
C H A P T E R  I I I

T H E O R Y

3.1 Plantw ide Contro l

3.1.1 Introduction

A chemical plant may have thousands o f measurements and control loops. By 
the term p la n tw id e  c o n tro l it is n o t meant the tuning and behavior o f each of these 
loops, but rather the c o n tro l p h ilo s o p h y  of the overall plant with emphasis on the 
s tru c tu ra l d e c is io n s . The structural decision include the selection/ placement of 
manipulators and measurements as well the d e co m p o s itio n  o f the overall problem into 
smaller subproblems (the control configuration).

Thus, a very important ( if  not the most important) problem in plantwide 
control is the issue o f determining the c o n tro l s tru c tu re :

• Which “boxes” (controllers; usually consisting o f a data handling and/or 
decision making part) should we have and what information should be send 
between them?

Note that that we are here not interested in what should be inside the boxes 
(which is the controller design or tuning problem). More precisely, control structure 
design is defined as the s tru c tu ra l d e c is io n s  involved in control system design, 
including the following tasks

1. S e lec tion  o f  c o n tro lle d  o u tp u ts  c (variables with setpoints)
2. S e le c tio n  o f  m a n ip u la te d  in p u ts  m
3. S e le c tio n  o f  m easurem ents  V (for control purposes including stabilization)
4. S e le c t io n  o f  c o n t r o l  con figura tion  (a structure interconnecting 

measurements /setpoints and manipulated variables, i.e. the structure o f the
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controller K  which interconnects the variables c. and V (controller inputs) 
with the variables m )

5. S e le c tio n  o f  c o n t ro l le r  type (control law specification, e.g., PID, decoupler, 
LQG, etc.).

In most cases the control structure is solved by a mixture between a top-down 
consideration o f control objectives and which degrees of freedom are available to 
meet these (tasks 1 and 2), combined with a bottom-up design o f the control system, 
starting with the stabilization of the process (tasks 3,4 and 5). In most cases the 
problem is solved without the use of any theoretical tools. In fact, the industrial 
approach to plantwide control is still very much along the lines described by Page 
Buckley in his book from 1964.

O f course, the control field has made many advances over these years, for 
example, in methods for and applications of on-line optimization and predictive 
control. Advances has also been made in control theory and in the formulation of 
tools for analyzing the controllability of a plant. These latter tools can be most helpful 
in screening alternative control structures. However, a systematic method for 
generating promising alternative structures has been lacking. This is related to the fact 
the plantwide control problem itself has not been well understood or even defined.

The control structure design problem is difficult to define mathematically, 
both because o f the size o f the problem, and the large cost involved in making a 
precise problem definition, which would include, for example, a detailed dynamic and 
steady-state model. An alternative to this is to develop heuristic rules based on 
experience and process understanding. This is what w ill be referred to as the process  
o r ie n te d  a p p ro a c h .

The realization that the field of control structure design is underdeveloped is 
not new. In the 1970’ ร several “critique” articles where written on the gap between 
theory and practice in the area o f process control. The most famous is the one o f (Foss 
1973) who made the observation that in many areas application was a h e a d  o f theory, 
and he stated that
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The central issue to be resolved by the new theories is the determination of the 
control system structure. Which variables should be measured, which inputs 
should be manipulated and which links should be made between the two sets. 
... The gap is present indeed, but contrary to the views o f many, it is the 
theoretician who must close it.
Many authors point out that the need for a plant-wide perspective on control is 

mainly due to changes in the way plants are designed -  with more heat integration and 
recycle and less inventory. Indeed, these factors lead to more interactions and 
therefore the need for a perspective beyond individual units. However, we would like 
to point out that even without any integration there is still a need for a plant-wide 
perspective as a chemical plant consists o f a string o f units connected in series, and 
one unit w ill act as a disturbance to the next, for example, all units must have the 
same through-put at steady-state.

3.1.2 General Reviews and Books on Plantwide Control

Morari (1982) presents a well-written review on plantwide control, where he 
discusses why modern control techniques were not (at that time) in widespread use in 
the process industry. The four main reasons were believed to be

1. Large scale system aspects.
2. Sensitivity (robustness).
3. Fundamental limitations to control quality.
4. Education.
He then proceeds to look at how two ways o f decompose the problem:
1. Multi-layer (vertical), where the difference between the layers are in the 

frequency o f adjustment o f the input.
2. Horizontal decomposition, where the system is divided into noninteracting 
parts.

Stephanopoulos (1982) states that the synthesis o f a control system for a 
chemical plant is still to a large extent an art. He asks: “Which variables should be 
measured in order to monitor completely the operation o f a plant? Which input should 
be manipulated for effective control? How should measurements be paired with the 
manipulations to form the control structure, and finally, what the control laws are?”
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He notes that the problem of plantwide control is “multi-objective” and “There is a 
need for a systematic and organized approach which w ill identify all necessary control 
objectives” . The article is comprehensive,and discusses many o f the problems in the 
synthesis o f control systems for chemical plants.

Rinard and Downs (1992) review much o f the relevant work in the area of 
plantwide control, and they also refer to important papers that we have not referenced. 
They conclude the review by stating that “ the problem probably never w ill be solved 
in the sense that a set o f algorithms w ill lead to the complete design o f a plantwide 
control system” . They suggests that more work should be done on the following 
items: (1) A  way of answering whether or not the control system w ill meet all the 
objectives, (2) Sensor selection and location (where they indicate that theory on 
partial control may be useful), (3) Processes with recycle. The also welcome 
computer-aided tools, better education and good new test problems.

The book by Balchen and Mumme (1988) attempts to combine process and 
control knowledge, and to use this to design control systems for some common unit 
operations and also consider plantwide control. The book provides many practical 
examples, but there is little in terms of analysis tools or a systematic framework.

The book “ Integrated process control and automation” by Rijnsdorp (1991), 
contains several subjects that are relevant here. Part II in the book is on optimal 
operation. He distinguishes between two situations, sellers marked (maximize 
production) and buyers marked (produce a given amount at lowest possible cost). He 
also have a procedure for design of a optimizing control system.

Loe (1994) presents a systematic way of looking at plants with the focus is on 
functions. The author covers “qualitative” dynamics and control o f important unit 
operations.

