REFERENCES

- Amparyup, P. 1999. <u>Classification of Oysters Genera Crassostrea</u>. Saccostrea and <u>Striosrtea in Thailand Utilizing RAPD Markers</u>. Master's Thesis, Department of Biochemistry, Faculty of Science, Chulalongkorn University.
- Avise, J.C. 1994. Molecular Markers: Natural History and Evolution. New York: Chapman & Hall. 511pp.
- Bussarawit, S., Kawinlertwathana, P. and Nateewattana, A. 1990. Primary study on reproductive biology of abalone (*Haliotis varia*) at Phuket, Andaman Sea Coast of Thailand. <u>Kasets Journal.</u> 24: 529-539.
- Carlson, J.E., Tulsieram, L.K., Glaubitz, J.C., Luk., V.W.K., Kauffeldt, C. and Rultledge,
 R. 1991. Segregation of random amplified DNA markers in F1 progeny of conifers.
 <u>Theoretical and Applied Genetics</u>. 83: 194-200.1991.
- Carvalho, G.R. and Pitcher, T.J. 1995. <u>Molecular Genetics in Fisheries</u>. Great Britain: T J press. 126 pp.
- Chen, H.C. 1989. Farming the small abalone *Haliotis diversicolor supertexta* in Taiwan.
 In: K.O. Hahn (Editor), <u>Handbook of Culture of Abalone and Other Marine</u>
 <u>Gastropods.</u> CRC Press, Boca Raton, FL, pp. 265-283.
- Chen, H.C. 1984. Recent inovation in Cultivation of Edible Molluscs in Taiwan, with special Reference to small abalone, *Haliotis diversicolor supertexta* and Hard Clam, *Meretrix lusovia*, <u>Aquaculture</u>. **39**: 11-27.
- Cox, K.W. 1962. California abalones, family *Haliotidae*. California Division of Fish and Game, <u>Fish Bulletin</u> **118**: 1-131.
- Erlich, H.A. 1992. <u>PCR Technology: Principles and Applications for DNA Amplification</u>. M stockton press. 245pp.

- Felsenstein, J. 1993. <u>Phylip (Phylogenetic Inference Package) Version 3.5c.</u> Distributed by the author. Department of Genetics, University of Washington, Seattle.
- Fuze, D.M. 1981. Note on the biology of *Haliotis varia* and *H. asinina*. <u>Fish. Res. J.</u><u>Philipp.</u> 6: 39-49.
- Geiger, D.L. 2000. Distribution and biogeography of the *Haliotidae* (Gastropoda: Vetigastropoda) world-wide. <u>Bollettino Malacologico</u> 35: 57-120.
- Geiger, D.L. and Groves, L.T. 1999. Review of fossil abalone (Gastropoda: Vetigastropoda: *Haliotidae*) with comparison to Recent species. <u>Journal of</u> <u>Paleontology</u> 73: 872-885.
- Gordon, H. R. 2000. World abalone supply, markets and pricing: historical, current and future prospectives. <u>Opening Speech: 4th International Abalone Symposium</u>, Cape Town, South Africa. University of Cape Town, 6-11th February 2000.
- Hardys, H., Balick, M. and Schierwater, B. 1992. Applications of random amplified polymorphic DNA (RAPD) in molecular ecology. <u>Mol. Ecol.</u> 1: 55-63.
- Huang, B.X., Chai, Z.L., Hanna, P.J. and Gough, K.H. 1997. Molecular sequences of two minisatellites in blacklip abalone, *Haliotis rabra*. Electrophoresis **18**(9): 1653-1659.
- Huang, B.X. and Hanna, P.J. 1998. Identification of three polymorphic microsatellite loci in blacklip abalone, *Haliotis rubra* (Leach), and detection on other abalone species.
 J. Shellfish Res. 17(3): 795-799.
- Huang, B.X., Peakall, R. and Hanna, P.J. 2000. Analysis of genetic structure of blacklip abalone (*Haliotis rabra*) populations using RAPD, minisatellite and microsatellite markers. <u>Marine Biology</u>. 136: 207-216.

