การสกัดสีย้อมจากใบและเปลือกของคั้นยูคาลิปตัสและการประยุกต์สำหรับการย้อมผ้าใหมและผ้าฝ้าย

นาย รัตนพล มงคลรัตนาสิทธิ์

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาปิโตรเคมีและวิทยาศาสตร์พอลิเมอร์ หลักสูตรปิโตรเคมีและวิทยาศาสตร์พอลิเมอร์ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

> ปีการศึกษา 2545 ISBN 974-17-1942-6

ลิขสิทธ์ของจุฬาลงกรณ์มหาวิทยาลัย

2 1 D.8. 2549

I 21043590

DYE EXTRACTION FROM EUCALYPTUS LEAVES AND BARK AND APPLICATION FOR SILK AND COTTON FABRIC DYEING

Mr. Rattanaphol Mongkholrattanasit

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Science in Perochemistry and Polymer Science

Program of Petrochemistry and Polymer Science

Faculty of Science Chulalongkorn University

Academic Year 2002

ISBN 974-17-1942-6

Thesis Title	DYE EXTRACTION FROM EUCALYPTUS LEAVES AND BARK AND
	APPLICATION FOR SILK AND COTTON FABRIC DYEING
Ву	Mr. Rattanaphol Mongkholrattanasit
Field of Study	Petrochemistry and Polymer Science
Thesis Advisor	Associate Professor Tharapong Vitidsant, Ph.D.
Thesis Co-advisor	Chanchai Sirikasemlert, Ph.D.
Acc	epted by the Faculty of Science, Chulalongkorn University in Partial
Fulfillment of the Re	quirements for the Master 's Degree
	Dean of Faculty of Science
	(Associate Professor Wanchai Phothiphichitr, Ph.D.)
THESIS COMMITTE	E
	Chairman
	(Professor Pattarapan Prasassarakich, Ph.D.)
	T. V. lidsit Thesis Advisor
	(Associate Professor Tharapong Vitidsant, Ph.D.)
	Thesis Co-advisor
	(Chanchai Sirikasemlert, Ph.D.)
	Wannham Chavasin Member

(Assistant Professor Warinthorn Chavasiri, Ph.D.)

รัตนพล มงคลรัตนาสิทธิ์ การลกัดสีย้อมจากใบและเปลือกของต้นยูคาลิปตัสและการ ประยุกต์สำหรับการย้อมสีบนผ้าไหมและผ้าฝ้าย. (DYE EXTRACTION FROM EUCALYPTUS LEAVES AND BARK AND APPLICATION FOR SILK AND COTTON FABRIC DYEING) อ. ที่ปรึกษา : รศ.ดร. ธราพงษ์ วิทิตศานต์, อ.ที่ปรึกษาร่วม : ดร.ชาญชัญ สิริเกษมเลิศ จำนวนหน้า 90 หน้า. ISBN 974-17-1942-6.

งานวิจัยนี้ได้ศึกษาผลของการสกัดสีย้อมจากใบและเปลือกของต้นยูคาลิปตัส สภาวะการสกัด ที่เหมาะสมคือ ใช้น้ำกลั่นทำการสกัดที่อุณหภูมิ 100 องศาเซลเซียส นาน 1 ชั่วโมง โดยใช้อัตราส่วน ของวัตถุดิบต่อน้ำกลั่นเป็น 1:40 ซึ่งการสกัดด้วยวิธีนี้จะให้ค่าเปอร์เซ็นต์โดยรวมของแข็งสูงสุด สภาวะ การทำมอร์แดนท์ก่อนย้อมที่เหมาะสม ใช้อุณหภูมิ 30 องศาเซลเซียส นาน 10 นาที และใช้ปริมาณมอร์ แดนท์เป็น 0.1 เปอร์เซ็นต์ของน้ำหนักผ้า (%owf.)