Van deWal and de Jager (1995) lists several criteria for evaluation of control 
structure design methods: generality, applicable to nonlinear control systems, 
controller-independent, direct, quantitative, efficient, effective, simple and
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theoretically well developed. After reviewing they concludes that such a method does 
not exist.

The book by Skogestad and Postlethwaite (1996) has two chapters on 
controllability analysis and one chapter on control structure design. Many o f the ideas 
presented in this paper are based on this work.

The coming monograph by Ng and Stephanopoulos ( 1998(3) deals almost 
exclusively with plantwide control.

There also exists a large body of system-theoretic literature within the field of 
large scale systems, but most o f it has little relevance to plantwide control. One 
important exception is the book by Findeisen et al. (1980) on “Control and 
coordination in hierarchical systems” which probably deserves to be studied more 
carefully by the process control community.

3.1.3 Decomposition o f The Problem

The task o f designing a control system for complete plants is a large and 
difficult task. Therefore most methods w ill try to decompose the problem into 
manageable parts. Four common ways of decomposing the problem are

1. Decomposition based on process units
2. Decomposition based on process structure
3. Decomposition based on control objectives (material balance, energy 

balance, quality, etc.)
4. Decomposition based on time scale

The first is a horizontal (decentralized) decomposition whereas the three latter 
latter three provide hierarchical decompositions. Most practical approaches contain 
elements from several categories.

Many o f the methods described below perform the optimization at the end of 
the procedure after checking i f  there degrees of freedom left. However, as discussed 
above, it should be possible to identify the steady-state degrees o f freedom initially,
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It is also interesting to see how the methods differ in terms o f how important 
inventory (level) control is considered. Some regard inventory control as the most 
important (as is probably correct when viewed purely from a control point of view) 
whereas Ponton (1994) states that “ inventory should normally be regarded as the least 
important o f all variables to be regulated” (which is correct when viewed from a 
design point o f view). We feel that there is a need to integrate the viewpoints o f the 
control and design people.

3 .1 .3 .1  T h e  U n it  B a se d  A p p ro a c h

The unit-based approach, suggested by Umeda et a l. (1978), proposes to
1. Decompose the plant into individual unit of operations
2. Generate the best control structure for each unit
3. Combine all these structures to form a complete one for the entire plant.
4. Eliminate conflicts among the individual control structures through mutual 

adjustments.

This approach has always been widely used in industry, and has its main 
advantage that many effective control schemes have been established over the years 
for individual units (e.g. Shinskey (1988)). However, with an increasing use of 
material recycle, heat integration and the desire to reduce buffer volumes between 
units, this approach may result in too many conflicts and become impractical.

As a result, one has to shift to plant-wide methods, where a hierarchical 
decomposition is used. The first such approach was Buckley’s (1964) division of the 
control system into material balance control and product quality control, and three 
plantwide approaches partly based on his ideas are described in the following.

and  m a ke  a p re l im in a r y  c h o ic e  on  c o n t r o l le d  o u tp u ts  ( c c ’ s ) b e fo re  g e t t in g  in to  the

d e ta ile d  d e s ig n .



22

3 .1 .3 .2  H ie ra rc h ic a l D e c o m p o s itio n  B a se d  on  P ro c e ss  S tru c tu re

The hierarchy given in Douglas (1988) for process design starts at a crude 
representation and gets more detailed:

Level 1 Batch vs continuous
Level 2 Input-output structure
Level 3 Recycle structure
Level 4 General structure of separation system
Level 5 Energy interaction
Fisher et a l. (1988) propose to use this hierarchy when performing 

controllability analysis, and Ponton and Liang (1993) point out that this hierarchy, 
(e.g. level 2 to level 5) could also be used foi control system design. This framework 
enables parallel development for the process and the control system. W ithin each of 
the levels above any design method might be applied.

Douglas (1988) present a different hierarchy for control system design. In this 
hierarchy the view point is not one the flowsheet but on steady-state, normal dynamic 
response and abnormal dynamic operation.

Ng and Stephanopoulos (19986) propose to use a similar hierarchy for control 
structure design. The difference between Douglas (1988) and Ng and Stephanopoulos 
(19986)’s hierarchy is that level 1 is replaced by a preliminary analysis and level 4 
and on is replaced by more and more detailed structures. At each step the objectives 
identified at an earlier step is translated to this level and new objectives are identified. 
The focus is on construction of mass and energy balance control. The method is 
applied to the Tennessee Eastman case.

A ll these methods have in common that at each level a key point is to check if  
there are enough manipulative variables to meet the constraints and to optimize 
operation. The methods are easy to follow and gives a good process understanding, 
and the concept o f a hierarchical view is possible to combine with almost any design 
method.
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3 .1 .3 .3  H ie ra rc h ic a l D e c o m p o s itio n  B a se d  o n  C o n tro l O b jec tiv e s

The hierarchy based on control objectives is sometimes called the tiered 
procedure. This bottom-up procedure focuses on the tasks that the controller has to 
perform. Normally one starts by stabilizing the plant, which mainly involves placing 
inventory (mass and energy) controllers.

Price et a l. (1993) build on the ideas that was introduced by Buckley (1964) 
and they introduce a tiered framework. The framework is divided into four different 
tasks:

I Inventory and production rate control.
I I  Product specification control
I I I  Equipment &  operating constraints
IV  Economic performance enhancement.

Their paper does not discuss points III or IV. They perform a large number 
(318) o f simulations with different control structures, controllers (P or PI), and 
tunings on a simple process consisting of a reactor, separator and recycle o f unreacted 
reactant. The configurations are ranked based on integrated absolute error of the 
product composition for steps in the disturbance. From these simulation they propose 
some guidelines for selecting the through-put manipulator and inventory controls. (1) 
Prefer internal flows as through-put manipulator. (2) the through-put manipulator and 
inventory controls should be self-consistent(self-consistency is fulfilled when a 
change in the through-put propagates through the process by “ itse lf’ and does not 
depend on composition controllers). They apply their ideas on the Tennessee Eastman 
problem (Price et a l. 1994).