- Jarayabhand, P., Jew, N. and Choonhabandit, S., 1992. Gametogenic cycle of abalone, *Haliotis ovina* (Gmelin, 1791), at Khangkao Island, Chon Buri Province. Presented at the 18th Congress on Science and Technology of Thailand, 27-29 October 1992, Bangkok, pp. 340-341 (in Thai, with English abstract).
- Jarayabhand, P. and Paphavasit, N. 1996. A review of the culture of tropical abalone with special reference to Thailand. <u>Aquaculture</u>. **140**: 159-168.
- Jarayabhand, P., Piyateeratitivorakul, S., Choonhabandit, S. and Rungsupa, S., 1991.
 Final report on research and development on some aspects of abalone culture.
 Presented to the Toray Science International Research Grant 1990, Bangkok, 52 pp.
- Jarayabhand, P., Yom-La, R. and Popongviwat, A. 1998. Karyotypes of marine molluscs in the family *Haliotidae* found in Thailand. <u>J. Shellfish Res.</u> 17(3): 761-764.
- Jeffreys, A.J., Wilson, V. and Thein, S.L. 1985. Hypervariable minisatellite regions in human DNA. <u>Nature</u>. **316**: 67-73.
- Kaenmanee, M. 1996. <u>A Comparative Study of Different Algal Diets on the Growth of</u> <u>Abalone, *Haliotis ovina* (Gmelin, 1791).</u> Master's Thesis, Department of Marine Science, Faculty of science, Chulalongkorn University.
- Kakhai, N. and Petjamrat, K., 1992. Survey on species and broodstock collection of abalone (*Haliotis* spp.) in Chon Buri, Rayong and Trad Provinces. <u>Technical Paper</u> <u>No. 6/1992. Rayong Coastal Aquaculture Station, Department of Fisheries, Ministry</u> of Agriculture and Cooperatives, <u>Thailand</u>, 31 pp. (in Thai, with English abstract)
- Karp, A., Isaac, P.G. and Ingram, D.S. 1998. <u>Molecular Tools for Screening Biodiversity:</u> <u>Plants and Animal</u>. London: International Thomson Publishing. 498 pp.
- Kirby, L.T. 1992. <u>DNA Fingerprinting: An Introduction</u>. New York: W. H. Freeman and company.

- Kirby, V.L., Villa, R. and Powers, D.A. 1998. Identification of microsatellites in the California red abalone, *Haliotis refescens*. J. Shellfish Res. 17(3): 801-804.
- Klinbunga, S., Ampayup, P., Tassanakajon, A., Jarayabhand, P. and Yoosukh, W. 2000.
 Development of species-specific markers of the tropical oyster (*Crassostrea belcheri*) in Thailand. Mar. Biotechnol. 2: (in press).
- Klinbunga, S., Ampayup, P., Tassanakajon, A., Jarayabhand, P. and Yoosukh, W. 2000.
 Genetic diversity and molecular markers of commercial oysters (Genera *Crassostrea* and *Sacostrea*) in Thailand determined by RAPD analysis. Marine
 Biotechnol. (accepted).
- Klinbunga, S., Boonyapakdee, A. and Pratoomchat. B. 2000. Genetic diversity and species-diagnostic markers of mud crabs (Genus *Scylla*) in Eastern Thailand determined by RAPD analysis. <u>Mar. Biotechnol</u>. **2**: 180-187.
- Klinbunga, S., Penman, D.J., Mc andrew, B.J. and Tassanakajon, A. 1999. Mitochondrial DNA diversity in three populations of the Giant Tiger Shrimp, *Penaeus monodon*.
 <u>Mar. Biotechnol</u>. 1: 113-121.
- Klinbunga, S., Siludjai, D., Wuthijinda ,W., Tassanakajon, A., Jarayabhand, P.,
 Menasveta, P. 2001. Genetic heterogeneity of the giant tiger shrimp (*Penaeus monodon*) in Thailand revealed by RAPD and mtDNA-RFLP analyses. *Mar. Biotechnol.* 3: (in press).
- Lee, Y.H. and Vacquire, V.D. 1995. Evolution and systematics in *Haliotidae* (Mollusa: Gastropoda): inferences from DNA sequences of sperm lysin. <u>Marine Biology</u>. **124**: 267-278.
- Lindberg, D.R. 1992. Evolution, Distribution and systemetics of *Haliotidae*. In:
 Shepherd, S.A., Tegner, M.J. and Guzman Del Proo, S.A. (Editor). <u>Abalone of the</u>
 <u>World, Biology, Fisheries and Culture.</u> Fishing News Books, Oxford. p. 3-18.