ผ้าใหมและผ้าฝ้ายที่ผ่านกระบวนการทำมอร์แดนท์ ก่อนการย้อมจะถูกนำมาย้อมในสภาวะที่ เหมาะสมดังนี้ สำหรับผ้าใหมใช้อุณหภูมิการย้อมที่ 90 องศาเซลเซียส นาน 40นาที ค่าพีเอชน้ำย้อม เป็น 4 และใช้อัตราส่วนวัสดุสิ่งทอต่อน้ำย้อมเป็น 1:30 สำหรับผ้าฝ้ายใช้อุณหภูมิการย้อมที่ 60 องศา เซลเซียส และไม่ต้องปรับค่าพีเอชน้ำย้อม ส่วนสภาวะอื่น ๆ เหมือนกับการย้อมผ้าใหม ผ้าใหมที่ผ่าน การย้อมสีจะได้สีเหลืองถึงน้ำตาล ยกเว้นเมื่อใช้เหล็กเป็นสารมอร์แดนซ์จะได้สีเทาถึงน้ำตาลเข้ม สำหรับผ้าฝ้ายที่ผ่านการย้อมสีจะได้สีเหลืองถึงส้ม ยกเว้นเมื่อใช้เหล็กเป็นสารมอร์แดนท์ จะได้สีเทา อ่อนถึงเทา คุณสมบัติของผ้าใหมและผ้าฝ้ายที่ผ่านการทำมอร์แดนท์และย้อมสีจะมีความคงทนของสี ต่อการซักล้าง ต่อเหงื่อ และต่อน้ำอยู่ในระดับดี ถึงดีมาก แต่จะมีความคงทนของสีต่อแสงและต่อการ ขัดถูอยู่ในระดับปานกลางถึงดี

หลักสูตร <u>ปิโตรเคมีและวิ</u>	ภิทยาศาสตร์พอลิเมอร์
สาขาวิชา <u>ปิโตรเคมีและ</u>	วิทยาศาสตร์พอลิเมอร์
ปีการศึกษา	2545

4473407323: MAJOR PETROCHEMISTRY AND POLYMER SCIENCE

KEYWORD: DYE EXTRACTION / EUCALYPTUS LEAVES AND BARK / SILK AND COTTON DYEING

RATTANAPHOL MONGKHOLRATTANASIT : DYE EXTRACTION FROM EUCALYPTUS

LEAVES AND BARK AND APPLICATION FOR SILK AND COTTON FABRIC DYEING.

THESIS ADVISOR: Assoc. Frof. Tharapong Vitdsant, Ph.D., THESIS COADVISOR:

Chanchai Sirikasemlert, Ph.D., 90 pp. ISBN 974-17-1942-6

This research was concerned with dye extraction from the leaves and bark of

eucalyptus. The best suitable condition for extraction was at 100 degree celsius for 1 hour

and liquor ratio of material: solvent was 1:40. Extraction with distilled water gave the maximum

percentage of total solid. The suitable condition for pre-mordanting process on silk and cotton

fabric was at 30 degree celsius for 10 minutes with mordant compounds 0.1 %owf.

Silk and cotton fabric were treated with pre-mordanting process before dyeing

experiments, in order to facilitate dye absorbancy of fabric such as silk dyeing at 90 degree

celsius for 40 minutes, cotton dyeing at 60 degree celsius for 40 minutes. The best result was

achieved when liquor ratio between fabric and dyed solution as 1:30 was employed. Silk dyed

in the solution extracting from the leaves and bark of eucalyptus with mordant compound

displayed yellow - brown colour except fabric using ferrous (Fe) mordant exhibiting the shade

of dark grey. For cotton, shade of yellow - crange was obtained, except fabric using ferrous

(Fe) mordant displaying the shade of pale grey - grey. Silk and cotton fabrics treated with pre-

mordanting and dyeing process has presented the properties of colour fastness, washing,

water and perspiration in good to very good level whereas colour fastness to light and

rubbing was in fair to good.