Ricker (1996) comments upon the work of Price e t a l. (1994). Ricker points 
out that plants are often run at fu ll capacity, corresponding to constraints in one or 
several variables. I f  a manipulated variable that is used for level control saturates, one 
looses a degree o f freedom for maximum production. This should be considered when 
choosing a through-put manipulator.
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Luyben et a l. (1997) point out three limitations o f the approach o f Buckley. 
First, he did not explicitly discuss energy management. Second, he did not look at 
recycle. Third, he placed emphasis on inventory control before quality control. Their 
plantwide control design procedure is listed below:

1. Establish control objectives.
2. Determine the control degrees of freedom by counting the number of 

independent valves.
3. Establish energy inventory control, for removing the heats o f reactions and 

to prevent propagation o f thermal disturbances.
4. Set production rate. The production rate can only be increased by increasing 

the reaction rate in the reactor. One recommendation is to use the input to 
the separation section.

5. Product quality and safety control. Here they recommend the usual “control 
close” -rule.

6. Inventory control. Fix a flow in all liquid recycle loops. They state that all 
liquid levels and gas pressures should be controlled.

7. Check component balances. (After this point it might bee necessary to go 
back to item 4.)

8. Unit operations control.
9. Optimize economics or improve dynamic controllability.

Step 3 comes before determining the throughput manipulator, since the reactor 
is typically the heart of the process and the methods for heat removal are intrinsically 
part o f the reactor design. In order to avoid recycling o f disturbances they suggest to 
set a flowrate in all recycles loops; this is discussed more in section 6. They suggest in 
step 6 to control all inventories, but this may not be necessary in all cases; e.g. it may 
be optimal to let the pressure float (Shinskey 1988). They apply their procedure on 
several test problems; the vinyl acetate monomer process, the Tennessee Eastman 
process, and the HDA process.

3 .1 .3 .4  H ie ra rc h ic a l D ec o m p o sitio n  B a se d  o n  T im e S ca le s

Buckley (1964) proposed to design the quality control system as high-pass filters for 
disturbances and to design the mass balance control system will as low pass filters. If the
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resonance frequency of the quality control system is designed to be an order of magnitude 
higher than the break frequency of the mass balance system then the two loops will be non­
interacting.

McAvoy and Ye (1994) divide their method into four stages:
1. Design of inner cascade loops.
2. Design of basic decentralized loops, except those associated with quality and 

production rate.
3. Production rate and quality controls.
4. Higher layer controls.

The decomposition in stages 1-3 is based on the speed of the loops. In stage 1 the idea 
is to locally reduce the effect of disturbances. In stage 2 there generally are a large number of 
alternatives configurations. These may be screened using simple controllability tools, such as 
the RGA. One problem of selecting outputs based on a controllability analysis is that one may 
end up with the outputs that are easy to control, rather than the ones that are important to 
control. The method is applied to the Tennessee Eastman test problem.

3.2 In te raction Analysis and M u ltip le  Single Loop Designs

This section is concerned with discussing how interaction analysis is carried 
out and how the results o f such analysis are used for multiple single-loop controller 
designs. The mail questions regarding when  to use this control strategy and h o w  to 
design the multiple single-loop controllers w ill be answered in this section.

3.2.1 Prelim inary Considerations of Interaction Analysis and Loop Pairing

3 .2 .1 .1  A  M e a su re  o f  C o n tro l L o o p  In te ra c tio n s

Consider an example 2 x 2  system (see Figure 3.1) with two output variables, 
yi and _y2, and two input variables that we w ill now refer to as ทไ\ and m 2 because we 
do not yet know which one w ill be paired with which output variable.
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Loop 1

Figure 3.1 Loop interactions for a 2 X 2 system.

Note that each loop can be opened or closed. When both loops are open, then 
เทI and เท2 can be manipulated independently and the effect o f each o f these inputs on 
each o f the outputs is represented by the following transfer function model:

y ,^ ) = £11(ร)/ท,(ร)+ £12(ร)m2($) (3.1)
y 2 ( s )  =  g  21 ( ร ) m 1( ร )  +  g  22 ( ร ) m 2 ( ร )  (3.2)

where each transfer function element consists of an unspecified dynamic portion, and 
a steady-state gain term K jj.

Let us now consider เท 1 as a candidate input variable to pair with V|. In order 
to evaluate this choice against the alternative of using เทา  instead, we w ill perform two 
“experiments” on the system.

• Experim ent 1: U n it s te p  ch a n g e  in n il w ith  a ll  lo o p s  o p en .

When a unit step change is made in the input variable m \, with all the loops 
open, the output variable y \  w ill change, and so w ill y 2, but for now we are primarily 
interested in the response in y
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After steady state has been achieved, let the change observed in y, as a result 
of this change in mi be referred to as Ay 1,,, this represents the m a in  e ffe c t o f mi on 
y 1 .Observe from Eq. (3.1) that:

Ay น- = * 1, (3.3)

Keep in mind that no other input variable apart from mi has been changed, and 
all the control loops are opened so that there is no feedback control involved.

• Experiment 2: U n it  s tep c h a n g e  in  m j w ith  lo o p s  2  c losed.

In this “experiment,” the same unit step change implemented in mi in the first 
“experiment” w ill be implemented; however, this time, Loop 2 is closed, and the 
controller g a  is charged with the responsibility o f using the other input variable m2 to 
ward o ff any upset in y2 occurring as a result o f this step change in mi. Note that 
Figure 3.1 shows that mi has both a direct influence on yi and an indirect influence 
with the path given by the dotted line. In particular the following things happen to the 
process due to the change in mi :

1. Obviously yi changes because of gn, but because o f interactions via the 
g 21 element, so does y2.

2. Under feedback control, Loop 2 wards o ff this interaction effect on y2 by 
manipulating m2 until y2 is restored to its initial state before the occurrence 
o f the “disturbance.”

3. The changes in เท2 now return to affect yi via the g i2 transfer function 
element.

Thus, the changes observed in yi are from two different sources: (1) the direct 
influence o f mi on yi (which we already know from “experiment” 1 to be Aylm), and 
(2) the additional, in d ire c t influence, precipitated by the retaliatory action from the 
Loop 2 controller in warding o ff the interaction effect o f mi on y2, say, Ayl r . Note that
this quantity, Aylr is indicative of how much interaction mi is able to provoke from 
the other control loop in its attempt to control y2.
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After the dynamic transients die away and steady state has been achieved, 
there w ill be a net change observed in V|, Ay, * given by:

A -V 1* = Ay,„, +Aylr

a sum o f the m a in  e ffe c t of /ท1 on y 1 and that o f the interactive effect provoked by m \ 
interacting with the other loop.

