Restriction site distance Nei-Li from distance options. Select Randomly, initial seed at Break ties then click OK.
- 7. A tree will show up in buffer display window.
- 8. Select Print NJ tree from Trees menu a pop up box. Plot type: Phylogram.
 - Rooting: define out group and add to the right box. If more than one out group make our group a monophyletic sister group to ingroup. Click OK.
 - Preview: select Save as PICT file and save file as .pct to the desire destination. Click done. Click done again.
- Select Bootstrap/jackknife from Analysis menu. Random seed method: Bootstrap. Type of search: NJ/UPGMA Retain groups with frequency>50%. Click continue. Click OK.
- 10. Select Print Bootstrap concensus from Trees menu.
- 11. Rooting as describe Print NJ tree and then select preview for save file as describe above.

APPENDIX C

Computer simulation of RFLP of 79 microorganisms using 33 restriction enzymes

Γ																																																																						
	1																																																																					
-																																																										_	_									-		_
50	1 :	= =	= :	=	=	=	=	=	=	=	=	=	=	=	_	=	=		= =	= =	= =	=	=	= :	==	= =	= _	_ =	= =	= =	-	=	=	=	=	=	=	= '		= =	= =	= =	==	=	=	=	= =	= =	= =	= :	=_	_ =	=	- 7	=	= =	==	= -		= =	= =	 = :	=1	_	=	_	=1		_	
	1																														_								_															_	-										 					
57	. '			_	_	_	_	_	-	_	_	_	_	_	_	_	_					_	_								_	_	_	_	_	_	_	- '						_	_	_									_				_				_				-	_		
				_	_	_			_			_			_		_	_				_	_																	_	_			_										_							-	 _				_		_	_	
		E	Bfa	al																																																																		

 1																							_																-	_						_	 	_	4	_	
- 1	-	_	-	-	-	=	-	 	 -	-	-	-	-	=	_	 	 	-		-	-	=	-	 	-	=	-	 	 	-	-	-		 	-	-	 	 -	-	-	_	= .	 -	 	 	-	-	_	=	-	-
 -	=	_	_	_	_	=	_	 	 _	_	_	_	_	=	_	 	 - =	-	- =	_	_	=	-	 =	_	=		 = -	 	_	_	_	_	 - =	=	_	 	 _	_	_	_	= -	 _	 	 	_	_	_	-	=	_
	Ĺ	Dpi	nl																																																

1																																															1			
54				_			_		_		 _		_	 	 	_			_		_	_	_		 _		_	_	_	_		_			 	_		_			_	 _							_	
	_		_	_	_	_			_	_	 	 _	_	 	 Ξ.		: =				_			_	 	Ξ		 _	_	 _	= =	 _		=	 					= =		 					=1	= -	_	
	_		_	_	_	_			_	_	 	 _	_	 	 _			-		=	_			_	 	_		 	_	 _		 _		= :	 	= =	_		_		_	 					=1	= -	_ =	
		_			=			-		-	 	=			-	_	-		_	-		_	_	=	_	=		 -		 -			= =	-		_		-	-	=	-	_	= =	-	==	-	=1	_ =	-	
		Bs	stUI																																															

500 -		1 1
	. = = = = = = = = = = = = = = = = = = =	
130 -		1 ===1
	Hhal	

1000	1	• 3	1		•) •		6 7	•	•	10	"	12	13 14	15	16	17	18 19	20	21	n	23	24 25	26	v	28 1	9 X		32	33	34 35	- 34	87	н	39	40 4	et 42	43	**	45 4	6 47	41	49 5	a 51	52	53	54 SS	54	57	58 56	60	61	62 63	64	65	66 G	,						
1		_				_		_	_	_	_	-		_		_	_	_	_	=	_;			=	= 2		1	Ξ	_ :		-	_	_	_	= =		=	_			Ξ			_	_ :		-	_	_	_	_	_	-	=			_	 			=_	_
100		= =		= =	= =	= =	==	=	=	Ξ	=	= =	= =	Ξ	=	= =	= =	=	=	≣	=:	==	: =	=	= =	= =	=	Ξ	=:	= =	=	Ξ	Ξ	=		= =	=	Ξ	==	=_	Ξ	= =	==	=	= :		=	=	= =	=	Ξ	==		=	= =		=	==	==	==	==	=
		I	Иse	el																																																										