Program Petrochemistry and Polymer Science Student's signature ...

Field of study Petrochemistry and Polymer Science Advisor's signature... T. V. Ludek

Academic year 2002

Co-advisor' signature....

Acknowledgements

I would like to express my deepest gratitude and appreciation to my advisor, Associate Professor Dr. Tharapong Vitidsant for his kind suggestion, valuable guidance and encouragement throughout the experimental period and review my thesis.

I am most indebted to Dr. Chanchai Sirikasemlert, Co-advisor, for his valuable advice which has enable me to carry out the study successfully. His kindness will be long remembered.

I also grateful to Professor Dr. Pattaraphan Prasassarakich, Assistant Professor Dr. Warinthorn Chavasiri for serving as member of thesis committee.

My sincere thanks are expressed to Mr. Wirat Wongpakdee, Department of Chemistry, Faculty of Science, Srinakharinwirot University Prasarnmit Campus, for dye extraction, Mr. Thotsaphon Threrujirapapong, for data collection and arrangement, Mr. Surasek Kongchuaychat, Sumet Labtest Co., Ltd., Mr. Weerachai Klinchan, Lab Scan Asia Co., Ltd. and Mr. Pakorn Modewattana, Tokai Dyeing Co., Ltd. for chemical and materials support.

In addition, my special thankfulness is for Intertek Testing Services (Thailand)

Co., Ltd. in allowing me to utilize laboratory facilities.

Many thank go to my friends and colleagues, whose names are not mentioned here, who have contributed suggestions and courterous assistance during the course of my research.

Finally, I wish to express my gratitude to my family's member for their true love and encouragement.

CONTENTS

	PAGE
ASBTRACT (IN THAI)	iv
ASBTRACT (IN ENGLISH)	V
ACKNOWLEDGMENT	vi
CONTENTS	vii
LIST OF TABLES	
LIST OF FIGURES	x ii
ABBREVIATIONS	
CHAPTER I INTRODUCTION	
1.1 Introduction	1
1.2 Objectives	6
1.3 Scope of the research	6
CHAPTER II THEORY AND LITERATURE REVIEWS	
2.1 The chemical structure of fiber	7
2.2 The physical structure of fiber	8
2.2.1 Cotton fiber	8
2.2.2 Silk fiber	9
2.3 The chemistry of dyeing	10
2.3.1 The internal surface of fibers and its importance	10
2.3.2 Chemical forces responsible for dyeing	10
2.4 Principle of textile dyeing with natural dyes	12
2.4.1 Direct dyes	12
2.4.2 Mordant dyes.	13
2.4.3 Vat dyes	13
2.5 Extraction theory	14
2.5.1 Maceration	15
2.5.2 Percolation	15
2.5.3 Soxhlet extractor	15

PAGE

2.5.4 Liquid-Liquid extractor	16
2.6 Colourimetric Fundamentals	16
2.6.1 CIELAB colour system	16
2.7 Kubelka – Munk equation (K/S)	18
2.8 Literature Reviews	18
CHAPTER III EXPERIMENTAL	
3.1 Materials	20
3.2 Apparatus	21
3.3 Experimental process	21
3.3.1 Dye extraction from leaves and bark	21
3.3.2 Find the optimal condition for dyeing	
on silk and cotton fabrics	24
3.3.3 Find the optimal condition for pre-mordant	
on silk and cotton fabrics	26
3.3.4 Suitable condition for silk and cotton dyeing	
from eucalyptus leaves and bark	29
3.3.5 Colour fastness test	31
CHAPTER IV RESULT AND DISCUSSION	
4.1 Appropriate conditions for dye extraction	39
4.1.1 Appropriate temperature for dye extraction	39
4.1.2 Appropriate time for dye extraction	41
4.1.3 Appropriate liquor ratio of material and	
solvent for dye extraction	43
4.2 Optimal condition for dyeing on silk and cotton fabrics	45
4.2.1 Optimal temperature for dyeir g	
on silk and cotton fabrics	45
4.2.2 Optimal time for dyeing on silk	
and cotton fabrics	47