As we w ill show below, the quantity Ay, * w ill be given by, say:

Ay,* = £ 1 ''1.. * , 2 * 0
V 1 ^ 2 2  J

=  K  *  A-|| (3.4)

Observe now that a good measure of how well the process can be controlled if  
m \ is used to control yi is:

A ) 'น,/l,, = Ay, *
or

4 ,
Ay \m

A >'น, +  A >’น
(3.5)

This quantity is a measure o f the main effect o f m \ on yi compared to the total 
effect including the effect it provokes from the other controller, since it cannot control 
Vi without upsetting y2.Thus the quantity, A,,, provides a measure of the extent of 
interaction in using m \ to control yi while using m2 to control y2.

Observe that we can now perform a similar set of “experiments” that, this 
time, investigate the candidacy o f m2 as the input variable to use in controlling yi. By 
properly interpreting the measures calculated from Eq. (3.5), we can quantify the 
degree o f steady-state interaction involved with each control configuration, and thus 
determine which configuration minimizes steady-state interaction.



29

3.2.1.2 Loop Pairing on The Basis of Interaction Analysis

Let us return to the results o f the “experiments” performed on the example 2 X 
2 system of the previous subsection and now interpret the quantity A, 1 as a measure of 
loop interaction. We w ill do this by evaluating the consequences o f having various 
value A, 1,

1. The case when A,, = 0
This can happen only i f  Aylr is zero; in physical terms, it means that the main

effect o f ๓! on y \ ,  measured when all the loops are opened, and the total effect, 
measured when the other loop is closed, a re  id e n tica l.

This w ill be the case only if:
• ๓! does not affect y 2, in which case there is no retaliatory control action 

from เท2, or
• ๓! does affect y 2 , but the retaliatory control action from เท2 does not cause 

any changes in y I because เท2 does not affect y \.

Under such circumstances, observe that ๓! is the perfect input variable to use 
in controlling yi, because we w ill then have no  interaction problems.

2. The case when A, 1 = 1
This indicates a condition in which ๓! has no effect on Vi, for only then will 

Aylm be zero in response to a change in ๓!. Observe that under these circumstances, 
๓! is the perfect input variable for controlling n o t yi but yy. since ๓! does not affect 
y i, we can therefore control y2 with ๓! without interacting with yi at all.

3. The case when 0 < A11 <1
This corresponds to the condition in which the direction o f the interaction 

effect is the same as that o f the main effect. In this case the total effect. In this case 
the total effect is greater than the main effect. For A, 1 > 0.5, the main effect 
contributes more to the total effect than the interaction effect, and as the main effect 
contribution increases, A,, becomes closer to 1. For A11 <0.5, the contribution from
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the interaction effect dominates, and as this contribution increases, /(1 1 moves closer 
to zero. For \  1 = 0.5, the contributions from the main effect and the interactive effect 
are exactly equal.

4. The case when /(11 > 1

This corresponds to the condition where Ayir (the interaction effect) is 
opposite in sign to Ayim (the main effect), but smaller in absolute value. In this case 
the total effect, A y i* , is less than the main effect, Ayim, and thus a larger controller 
action เท 1 is required to achieve a given change in yi in the closed loop than in the 
open loop. Obviously for /(11 very large and positive, the interactive effect almost
cancels the main effect and closed-loop control o f Vi by m \ w ill be very difficult to 
achieve.

5. The case when A, 1 < 0

This case arises when Ayir (the interaction effect) is not only opposite in sign 
to Ayim (the main effect), but is larger in absolute value. The pairing o f m  1 with )’i in 
this case is not very desirable because the direction of the effect o f m  1 on Vi in the 
open loop is opposite to the direction in the closed loop. The consequences o f using 
such a pairing could be catastrophic as we shall demonstrate below.

W ith these preliminary ideas in mind, it is possible to generalize the 
interaction analysis to multivariable systems o f arbitrary dimension.

3.2.2 The Relative Gain A rray  (RGA)

The quantity /(11 introduced in the last section is known as the re la t iv e  g a in  

between output yi and input m \, and as we have seen, it provides a measure o f the 
extent o f the influence o f process interactions when m \ is used to control yi. Even 
though we introduced this quantity in reference to a 2 X 2 system, it can be 
generalized to any other multivariable system of arbitrary dimension.
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Let us define Atj, the relative gain between output variable V, and input 
variable t r i j ,  as the ratio o f two steady-state gains:

A  = 7 - ,  \
dy ,

\ dm  บ

/  a  \ày,

\ dm บ

aliioops c lo se d e x c e p i lor th e m  loop

(3.6)

o p e n - l o o p g a i n  

^  c l o s e d  - l o o p  g a i n  J
for loop i  under the control o f r r i j

When the relative gain is calculated for all the input/output combinations of a 
multivariable system, and the results are presented in an array o f the form shown 
below:

A A -  A ,
A A22 -  An

A . L ■"  An

(3.7)

the result is what is known as the re la t iv e  g a in  a r ra y  (RGA) or the B r is to l  a rra y . The 
RGA was first introduced by Bristol [1] and has become the most widely used 
measure o f interaction.

3 .2 .2 .1  P ro p e rtie s  o f  th e  R G A

The following are some of the most important properties o f the RGA; they 
provide the bases for its utility in studying and quantifying interactions among the 
control loops o f a multivariable system.

1. The elements o f the RGA across any row, or down any column, sum up to

พ (3.8)
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2. A.. is dimensionless; therefore, neither the units, nor the absolute values 
actually taken by the variables n ij, or Vi, affect it.