500 - 500 -		
136 -		
	NIalli	

1	1	2 3	4	۰.	, ,		9 10	0 11	12	13 1	4 15	16	17 1	18 19	20	21	22	23 24	25	26 2	17 28	29	30	31 32	33	34	35 X	37	38	39	10 41	42	43	44	45 A	6 a	48		60 61	62	53	54 S	6 M	67		10 50	61	62 (63 64	65	65 67					
																																										_	_												-	_
500									_						_							_							_				_				_					_	_	_			_					 	'	 •		
			- =	= -					_	_ =	-			_	- =	_	= -			- =	_	-							_		_ =	-	-				=	= -						-							_ =	 		 _	1 -	
	= :			=	= =	= :	= =		=	_		= :	_	=	-	=	-			_			= -			= :	= =	==	=	= :	-	=	=	= :	= =			-			= :	_		=	= =	= =	=	= -		=	_	=	= = :		.1 =	
330 -																																																					_		*1 _	==
		,	200																																																					
		r	tsa																																																				1	

		-																																																													
1 1	2	3 4			7 1	 10	11	12	13	14	15 1	16	17 1	10 1	9 20	21	1 23	23	24	25	26	27 2	9 25	30	31	32 3	3 34	4 35	36	37	36	39	40	41 4	24	5 44	45	- 46	47	48	49	50 (51 52	63	54	55	56 63	7 58	59	60 61	62	63 (14 65	65	67					1			
																																																												1			
																																																												-			
ano -											_						_				_	_	_																																		_		-	 - 1 .			
1																																																															
																															_						_				_					_		_							_	 	_			-		_	
						 	. —	_		_	-						-	_	_	_		_	_						_	_								_	_	_							_							_						-			
1 -						 	_	_		_							-	_	_	_		_	_		_				_	_	_		_				_		_	_						_			_		-			_	_	 	_	_				_	
1 -						 	_	_											_	_					_				_	_	_						_	_	_	_						_	_ =	_	_					_	_	 		_ =		 -1-		_	
1																																																												1			
																																																										_					
~ 1																																																												1 -			
				-		_						_												_					_									_						-						_	_		_	_							_		
																																																											_				
																																																										_	-				
		-																																																													
		lar	al																																																												
		/ uc	4.																																																												

100																																																												-		
~	_	_								_	_	_	_					_	. —								= :		 	_					_			_	_				_=		=		_ =	= _	_			_				- = -				- 1		
	=	= 1	= :	= =	= =	= =	= =	= =	=	=	=	=	=	= =	-		=	=	=	=	= =	==	=	= :	= =	=	= :	= =	 =	=	= =	= =	==	=	=	= :	= =	=	=	= =	= =	=	==	=	_	= 3	= -	= =	=	= :	= =	=	= =	= =	==	:=:	==	==	==	= =	==	
100 -	=	=	= :	= =	= =	= =		= =	=	=	_	=	=	= =	-	= =	-	=	=	= :	= =	==	=	= =	= =	-	= :	= =	 =	=	= =	= =	= =	=	=	= :	= =	=	= :	= =	= =	:=	==	=	=	= :	= -		=	= =	= =	=	= =	-	==	= '	=	=-	Ξ	1=		
		Alu	ıl																																																											

	,	2	3	5	٠	7	 10	•• •	2 13	14	15 16	17	18 19	20	21 Z	2 23	24 3	85 26	27 29	8 29	30 J	32	33 34	35	36 37	38	39 - K	0 41	42 4	3 44	45 4	95 4 7	48	49 50	51	52 53	54 1	5 56	57 I	a 59	60 Q	1 62	63 6	4 65	66 G	z				
500	_				_		 			_														_		_												_									 	 -	 - =	 =
					≣					=														≣		≣									≣															_
		Н	pall																																															