- Lynch, M. 1990. The similarity index and DNA fingerprinting. <u>Molecular Biology and</u> <u>Evolution 7</u>: 278-484.
- Maniatis, T., Fritsch, E.F. and Sambrook, J. 1992. <u>Molecular Cloning: a laboratory</u> <u>Manual.</u> Cold Spring Harbor Laboratory, New York: Cold Spring Harbor Press. 1982.
- Muchmore, A.E., Moy, G.W., Swanson, W.J. and Vacquier, V.D. 1998. Direct sequencing of genomic DNA for characterization of a satellite DNA in five species of Eastern Pacific abalone. <u>Mol. Mar. Biol. and Biotechnol.</u> 7(1): 1-6.
- Mullis, K.B. Faloona, F.A., Scharf, S.J., Saiki, R.K., Horn, G.T. and Erlich, H.A. 1986. Cold Spring Harbor Symp. Quant. Biol. 51: 263-273.
- Naganuma, T., Hisadome, K., Shiraishi, K. and Kojima, H. 1998. Molecular distinction of two resemblance abalones, *Haliotis discus discus* and *Haliotis discus hannai* by 18S
 rDNA sequences. J. Mar. Biotechnol. 6: 59-61.
- Nateewathana, A. and Bussarawit, S. 1988. Abundance and distribution of abalones along the Andaman Sea coast of Thailand. <u>Kasetsart Journal (Natural Science)</u>. 22: 8-15 (in Thai, with English abstract).
- Nateewathana, A. and Hylleberg, J. 1986. A survey on Thai abalones around Phuket
 Island and feasibility study of abalone culture in Thailand. <u>Thai Fisheries Gazette.</u> **39**: 177-192 (in Thai, with English abstract).
- Ngow, O. and Jarayabhand, P., 1993. Distribution and habitat selection of the abalone, *Haliotis ovina* (Gmelin, 1791), at the eastern coast of Thailand. Presented at the 19th Congress on Science and Technology of Thailand, 27-29 October 1993, Bangkok, pp. 472-473 (in Thai, with English abstract).
- O'Really and Wright, 1995. The evolving technology of DNA fingerprinting and its application to fisheries and aquaculture. J. fish. Biol. 47: 28-55.

- Purchon, R.D. and Purchon, D.E.A. 1981. The marine shelled mollusca of West Malaysia and Singapore. Part I. General introduction and account of collecting stations. J.
 <u>Moll. Stud.</u> 47: 290-312.
- Queller, D.C., Strassmann, Joan E. and Hughes, C. 1993. Microsatellites and Kinship. Trends in Ecology and Evolotion. 8: 285-288.
- Robert, D., Soemodihardjo. S. and Kastoro, W. 1982. Shallow water marine molluscs of North-West Java. Lembaga Oseanologi Nasional, Lembaga ilmu Pengetahuan Indonesia, Jakarta. 143 p.
- Saiki, R.K. 1992. The design and optimization of the PCR. In Erlich, H.A. (Editor). 1992. <u>PCR Technology: Principles and Applications for DNA Amplification</u>. M stockton press. p. 7-16.
- Saiki, R.K., Gelfand, D.H., Stoffel, S., Scharf, S., Higuchi, R.H., Horn, G.T., Mullis, K.B. and Erlich, H.A. 1998. <u>Science.</u> 239:487.
- Sanger, F., Nicklen, S. and Coulson, A.R. 1977. DNA sequencing with chainterminating inhibitors. Proc. Natl. Acad. Sci. USA. 74: 5463-5467.1977.
- Shepherd, S.A. and Brown, L.D. 1993. What is an abalone stock: implication for the role of refugia in conservation. <u>Can J Fish aquat Sciences</u> **50**: 2001-2009.
- Singhagriwan, T. and Doi, M., 1992. Spawning pattern and fecundity of the Donkey's ear abalone, observed in captivity. <u>Thai. Mar. Fish. Res. Bull.</u>, **3**: 61-69.
- Southern, E.M. 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. of Molecular Biology. **98**: 503-517.
- Supungul, 1998. <u>Genetic Variation and Population Structure of the Black Tiger Prawn</u> <u>Penaeus monodon in Thailand Determined by Microsatellite Marker</u>. Master' Thesis, Department of Biochemistry, Faculty of science, Chulalongkorn University.