3. The value of A. is a measure o f the steady-s ta te  interaction expected in the
/th loop of the multivariable system if  its output Vi is paired with ny, in 
particular, \ 1 -  1 implies that n ij affects V; without interacting with, and/or
eliciting interaction from, the other control loops. By the same token, Ay =
0 implies that n ij has absolutely no effect on Vi-

4. Let K ij*  represent the loop I  steady-state gain when all the other loops -  
excepting this one -  are closed, (i.e., a generalization o f Eq. (3.4) for the 
example 2 x 2  system), whereas K ij represents the normal, o p e n - lo o p  gain. 
By the definition of Ay. 1 observe that:

K S* = J -K «  (3.9)

W ith the following, very important implication: 1/A  ̂ tells US by what
factor the o p e n -lo o p  g a in  between output V, and input m j w ill be altered 
when the other loops are closed.

5. When is negative, it is indicative o f a situation in which loop i, with all
loops open, w ill produce a change in V/ in response to a change in nij 
totally opposite in direction to that when the other loops are closed. Such 
input/output pairings are potentially unstable and should be avoided.

Before discussing the general principles of how the RGA is actually used for 
loop pairing, it seems appropriate first to discuss the methods by which it is 
computed.

3 .2 .2 .2  In te rp re t in g  T he  R G A  E le m e n ts

It is important to know how to interpret the RGA elements properly before we 
can use the RGA for loop pairing.

For the purpose o f properly interpreting the RGA element A ij, it is convenient 
to classify all the possible values it can take into five categories, and in each case,
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investigate the implications for loop interaction, and '.vhat such implications suggest 
regarding input/output pairing.

1. A i j  = 1, indicating that the open-loop gain between y, and n ij is id e n t ic a l to 
the closed-loop gain:

• Im p lic a t io n  f o r  lo o p  in te ra c t io n s ะ loop i w ill n o t be subject to retaliatory 
action from other control loops when they are closed, therefore n ij can 
control y, without interference from the other control loops. If, however, 
any o f the gik elements in the transfer function matrix are nonzero, then the 
ith loop w ill experience some disturbance from control actions taken in the 
other loops, but these are not provoked by control actions taken in the ith 
loop.

• P a ir in g  re c o m m e n d a tio n ะ pairing y, with m j w ill therefore be ideal.

2. A i j  = 0, indicating that the open-loop gain between y, and m j is ze ro :

•  Im p lic a t io n  f o r  lo o p  in te ra c t io n s ะ m j has no direct influence on y, (even 
though it may affect other output variables).

• P a ir in g  recom m enda tion ', do n o t pair y, with ntj\ pairing n ij with some 
other output w ill however be advantageous, since we are sure that at least 
y, w ill be immune to interaction from this loop.

3. 0 < A i j  <  1, indicating that the open-loop gain between y, and n ij is s m a lle r  
than the closed-loop gain:

• Im p lic a t io n  f o r  lo o p  in te ra c t io n s ะ since the closed-loop gain is the sum of 
the open-loop gain a n d  the retaliatory effect from the other loops:
a) The loops are definitely interacting, but
b) They do so in such a way that the retaliatory effect from the other 

loops is in the save direction as the main effect o f m j on y,.
Thus the loop interactions “assist” m j in controlling y(. The exten o f the 
“assistance” from other loops is indicated by how close A  i j  is to 0.5.
When A i j  =  0.5, the main effect o f m j on y, is exactly identical to the 
retaliatory (but complementary) effect it provokes from other loops; when A  i j  

>  0.5 (but still less than 1) this retaliatory effect from the other interacting loop
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is lower than the main effect o f rrij on y,; if, however, 0 < A ij <  0.5, then the
retaliatory effect is actually more substantial than the main effect.
• P a ir in g  re c o m m e n d a tio n : I f  possible, avoid pairing V, with m j whenever 

A ij <  0 .5 .

4. A i j  > 1, indicating that the open-loop gain between y, and n ij is l a r g e r  than 
the closed-loop gain:

• Im p lic a t io n  f o r  lo o p  in te ra c t io n s ะ the loops interact, and the retaliatory 
effect from the other loops acts in o p p o s itio n  to the main effect o f m j on V, 
(thus reducing the loop gain when the other loops are closed); but the main 
effect is still dominant, otherwise A i j w ill be negative. For large A ij  
values, the controller gain for loop i w ill have to be chosen much larger 
than when all the other loops are open. This could cause loop i to become 
unstable when the other loops are open.

• P a ir in g  re co m m e n d a tio n : The higher the value o f A ij  the greater the 
opposition m j experiences from the other control loops in trying to control 
y ij\ therefore, where possible, do not pair m j with y, i f  A ij takes a very high 
value.

5. A  i j  < 0, indicating that the open-loop and closed-loop gains between V; and 
m j have opposite signs:

• Im p lic a t io n  f o r  lo o p  in te ra c tio n s : the loops interact, and the retaliatory 
effect from the other loops is not only in o p p o s it io n  to the main effect of ny  
on y„ it is also the more dominant o f the two effects. This is a potentially 
dangerous situation because opening the other loops w ill likely cause loop 
i to become unstable.

• P a ir in g  re co m m e n d a tio n : because the retaliatory effect that m j provokes 
from the other loops acts in opposition to, and in fact dominates, its main 
effect on y„ avoid pairing m j with y,.

3.2.3 Singular Value Analysis

The previous section contained a number o f quantitative guideline for 
selecting controlled and manipulated variables. In this section we consider a powerful
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analytical technique, singular value analysis (SVA), which can be used to solve the 
following important control problems:

1. Selection o f controlled and manipulated variables.
2. Evaluating o f the robustness o f a proposed control strategy.
3. Determination o f the best multiloop control configuration.

Singular value analysis and its extensions, including singular value 
decomposition (SVD), also have many uses in numerical analysis and the design o f 
multivariable control systems which are beyond the scope o f this book In this section 
we provide a brief introduction to SVA that is based on an analysis o f steady-state 
process models.

Consider a process that has ท controlled variables and ท manipulated variables. 
We assume that a steady-state process model is available and that it has been 
linearized to give

Y =  KM (3.10)

Where Y is the vector o f ท controlled variables, M is the vector of ท 
manipulated variables, and K is the steady-state gain matrix. The elements o f Y and M 
are expressed as deviation variables. One desirable property o f K  is that the ท linear 
equation in ท unknowns represented by (3.10) be linearly independent. In contrast, i f  
the equations are dependent, then not all of the ท controlled variables can be 
independently regulated. This characteristic property o f linear independence can be 
checked by several methods . For example, i f  the determinant o f K is zero, the matrix 
is singular and the ท equation is (3.10) are not linearly independent.