Γ		2	3	4		5	6	7	8	9	10	11 12	2 1:	3 1	4 15	16	17	18	19	20	21 2	2 23	24	25	26 2	27 2	8 29	30	31	312 3	33 3	4 35	36	37	38 39	40	41	42	43	44	46	47	48	49 54	51	62	53	54 55	56	67	58 58	9 6	61	62	63	64	65 66	3 67
20							_	_									_		_			-	-	_			_	-		_	_		_			-	_				_											_			_			-
ľ	1-	-		-	= =	-		-		= =		_	-			-	-	-	-		= =	-	=	_	= =			-		- =			-				-	-	= -	_		=								=					—			
				Т							T		1		Î.	Π		T		_			_								_						-															-						
9																																																										
				ы																																																						
			sing	Ы																																																						

	1		2 3	4	6	6	7	8 9	10	11	12	13	14 15	16	17	18	19	20 2	1 22	2 23	24	25	26	27 21	29	30	31	32 33	3 34	35	36	37 3	8 39	40	41	42 4	3 44	45	46	47 4	18 4	9 50	51	52	53	54 6	5 56	6 67	58	59	60 (51 e	di2 63	64	65	66 67
2000 -	-		_	_	_	_	_	_	_	_		_	_	_	_	_			_	_	_	_		_	_	_								_					_					_			_	_	_		_	_				
500 -	-				_	_			_	_				-	_	_		_	-		_	_		_	-					_				_					_	_				_		_	_		_							
																																																_			_					
100 -																																																_								
		Fa	al																																		1																			
	'		.g.																																																					
	5							10 1			- 0.0			- 					1.1.2		-		-							-	0.10						2.1	0.		2.11		1.50		20		<u> </u>		- 22					12	-		
1	1	1	-			1			1 12	-13	14 3	15 16	5 57	10	19	20 3	21 3	22 2	3 24	26	26	21	28	29	31	32 3	4 34	35	-36	37	38 33	9 40	म	12	43	44	.45	46	41	48	69 .50	01	62	53	54	N 50	5 67	- 64	59	60	61	62	62	54	60 y	JE -67
-	=	=		= =		= 1		= =	= =	-			-	=	=	= 1	=				-	-	-	-	-	= =		-	= -	= :	= =		=	=	-	=	-	= :	-	-		=	=	= -	-	= =	-	-	-	-	=	=	-	-		
11																																																								
A																																																								
		_																																																						
		Ēc	oRI																																																					

_																																																																			
200	2	1	2		3 4	4	6	6	7	8	9	10	, 11	1	2 1	3 1	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28 2	89 30	31	1 32	33	34	35	36	37	38	39	40 41	42	43	44	45	46	47 4	18 4	49 54	0 61	62	63	54	65	56	67 6	18	69 (60 6	1 6	2 63	64	65	66	67	
50	-	_	_	-		-	_	_	_	-	-	-						_	_	_	_	_	_	_	-	_	_	-	_	_				-	-					-	-				_	_	_					_	_									-		-	-	_	
10																																																																			
			Ec	юF	۶V					_																								-																											-	-					

		1 3	1	3	4	6	6	7	8	9 1	0 1	1 12	2 13	3 14	15	16	17	18	19	20	21 2	2 23	24 25	26	27	28	29 30	0 31	32	33 ;	34 35	36	37 3	8 39	40	41 42	43	44 4	15 46	47	48 49	50	51 53	2 63	64	55	56 S	7 56	59	60	61 62	63	64	65 (66 67	
1000	- 1															_	_	_					 	_				_	_													_			_	_										
																											_																													
200																																																								
		Fs	pl																																												-	-								

BIOGRAHPY

Miss Sirinee Yodmuang was born on January, 19 1982 in Ubon Ratchathani proveince. She graduated with a Bachelor's Degree of Science (Biology), Second class honors on March 2005 from Faculty of Science, Khon Kaen University. She has been studying for her Master's Degree of Science at Department of Biochemistry, Faculty of Science, Chulalongkorn University since May 2005.