- Sweijd, N.A., Bowie, R.C.K., Lopata, A.L., Marinaki, A.M., Harley, E.H. and Cook, P.A. 1998. A PCR technique for forensic, species-level identification of abalone tissue. <u>J.</u> of Shellfish Research. 17(3): 889-895.
- Tassanakajon, A., Pongsomboon, S., Jarayabhamd, P., Klinbunga, S. and Boonsaeng, V.
 1998. Genetic structure in wild populations of the back tiger shrimp (*Penaeus monodon*) using randomly amplified polymorphic DNA analysis. J. Mar.
 Biotechnol. 6: 249-254.
- Tassanakajon, A., Pongsomboon, S., Rimphanitchayakit, V., Jarayabhamd, P. and
 Boonsaeng, V. 1997. Random amplified polymorphic DNA (RAPD) markers for
 determination of genetic variation in wild populations of the black tiger prawn
 (*Penaeus monodon*) in Thailand. <u>Mol. Mar. Biol. Biotechnol.</u> 6: 110-115.
- Tookvinas, S., Leknim, V., Donyadol, Y., Predalampabut, Y. and Paengmark, P. 1986. A survey of species and distribution of abalone (*Haliotis* spp) in Surat Thani, Nakhon Si Thammarat and Songkla. <u>Tech. Rep. No. 1/1986 NICA.</u> 16 pp.
- Welsh, J. and McClelland, M. 1990. Fingerprinting genomes using PCR with arbitrary primers. <u>Nucleic Acids Research</u>. 18(24): 7213-7218.
- William, J.G.K., Kubelik, A.R., Livak, K.J., Rafalski, J.A. and Tingey, S.V. 1990. DNA polymorphism amplified by arbitrary primers are useful as genetic markers. <u>Nucleic</u> <u>Acid Research</u>. 18: 6531-6535.
- William, J.G.K., Hanafey, M.K., Rafalski, J.A. and Tingey, S.V. 1993. Genetic analysis using random amplified polymorphic DNA markers. <u>Methods in Enzymology</u>. 218: 704-708.
- Weising, K., Nybom, H., Wolff, K. and Meyer, W. 1994. <u>DNA Fingerprinting in Plants</u> and Fungi. Boca Raton, Florida. CRC press.

APPENDICES

Appendix A

A. Sampling sites, date of collection and code of abalone used in this study

Species	Location	Code of populations	Code of samples	Remark
H. asinina	Angsila Marine Biological Research Station,	HASH	A01-A30	Hatchery stock, Po (Brood
	Angsila, Chon Buri			stock from Samet Island,
				Rayong)
	Samet Island, Rayong	HASM	A41-A60	Haemolymp was collected
				from each specimens
	Phuket Abalone Farm	НАСН	A81-A95	Hatchery stock, Po (Brood
				stock from Cambodia)
	Cambodia	НАСВ	A100-A122	
	Talibong Island, Trang	HALB	L01-L28	
	The Philippines	НАРН	P01-P30	Hatchery stock, F1 (Brood
				stock from The Philippines)
	Indonesia	-	A61-A80	
H. ovina	Khang Kao Island, Chon Buri	HOSC	O1-O30	
	Samet Island, Rayong	HOSM	O41-O80	
	Chuak Island, Trang	HOTR	T01-T47	
	Similan Island, Phang-nga	HOPG	081-096	
H. varia	Aeo Island, Phuket	HVPK	V01-V30	
	Similan Island, Phang-nga	HVPG	V31-V34	