Another way to check for linear for linear independence is to calculate one o f 
the most important properties o f a matrix-its eigenvalues. The eigenvalue o f marix K  
are the root o f the equation:

I t f - c x l l  =0 (3.11)

W he re  I AT - cxl I denotes the de te rm in an t o f  m a tr ix  K - a l ,  and I is the n  X n  id e n tity

m a tr ix . T he  ท e igenva lues  o f  K  w i l l  be denoted by  (J i, a 2, . . . ,  a n. I f  any o f  the
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eigenvalues IS zero, matrix K  is singular, and difficulties w ill be encountered in 
controlling the process, as noted above. I f  one eigenvalues is very small compared to 
the others, then large changes in one or more manipulated variables w ill be required 
to control the process, as is show at the end o f this section.

Another important property o f K  is its singular value, CT|, cr2, ..., a n .The 
singular values are nonnegative numbers that are defined as the positive square root of 
the eigenvalues o f K TK . The first r singular values are positive numbers where r is the 
rank o f matrix K TK . The remaining ท - r  singular values are zero. Usually the nonzero 
singular values are ordered with a I denoting the largest and err denoting the smallest.

The final matrix property of interest here is the condition number, CN. 
Assume that K  is nonsingular. Then the condition number o f K  is defined as the ratio 
of the largest and smallest nonzero singular value:

CA = —  (3.12)

I f  K  is singular, then it is ill-conditioned and by convection CN ะ= 0 0. The concept o f a 
condition number can also be extended to non-square matrices .

The condition number is a positive number that provides a measure o f how Ill- 
conditioned the gain matrix is. It also provides useful information on the sensitivity of 
the matrix properties to variations in the elements o f the matrices. This important 
topic, which is related to control system robustness, w ill be considered later in this 
section. But first we consider a simple example.

3.2.4 Condition Number

T w o  m easu re s  (C o n d it io n  n u m b e r an d  R G A )  w h ic h  a re  u sed  to  q u a n t i f y  the

deg re e  o f  d i r e c t io n a l i t y  an d  T h e  le v e l o f  ( tw o -w a y )  in te ra c t io n s  in  M IM O  s ys tem s ,

are th e  c o n d it io n  n u m b e r a n d  th e  re la t iv e  g a in  a r ra y  (R G A ) ,  re s p e c t iv e ly
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We define the condition number o f a matrix as the ratio between the maximum
and minimum singular values,

7(G) = <x (G ) /ct(G) (3.13)

A matrix with a large condition number is said to be ill-conditioned, For a non 

singular (square) cr(G) = 1/<j (G "') , so y (G )  =  <x(G) <r(G~' ) .that the condition 
number is large i f  both G and G - 1 have large elements.

The condition number has been used as an input -  output controllability 
measure, and in particular it has been postulated that a large condition number 
indicates sensitivity to uncertainty. This is not true in general, but the reverse holds; if  
the condition number is small, then the multivariable effects of uncertainty are not 
likely to be serious .

I f  the condition number is large (say, larger than 10), then this may indicate 
control problems:

1. A large condition number y(G) -  cr(G)/<x(G) may be caused by a small 

value o f cr(G), which is generally undesirable (on the other hand, a large

value o f cr(G) need not necessarily be a problem).
2. A large condition number may mean that the plant has a large minimized 

condition number, or equivalently, it has large RGA-elements which 
indicate fundamental control problems.

3. A large condition number does imply that the system is sensitive to 
‘unstructured’ (full-block) input uncertainty, but this kind of uncertainty 
often does not occur in practice. Therefore we cannot generally conclude 
that a plant with a large condition number is sensitive to uncertainty.
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3.2.5 Scaling

Scaling is very important in practical applications as it makes model analysis 
and controller design ( weight selection) much simpler. It requires the engineer to 
make a judgement at the start o f the design process about the required performance of 
the system. To do, decisions are made on the expected magnitudes o f disturbances 
and reference changes, on the allowed magnitude o f each input signal, and on the 
allowed deviation o f each output.

Let the unsealed (or originally scaled) linear model o f the process in deviation 
variables be

y  =  G û +  G dd \  e =  y - r  (3.14)

where a hat ( ) is used to show that the variables are in their unsealed units. A useful
approach for scaling is to make the variables less than one in magnitude. This is done 
by dividing each variable by its maximum expected or allowed change. For 
disturbances and manipulated inputs, we use the scaled variables.

d = d / d m น =  û / û m3X (3.15)
where:
• d mM — largest expected change in disturbance
• d màX — Largest allowed input change

The maximum deviation from a norminal value should be chosen by thinking 
o f the maximum value one can expect, or allow, as a function o f time.

The variable y  , ê  and r  are in the same units, so the same scaling factor 
should be applied to each. Two alternatives are possible:
• êmax — largest allowed control error
• rmax — largest expected change in reference value

Since a major objective o f control is to minimize the control error ê , we here 
usually choose to scale with respect to the maximum control error:

y  =  y ' êna*’ r  =  r / ê mix, e  =  ê / ê mM (3 .1 6 )



Then the following model in terms o f scaled variables
y  =  G u  + G dd  \ e  =  y - r
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(3.17)

3.3 Decentralized Feedback Contro l

Figure 3.2 Decentralized diagonal control o f a 2x2 plant

In this section, G(s) is a square plant which is to be controlled using a diagonal 
controller (see Figure 3.2)

^ 1 (•ร)
k 2 { ร )

K { s )  =  d i a g { k i { ร ) } ^

km(s)
(3.18)

This is the problem of decentralized diagonal feedback control. The design of 
decentralized control systems involves two steps :

1. The choice o f pairings (control configuration selection)
2. The design (turning) o f each controller, kj (ร).

The optimal solution to this problem is very difficult mathematically, because 
the optimal controller is in general o f infinite order and may be non-unique. Rather 
we aim at providing simple tools for pairing selections (step 1) and for analyzing the 
achievable performance (controllability) o f diagonally controlled plants (which may 
assist in step 2).
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R em ark . The treatment in this section may be generalized to block-diagonal 
controllers .