PAGE

4.2.3 Optimal liquor ratio for dyeing	
on silk and cotton fabrics	48
4.2.4 Optimal pH value for dyeing	
on silk and cotton fabrics	50
4.3 Optimal condition for pre-mordant on s lk and cotton fabrics	53
4.3.1 Optimal temperature for pre-mordant	
on silk and cotton fabrics	53
4.3.2 Optimal time for pre-mordant	
on silk and cotton fabrics	59
4.3.3 Optimal quantity of mordant compound	
for pre-mordant on silk and cotton fabrics	63
4.4 Appropriate condition for silk and cotton dyeing	67
4.5 The results of colour fastness test	79
4.5.1 Colour fastness to light	79
4.5.2 Colour fastness to washing	80
4.5.3 Colour fastness to water	82
4.5.4 Colour fastness to perspiration	83
4.5.5 Colour fastness to rubbing	85
CHAPTER V CONCLUSIONS AND SUGGESTION	
5.1 Conclusion	86
5.2 Suggestion for further work	87
REFERENCES	88
VITA	90

LIST OF TABLES

TABLES	PAGE
1.1 The important natural colouring matter	1
1.2 The important natural dyes in Thailand	4
3.1 Materials and source	20
3.2 Condition of dye extraction from eucalyptus leaves and bark	
by varying temperature for dye extraction	22
3.3 Condition of dye extraction from eucalyptus leaves and bark	
by varying time for dye extraction	23
3.4 Condition of dye extraction from eucalyptus leaves and bark	
by varying liquor ratio of material and solvent for dye extraction	23
3.5 Grey scale terms for colour change	31
3.6 Grey scale terms for colour staining	
3.7 Multifiber strip	
4.1 Percentage of total solid from dye extraction	
by varying temperature of extraction	39
4.2 Percentage of total solid from dye extraction	
by varying time of extraction	41
4.3 Percentage of total solid from dye extraction	
by varying liquor ratio of material and solvent	43
4.4 The ΔL*, Δa*, Δb* and K/S value of dyed silk and cotton fabrics	
by varying temperature of dyeing	45
4.5 The ΔL*, Δa*, Δb* and K/S value of dyed silk and cotton fabrics	
by varying time of dyeing	47
4.6 The ΔL* , Δa* , Δb* and K/S value of dyed silk and cotton fabrics	
by varying liquor ratio of dyeing	49
4.7 The ΔL^* , Δa^* , Δb^* and K/S value of dyed silk and cotton fabrics	
by varying pH value of dyeing	51
4.8 The ΔL^* , Δa^* , Δb^* and K/S value of pre-mordanted silk fabric	
by varying temperature of pre-mordanting	53

TABLES PAGE

4.9 The ΔL^* , Δa^* , Δb^* and K/S value of pre-mordanted cotton fabric
by varying temperature of pre-mordanting55
4.10 The ΔL^* , Δa^* , Δb^* and K/S value of pre-mordanted silk fabric
by varying time of pre-mordanting59
4.11 The ΔL^* , Δa^* , Δb^* and K/S value of pre-mordanted cotton fabric
by varying time of pre-mordanting60
4.12 The ΔL^* , Δa^* , Δb^* and K/S value of pre-mordanted silk fabric
by varying quantity of mordant compound63
4.13 The ΔL^* , Δa^* , Δb^* and K/S value of pre-mordanted cotton fabric
by varying quantity of mordant compound64
4.14 The ΔL* , Δa* , Δb* and K/S value for suitable condition
of pre-mordanting and dyieng of silk and cotton fabrics67
4.15 The result of colour fastness to light
(Standard: ISO 105-B02: 1994)79
4.16 The result of colour fastness to washing
(Standard: ISO 105-CO6 A1S: 1994)81
4.17 The result of colour fastness to water
(Standard: ISO 105-EO1: 1994)82
4.18 The result of colour fastness to perspiration (acid)
(Standard: ISO 105-EO4: 1994)
4.19 The result of colour fastness to perspiration (alkaline)
(Standard: ISO 105-EO4: 1994)84
4.20 The result of colour fastness to rubbing
(Standard: ISO105-X12: 2001)85