Appendix B

RAPD patterns of all individuals of *Haliotis asinina* (n=99), *H. ovina* (n=95) and *H. varia* (n=33) analyzed by primers OPB11 (B.1), UBC101 (B.2), and *H. asinina* analyzed with UBC195 (B.3), UBC197 (B.4), and UBC271 (B.5). The DNA markers were a 100 bp (Lane M) and λ *Hin*dIII (Lane m), respectively.

15 10 M A9 A56 A60 104 10, 510 Ξ KB \$ 20

B. 1 Primer OPB11 (continued)

94

500 -

Survey (100) (1

106

B.3 Primer UBC195

B.4 Primer UBC197

Appendix C

C. 1 Frequencies of each amplified RAPD band within each investigated samples of *H. asinina, H. ovina* and *H. varia* generated from primer UBC101

Size (bp)	HASH	HASM	HACH	HACB	HALB	HAPH	HOSC	HOSM	HOPG	HOTR	HVPK	HVPG
%	(N=14)	(N=14)	(N=13)	(N=19)	(N=19)	(N=20)	(N=29)	(N=27)	(N=16)	(N=23)	(N=28)	(N=4)
1850	-	-	-	-	-	-	17	17	12	11	3	-
%	-	-	-	-	-	-	58.62	62.96	75.00	47.83	10.71	-
1800	1	3	4	6	-	-	18	15	4	11	11	-
%	7.14	21.43	30.77	31.58	-	-	62.07	55.56	25.00	47.83	39.29	-
1750	6	1	4	10	4	20	9	8	14	18	19	2
%	42.86	7.14	30.77	52.63	21.05	100.00	31.03	29.63	87.50	78.26	67.86	50.00
1700	14	14	13	19	19	19	-	-	-	-	-	-
%	100.00	100.00	100.00	100.00	100.00	95.00	-	-	-	-	-	-
1650	-	-	-	-	_	1	10	7	4	10	6	1
%	-	-	-	_	-	5.00	34.48	25.93	25.00	43.48	21.43	25.00
1600	-	-	-	-	-	-	-	-	-	2	28	3
%	-	-	-	-	-	-	-	-	-	8.70	100.00	75.00
1540	11	10	5	15	10	10	-	-	_	-	24	2
%	78.57	71.43	38.46	78.95	52.63	50.00	-	-	-	-	85.71	50.00

Size (bp)	HASH	HASM	HACH	HACB	HALB	HAPH	HOSC	HOSM	HOPG	HOTR	HVPK	HVPG
%	(N=14)	(N=14)	(N=13)	(N=19)	(N=19)	(N=20)	(N=29)	(N=27)	(N=16)	(N=23)	(N=28)	(N=4)
1490	-	-	-	-	-	1	14	21	10	10	-	-
%	-	-	-	-	-	5.00	48.28	77.78	62.50	43.48	-	-
1480	-	3	4	1	-	10	9	13	5	13	-	-
%	-	21.43	30.77	5.26	-	50.00	31.03	48.15	31.25	56.52	-	-
1450	1	-	1	7	4	18	23	17	6	10	26	2
%	7.14	-	7.69	36.84	21.05	90.00	79.31	62.96	37.50	43.48	92.86	50.00
1350	14	14	13	19	18	20	3	1	-	3	15	-
%	100.00	100.00	100.00	100.00	94.74	100.00	10.34	3.70	-	13.04	53.57	-
1300	-	-	-	-	4	2	-	-	-	-	-	-
%	-	-	-	-	21.05	10.00	-	-	-	-	-	-
1260	-	-	-	-	14	4	19	14	13	17	-	-
%	-	-	-	-	73.68	20.00	65.52	51.85	81.25	73.91	-	-
1220	10	12	12	19	2	17	18	21	11	21	-	-
%	71.43	85.71	92.31	100.00	10.53	85.00	62.07	77.78	68.75	91.30	-	-
1190	14	13	13	19	17	15	-	-	-	-	-	-
%	100.00	92.86	100.00	100.00	89.47	75.00	-	-	-	-	-	-