N o ta tio n  f o r  d e c e n tra liz e d  d ia g o n a l c o n tro l.  G(s) denotes a square m  X m  
plant with elements gij.G 'j (ร) denotes the remaining (m -  1) X (m -  1) plant obtained 
by removing row i and column j  in G(s). With a particular choice o f pairing we can 
rearrange the columns or rows of G(s) such that the paired elements are along the 
diagonal of G(s). We then have that the controller K  (ร) is diagonal (d ia g  {k j} ) , and 
we also introduce

as the matrix consisting o f the diagonal element o f G. The loop transfer function in 
loop I is denoted L i =  gijki, which is also equal to the i ’ th diagonal element o f L  = GK.

The magnitude of the off-diagonal elements in G (the interactions) relative to 
its diagonal elements are given by the matrix

A very important relationship for decentralized control is given by the 
following factorization o f the return difference operator :

« แ พ
G(s) = diag{Gu(ร)} = (3.19)

8mn,(s)

E  =  ( G - G ) G ' 1 (3.20)

(3.21)

or equivalently in terms o f the sensitivity function ร = (I + G K )'1,
ร = ริบ + ET)-' (3.22)

Here

and T  =  I  -  ร (3.23)
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contain the sensitivity and complementary sensitivity functions for the individual 
loops. Note that ร ิ is not equal to the matrix o f diagonal element o f ร. (3.22) with
G - G  and G ' =  G .  The reader is encouraged to confirm that (3.22) is correct, 
because most o f the important results for stability and performance using 
decentralized control may be derived from this expression. An alternative 
factorization is

ร =  ( I  +  ~ s ( T - I ) r ' s r  (3.24)

where r  is the P e rfo rm a n c e  R e la tiv e  G a in  A r r a y  (P R G A )

r  (ร ) =  G(s)G-'(ร ) (3.25)

Which is a scaled inverse o f the plant. Note that E = r  1 -  I  . A t frequencies 
where feedback is effecTive ( ร ิ  * 0 ) ,  (3.24) yields s  X  S T  which shows that r  is 
important when evaluating performance with decentralized control. The diagonal 
elements o f the PRGA-matrix are equal to the diagonal elements o f the RGA, Yii = Xjj 

1 and this is the reason for its name. Note that the off-diagonal elements o f the PRGA 
depend on the relative scaling on the outputs, whereas the RGA is scaling 
independent. On the other hand, the PRGA measures also one-way interaction, 
whereas the RGA only measures two-way interaction.

We also w ill make use o f the related C lo se d -L o o p  D is tu rb a n c e  G a in  (C L D G )  
matrix, defined as

G11 (ร) = r  (ร)Gd (ร) = G(s)G-'(ร)G11(ร) (3 .26 )

The CLDG depends on both output and disturbance scaling.

3.3.1 RGA as Interaction M easure for Decentralized Control

We here follow Bristol (1966), and show that the RGA provides a measure of 
the interactions caused by decentralized diagonal control. Let U j and Yi denote a 
particular input and output for the multivariable plant G(s), and assume that our task 
is to use Uj to control Yi. Bristol argued that there w ill be two extreme cases:
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• Other loops open: A ll other inputs are constant, i.e. นk =  0 , V k  *  j

• Other loops closed: A ll other outputs are constant, i.e. y k = 0, \ / k  *  i

In the latter case, it is assumed that the other loops are closed with perfect 
control. Prefect control is only possible at steady-state, but it is a good approximation 
at frequencies within the bandwidth o f each loop. We now evaluate the effect dy 1/ du 1

of “our” given input Uj on “our” given output y  1 for the two extreme cases. We get

(
Other loops open:

<

Other loops closed: V WLli J V , =0,k *i

dy,
du =  8  il

i  ) „เ =0.k* j

( dy, N

(3.27)

rx  วร'!

Here g  11 = [G ]i;/ is the i j  ' th element o f G, whereas g  11 is the inverse o f the j i  ’ th 
element o f G"1

(3.29)

To derive (3.29) note that

y  =  G u dy,
V ̂ u i  A, =0.k*J

-[CL
and interchange the roles o f G and G‘ , of น and y, and o f i  and j  to get

t  d u ^
น = G~ y  ■ dyJ i /y ,= 0 ,k*i

(3.30)

(3.31)

and (3.29) follows. Bristol argued that the ratio between the gains in (3.27) and 
(3.28), corresponding to the two extreme cases, is a useful measure o f interactions, 
and he introduced the term, i j '  th relative gain defined as

(3.32)
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The Relative Gain Array (RGA) is the corresponding matrix o f relative gains. 
From (3.32) we get A(G) = G X (G “ V  where X denotes element-by-element 
multiplication (the Schur product). This is identical to our definition o f the RGA 
matrix.

Clearly, we would like to pair variables U j to y, so that Ajj is close to 1, 
because this means that the gain from Uj to y, is unaffected by closing the other 
loops. On the other hand, a pairing corresponding to Ajj ( 0 )  < 0  is clearly undesirable, 
because it means that the steady-state gain in “our” given loop changes sign when the 
other loops are closed.

3.3.2 Performance o f Decentralized Control System

In the following, we consider performance in terms o f the control error
e -  y - r  = G u +  Gdd -  r  (3.33)

Support the system has been scaled 1 such that at each frequency:
1. Each disturbance is less than 1 in magnitude, I dk I < 1.
2. Each reference change is less than the corresponding diagonal element in R, 

\rj\ <  Rj.

3. For each output the acceptable control error is less than 1, le,I < 1.

For SISO systems, we found that in terms of scaled variables we must at all 
frequencies require

\ l + L \ > \ G d\ a n d \ l + L \ > \ R \  (3.34)

for acceptable disturbance rejection and command tracking, respectively. Note that L, 
Gd and R are all scalars in this case. For decentralized control these requirements may 
be directly generalized by introducing the PRGA-matrix. r  = G  G '1, in (3.26) and the 
CLDG-matrix, G d  =  TGd , in (3.27) These generalizations w ill be presented and 
discussed next, and subsequently proved.
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S in g le  d is t u r b a n c e .  Considéra single disturbance, in which case Gd is a vector, 
and let gdi denote the j'th element o f Gd- Let L i = g iik j denote the loop transfer function 
in loop i. Consider frequencies where feedback is effective so ร ิ r  is small. Then for 
acceptable disturbance reject 0,1 < 1) we must with decentralized control require for 
each loop i,

l l+ L i l> l£ J V i  (3.35)
which is the same as the SISO-condition except that Gd is replace by the CLDG, g  111 

In words, g j  1. give the “apparent” disturbance gain as seen from loop I when the 
system is controlled using decentralized control.