LIST OF FIGURES

FIGURES	PAGE
2.1 Repeating unit of cellulose fiber	7
2.2 Repeating unit of protein fiber	7
2.3 Photomicrograph of cotton fiber. Longitudinal view 500x	9
2.4 Photomicrograph of cotton fiber. Cross-section 500x	9
2.5 Photomicrograph of silk fiber. Longitudinal view 500x	9
2.6 Photomicrograph of silk fiber. Cross-section 500x	
2.7 Hydrogen bonding in water	
2.8 The direct dye picric acid and interacts with the basic	
side chains in wool or silk fiber	12
2.9 A chelated complex with cotton using	
chromium as the mordant	13
2.10 The reaction of vat dye	14
2.11 CIE L* a* b* color space showing relationships	
between L, a, and b scales	17
3.1 Diagram for dyeing on silk and cotton fabrics (Temperature parameter)	24
3.2 Diagram for dyeing on silk and cotton fabrics (Time parameter)	25
3.3 Diagram for dyeing on silk and cotton fabrics (Liquor ratio parameter)	25
3.4 Diagram for dyeing on silk and cotton fabrics	
(pH value of dye solution parameter)	26
3.5 Diagram for pre-mordant on silk and cotton fabrics	
(Temperature parameter)	27
3.6 Diagram for mordant on silk and cotton fabrics	
(Time parameter)	28
3.7 Diagram for pre-mordant on silk and cotton fabrics	
(Quantity of mordant compound parameter)	29
3.8 Diagram of suitable condition for pre-mordant	30
3.9 Diagram of suitable condition for dyeing	30
3.10 Grev scale for colour change	32

FIGURES	PAGE
3.11 Grey scale for colour staining	32
3.12 Fade-Ometer machine for colour fastness to light test	34
3.13 Sample for light fastness test	35
3.14 Launder-Ometer machine for colour fastness to washing	36
3.15 Perspiration tester machine for colour fastness to water test	
3.16 Crock meter machine for colour fastness to rubbing test	
4.1 The temperature for dye extraction from eucalyptus leaves	
4.2 The temperature for dye extraction from eucalyptus bark	
4.3 Time for dye extraction from eucalyptus leaves	
4.4 Time for dye extraction from eucalyptus bark	
4.5 Liquor ratio for dye extraction from eucalyptus leaves	
4.6 Liquor ratio for dye extraction from eucalyptus bark	
4.7 K/S value dyed silk and cotton fabrics by varying temperature of dyeing	
4.8 K/S value dyed silk and cotton fabrics by varying time of dyeing	
4.9 K/S value for dyed silk and cotton fabrics by varying liquor ratio of dyeing	
4.10 K/S value for dyed silk and cotton fabrics by varying industriation of dyeing	
4.10 K/S value for dyed silk from eucalyptus leaves	52
by varying pre-mordant temperature	57
4.12 K/S value for dyed silk from eucalyptus bark	01
by varying pre-mordant temperature	57
4.13 K/S value for dyed cotton from eucalyptus leaves	
by varying pre-mordant temperature	58
4.14 K/S value for dyed cotton from eucalyptus bark	
by varying pre-mordant temperature	58
4.15 K/S value for dyed silk from eucalyptus leaves	
by varying pre-mordant time	.61
4.16 K/S value for dyed silk from eucalyptus bark	
by varying pre-mordant time	61
4.17 K/S value for dyed cotton from eucalyptus leaves	
by varying pre-mordant time	62