Size (bp)	HASH	HASM	HACH	HACB	HALB	HAPH	HOSC	HOSM	HOPG	HOTR	HVPK	HVPG
%	(N=14)	(N=14)	(N=13)	(N=19)	(N=19)	(N=20)	(N=29)	(N=27)	(N=16)	(N=23)	(N=28)	(N=4)
1170	1	3	-	-	17	-	29	27	16	23	27	4
%	7.14	21.43	-	-	89.47	-	100.00	100.00	100.00	100.00	96.43	100.00
1150	3	8	5	11	-	9	-	-	-	_	-	-
%	21.43	57.14	38.46	57.89	-	45.00	-	-	-	-	-	-
1100	14	14	13	19	17	19	16	17	12	8	11	2
%	100.00	100.00	100.00	100.00	89.47	95.00	55.17	62.96	75.00	34.78	39.29	50.00
1040	-	-	-	_	-	1	11	7	1	8	14	3
%	-	_	-	-	-	5.00	37.93	25.93	6.25	34.78	50.00	75.00
1000	-	-	-	-	-	-	19	19	15	19	18	2
%	-	-	-	-	-	_	65.52	70.37	93.75	82.61	64.29	50.00
980	-	-	-	-	-	-	-	-	-	-	28	4
%	-	-	-	-	-	-	_	-	_	-	100.00	100.00
920	14	14	13	19	6	19	_	-	-	-	-	-
%	100.00	100.00	100.00	100.00	31.58	95.00	-	-	-	_	_	-
900	2	5	-	3	18	-	-	-	-	-	18	4
%	14.29	35.71	-	15.79	94.74	_	-	-	-	-	64.29	100.00

Size (bp)	HASH	HASM	HACH	HACB	HALB	HAPH	HOSC	HOSM	HOPG	HOTR	HVPK	HVPG
%	(N=14)	(N=14)	(N=13)	(N=19)	(N=19)	(N=20)	(N=29)	(N=27)	(N=16)	(N=23)	(N=28)	(N=4)
870	-	-	-	-	-	-	20	15	15	23	4	-
%	-	-	-	-	-	-	68.97	55.56	93.75	100.00	14.29	-
850	9	10	11	12	19	18	29	27	16	23	22	2
%	64.29	71.43	84.62	63.16	100.00	90.00	100.00	100.00	100.00	100.00	78.57	50.00
820	-	-	-	-	1	-	-	-	-	-	21	1
%	-	-	-	-	5.26	-	-	-	-	-	75.00	25.00
800	14	14	13	19	16	20	21	15	16	23	23	2
%	100.00	100.00	100.00	100.00	84.21	100.00	72.41	55.56	100.00	100.00	82.14	50.00
750	-	1	-	-	4	18	29	26	16	22	17	2
%	-	7.14	-	-	21.05	90.00	100.00	96.30	100.00	95.65	60.71	50.00
700	14	14	13	19	13	20	29	26	6	11	27	3
%	100.00	100.00	100.00	100.00	68.42	100.00	100.00	96.30	37.50	47.83	96.43	75.00
680	-	-	-	1	1	17	-	-	-	-	-	-
%	-	-	-	5.26	5.26	85.00	-	-	-	-	-	-
650	2	10	3	10	5	5	28	23	9	14	17	2
%	14.29	71.43	23.08	52.63	26.32	25.00	96.55	85.19	56.25	60.87	60.71	50.00