S in g le  r e fe r e n c e  c h a n g e . Similarly, consider a change in reference for output j  

of magnitude R j. Consider frequencies where feedback is effective . Then for 
acceptable reference trackingO/l < 1) we must require for each loop i.

Il+L,l > \ y i j \  • \R j\ V / (3.36)

which is the same as the SISO-condition except for the PRGA-factor, lyijl. In other 
words, when the other loop are closed the response in loop i  gets slower by a factor 
\/ij\. Consequently, for p e r f o r m a n c e  it is desirable to have s m a l l  elements in r ,  at least 
at frequencies where feed back is effective. However, at frequencies close to 
crossover, stability is the main issue, and since the diagonal elements of the PRGA 
and RGA are equal, we usually prefer to have y ,i close to 1

P r o o f s  of (3.35) and (3.36): At frequencies where feedback is effective, ร is small, so
I  + ร ิ( T -  / )  » /  (3.37)

and from (3.25) we have
ร * ร ิ r

The closed-loop response then becomes
e  = SGdd -  S r « SGdd - S r r

(3.38)

(3.39)



45

and the response in output i  to a single disturbance d k and a single reference change ๆ
is

where ริ 1 =  1/(1+ gjjkj) is the sensitivity function for loop I by itself. Thus, to achieve 
< 1 for \dk\ = 1 we must require I ริ,£4,,* I < 1 and (3.35) follows. Similarly, to 

achieve ๒/1 < 1 for \ \ๆ = l/?vl we must require \Si/ikRj\ < 1 and (3.36) follows. Also note 
that \s i/ ik\ < 1 w ill imply that assumption (3.37) is valid. Since R usually has all of its 
elements larger than 1, in most case (3.37) w ill be automatically satisfied i f  (3.36) is 
satisfied, so we normally need check assumption (3.37).

Remark 1 (3.38) may also be derived from (3.22) by assuming f  ระ/ which yields 
( [ + E Î  )■ ' *  ( / + £)■ ' = r .

Remark 2 Consider a particular disturbance with model gd. Its effect on output i  with 
no control is gdi , and the ratio between g di (the CLDG) and gdi is the re la tiv e

d is tu rb a n c e  g a in  (RDG) (pi) o f Stanley et al. (1985) (see also Skogestad and Morari 
(1987b):

Thus, P i which is scaling independent, gives the change in the effect o f disturbance 
caused by decentralized control. It is desirable to have P i small, as this means that the 
interactions are such that they reduce the apparent effect o f the disturbance, such that 
one does not need high gains ILjl in the individual loops.

3.3.3 Summary: C ontro llab ility  Analysis fo r Decentralized Control

When considering decentralized control o f a plant, one should first check that 
the plant is controllable with any controller. I f  the plant is unstable, then as usual the 
unstable modes must be controllable and observable. In addition, the unstable modes 
must not be d e c e n tra liz e d  f ix e d  m odes , otherwise the plant cannot be stabilized with a 
diagonal controller

l  8 j ikd k -  ริi Y,krk (3.40)
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The next step is to compute the RGA-matrix as a function o f frequency, and to 
determine i f  one can find a good set o f input-output pairs bearing in mind the 
following:

1. Prefer pairings which have the RA-matrix close to identity at frequencies around 
crossover, i.e. the RGA-number II A ( ช ) — /  II should be small. This rule is to
ensure that interactions from other loops do not cause instability

2. Avoid a pairing i j  with negative steady-state RGA element, /(17 (G(0)).
3. Prefer a pairing i j  where g ij puts minimal restrictions on the achievable bandwidth. 

Specifically, the frequency couij where Z g i j ( jc o u1j )  ะ= -180" should be as large as 
possible.

This rule favours pairing on variables “close to each other” , which makes it 
easier to satisfy (3.35) and (3.36) physically while at the same time achieving 
stability. It is also consistent with the desire and perform a controllability analysis.

When a reasonable choice o f pairings has been made, one should rearrange G 
to have the paired elements along the diagonal and perform a controllability 
analysis.

4. Compute the CLDG and PRGA, and plot these as a function o f frequency.
5. For systems with many loops, it is best to perform the analysis one loop at the time,

that is, for each loop i, plot Ig^l for each disturbance k and plot เ̂ 17! for each
reference j  (assuming here for simplicity that each reference is o f unit magnitude). 

For performance ,we need |l + L \  to be larger than each o f these

To achieve stability o f the individual loops one must analyze g ii(s ) to ensure 
that the bandwidth required by (3.42) is achievable.

6. As already mentioned one may check for constraints by considering the elements of 
G_1Gd and making sure that they do not exceed one in magnitude within the 
frequency range where control is needed. Equivalently, one may for each loop I  

plot I g 1.1.1 ,and the requirement is then that

{ \s M k l\/แ \) (3.42)

T o  a v o id  in p u t  c o n s tra in ts : I g  1.1.1 >  \g  11ik 11 v /c (3 .4 3 )
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At frequencies where 1^1 is larger than 1 (this follow since G j = G G  'G 11 ).
This provides a direct generalization o f the requirement |G |> |G (/| for SISO
systems. The advantage of (3.43) compared to using G 'Gd is that we can lim it 
ourselves to frequencies where control is needed to reject the disturbance (where
เรั J > 0

I f  the plant is not controllable, then one may consider another choice of 
pairings and go back to step 4. I f  one still cannot find any pairings which are 
controllable, then one should consider multivariable control

7. I f  the chosen pairing is controllable then the analysis base on (3.42) tells us 
directly how large |L(.| = |gl7/c|.| must be, and can be used as a basis foe designing 
the controller k  1(ร) for loop i.


	CHAPTER III THEORY
	3.1 Plantwide Control
	3.2 Interaction Analysis and Multiple Single Loop Designs
	3.3 Decentralized Feedback Control