FIGURES PAGE

4.18	K/S value for dyed cotton from eucalyptus bark	
	by varying pre-mordant time	62
4.19	K/S value for dyed silk from eucalyptus leaves	
	by varying quantity of mordant compound	65
4.20	K/S value for dyed silk from eucalyptus bark	
	by varying quantity of mordant compound	65
4.21	K/S value for dyed cotton from eucalyptus leaves	
	by varying quantity of mordant compound	66
4.22	K/S value for dyed cotton from eucalyptus bark	
	by varying quantity of mordant compound	66
4.23	K/S value for suitable condition of pre-mordanting	
	and dyeing on silk fabric	68
4.24	K/S value for suitable condition of pre-mordanting	
	and dyeing on cotton fabric	68
4.25	Silk is untreated with pre-mordanting process before	
	dyeing in the solution from eucalyptus leaves	69
4.26	Silk is untreated with pre-mordanting process before	
	dyeing in the solution from eucalyptus bark	69
4.27	Silk is treated with pre-mordanting process using the aluminium	
	mordant before dyeing the solution from eucalyptus leaves	70
4.28	Silk is treated with pre-mordanting process using the aluminium	
	mordant before dyeing the solution from eucalyptus bark	70
4.29	Silk is treated with pre-mordanting process using the copper	
	mordant before dyeing the solution from eucalyptus leaves	71
4.30	Silk is treated with pre-mordanting process using the copper	
	mordant before dyeing in the solution from eucalyptus bark	71
4.31	Silk is treated with pre-mordanting process using the ferrous	
	mordant before dyeing the solution from eucalyptus leaves	72
4.32	Silk is treated with pre-mordanting process using the ferrous	
	mordant before dyeing the solution from eucalyptus bark	72

FIGURES PAGE

4.33 Silk is treated with pre-mordanting process using the stannous
mordant before dyeing the solution from eucalyptus leaves73
4.34 Silk is with treated pre-mordanting process using the stannous
mordant before dyeing the solution from eucalyptus bark
4.35 Cotton is untreated with pre-mordanting process before
dyeing in the solution from eucalyptus leaves74
4.36 Cotton is untreated with pre-mordanting process before
dyeing in the solution from eucalyptus bark74
4.37 Cotton is treated with pre-mordanting process using the aluminium
mordant before dyeing the solution from eucalyptus leaves75
4.38 Cotton is treated with pre-mordanting process using the aluminium
mordant before dyeing the solution from eucalyptus bark
4.39 Cotton is treated with pre-mordanting process using the copper
mordant before dyeing the solution from eucalyptus leaves76
4.40 Cotton is treated with pre-mordanting process using the copper
mordant before dyeing the solution from eucalyptus bark
4.41 Cotton is treated with pre-mordanting process using the ferrous
mordant before dyeing the solution from eucalyptus leaves77
4.42 Cotton is treated with pre-mordanting process using the ferrous
mordant before dyeing the solution from eucalyptus bark
4.43 Cotton is treated with pre-mordanting process using the stannous
mordant before dyeing the solution from eucalyptus leaves78
4.44 Cotton is treated with pre-mordanting process using the stannous
mordant before dyeing the solution from eucalyptus bark

LIST OF ABBREVIATIONS

Al or Aluminium Potassium aluminium sulphate

a* Red – Green

b* Yellow – Blue

^oC Degree Celsius

Cu Copper

Cm Centimeter(s)

cm³ Cubic centimeter

D65 Daylight (Colour temperature

at 6700 K)

Fe Iron

g gram(s)

g/l gram/littre

ISO International Organization for

Standardization

kg Kilogram(s)

kPa Kilo Pascal

K/S Kubelka – Munk equation

L* Lightness

L:R Liquor ratio

min. Minute(s)

mm. Millimeter(s)

N Normality

owf On weight fabric

lb. Pound(s)