Size (bp)	HASH	HASM	HACH	HACB	HALB	HAPH	HOSC	HOSM	HOPG	HOTR	HVPK	HVPG
%	(N=14)	(N=14)	(N=13)	(N=19)	(N=19)	(N=20)	(N=29)	(N=27)	(N=16)	(N=23)	(N=28)	(N=4)
600	14	14	13	19	19	20	22	26	10	13	-	-
%	100.00	100.00	100.00	100.00	100.00	100.00	75.86	96.30	62.50	56.52	-	-
440	-	-	1	3	-	14	11	15	3	7	7	2
%	-	-	7.69	15.79	-	70.00	37.93	55.56	18.75	30.43	25.00	50.00
400	14	14	13	19	19	3	5	5	3	3	-	1
%	100.00	100.00	100.00	100.00	100.00	15.00	17.24	18.52	18.75	13.04	-	25.00
380	-	-	-	-	-	19	-	-	_	-	-	-
%	-	-	-	-	_	95.00	-	-	-	-	-	-
350	-	-	-	-	-	2	11	18	3	1	1	1
%	-	-	-	-	_	10.00	37.93	66.67	18.75	4.35	3.57	25.00
320	14	14	13	19	19	19	-	-	-	1	-	-
%	100.00	100.00	100.00	100.00	100.00	95.00	-	-	-	4.35	-	-

Size (bp)	HASH	HASM	HACH	HACB	HALB	HAPH	HOSC	HOSM	HOPG	HOTR	HVPK	HVPG
%	(N=14)	(N=14)	(N=13)	(N=19)	(N=19)	(N=20)	(N=29)	(N=27)	(N=16)	(N=23)	(N=28)	(N=4)
2300	9	12	7	17	13	15	-	4	-	6	6	
%	64.29	85.71	53.85	89.47	68.42	75.00	-	14.81	-	26.09	21.43	-
2150	12	10	11	19	12	17	4	2	1	7	12	-
%	85.71	71.43	84.62	100.00	63.16	85.00	13.79	7.41	6.25	30.43	42.86	-
1700	14	10	13	19	18	7	3	5	1	5	8	-
%	100.00	71.43	100.00	100.00	94.74	35.00	10.34	18.52	6.25	21.74	28.57	-
1480	-	-	-	-	12	18	-	-	1	4	2	-
%	-	-	-	-	63.16	90.00	-	-	6.25	17.39	7.14	_
1450	14	13	13	19	-	-	-	-	2	4	6	2
%	100.00	92.86	100.00	100.00	-	-	-	-	12.50	17.39	21.43	50.00
1420	-	-	-	-	19	19	-	-	3	4	7	2
%	-	-	-	-	100	95	-	-	18.75	17.39	25.00	50.00
1350	-	-	-	-	19	-	-	2	6	8	12	1
%	-	-	-	-	100.00	-	-	7.41	37.50	34.78	42.86	25.00
1300	14	12	13	19	19	19	1	1	7	14	11	1
%	100.00	85.71	100.00	100.00	100.00	95.00	3.45	3.70	43.75	60.87	39.29	25.00

C. 2 Frequencies of each amplified RAPD band within each investigated samples of *H. asinina*, *H. ovina* and *H. varia* generated from primer OPB11

Size (bp)	HASH	HASM	HACH	HACB	HALB	HAPH	HOSC	HOSM	HOPG	HOTR	HVPK	HVPG
%	(N=14)	(N=14)	(N=13)	(N=19)	(N=19)	(N=20)	(N=29)	(N=27)	(N=16)	(N=23)	(N=28)	(N=4)
1220	6	2	4	8	1	11	18	18	1	6	12	2
%	42.86	14.29	30.77	42.11	5.26	55.00	62.07	66.67	6.25	26.09	42.86	50.00
1190	-	-	-	-	-	-	13	11	9	9	13	1
%	-	-	-	-	-	-	44.83	40.74	56.25	39.13	46.43	25.00
1180	-	-	_	-	19	-	25	20	9	20	13	1
%	_	-	-	-	100.00	-	86.21	74.07	56.25	86.96	46.43	25.00
1100	13	14	11	17	15	20	1	2	10	9	10	1
%	92.86	100.00	84.62	89.47	78.95	100.00	3.45	7.41	62.50	39.13	35.71	25.00
1080	6	6	6	10	7	-	-	-	-	-	-	-
%	42.86	42.86	46.15	52.63	36.84	-	-	-	-	-	-	-
1050	-	-	-	-	-	-	1	2	-	-	18	3
%	-	-	-	-	-	-	3.45	7.41	-	-	64.29	75.00
1000	-	-	-	-	-	-	28	26	3	1	27	4
%	-	_	-	-	-	-	96.55	96.30	18.75	4.35	96.43	100.00
950	-	-	-	-	-	-	23	24	8	13	4	-
%	-	-	-	-	-	-	79.31	88.89	50.00	56.52	14.29	-

Size (bp)	HASH	HASM	HACH	HACB	HALB	HAPH	HOSC	HOSM	HOPG	HOTR	HVPK	HVPG
%	(N=14)	(N=14)	(N=13)	(N=19)	(N=19)	(N=20)	(N=29)	(N=27)	(N=16)	(N=23)	(N=28)	(N=4)
920	-	-	-	-	-	-	22	24	2	10	6	-
%	-	-	-	-	-	-	75.86	88.89	12.50	43.48	21.43	-
900	-	-		-	-	9	-	-	-	-	-	-
%	-	-	-	-	-	45.00	-	-	-	-	-	-
880	-	-	-	-	-	19	10	23	15	23	2	3
%	-	-	-	-	-	95.00	34.48	85.19	93.75	100.00	7.14	75.00
840	4	12	5	8	4	14	6	3	3	13	6	1
%	28.57	85.71	38.46	42.11	21.05	70.00	20.69	11.11	18.75	56.52	21.43	25.00
800	14	14	13	19	19	20	19	15	4	2	18	3
%	100.00	100.00	100.00	100.00	100.00	100.00	65.52	55.56	25.00	8.70	64.29	75.00
760	-	-	-	-	-	-	23	20	3	5	17	2
%	-	-	-	-	-	-	79.31	74.07	18.75	21.74	60.71	50.00
740	-	-	-	-	-	-	19	16	4	1	5	1
%	-	-	-	-	-	-	65.52	59.26	25.00	4.35	17.86	25.00
700	-	-	-	-	-	-	-	3	3	-	16	4
%	-	-	-	-	-	-	-	11.11	18.75	-	57.14	100.00

Size (bp)	HASH	HASM	HACH	HACB	HALB	HAPH	HOSC	HOSM	HOPG	HOTR	HVPK	HVPG
%	(N=14)	(N=14)	(N=13)	(N=19)	(N=19)	(N=20)	(N=29)	(N=27)	(N=16)	(N=23)	(N=28)	(N=4)
660	-	-	-	-	-	-	4	8	4	10	3	1
%	-	-	-	-	-	-	13.79	29.63	25.00	43.48	10.71	25.00
650	-	-	-	-	-	-	27	24	3	6	6	1
%	-	-	-	-	-	-	93.10	88.89	18.75	26.09	21.43	25.00
620	-	-	-	-	-	-	9	16	5	3	1	-
%	-	-	-	-	-	-	31.03	59.26	31.25	13.04	3.57	-
590	-	-	-	-	-	-	22	23	5	4	2	-
%	-	-	-	-	-	-	75.86	85.19	31.25	17.39	7.14	-
570	3	2	1	4	-	-	1	2	4	13	3	-
%	21.43	14.29	7.69	21.05	-	-	3.45	7.41	25.00	56.52	10.71	-
550	-	-	-	-	-	-	20	19	7	15	20	3
%	_	-	-	-	-	-	68.97	70.37	43.75	65.22	71.43	75.00
540	-	-	-	-	1	-	2	2	2	9	4	-
%	-	-	_	_	5.26	-	6.90	7.41	12.50	39.13	14.29	-
500	14	13	13	19	3	5	14	2	_	-	4	-
%	100.00	92.86	100.00	100.00	15.79	25.00	48.28	7.41	_	-	14.29	_

Size (bp)	HASH	HASM	HACH	HACB	HALB	HAPH	HOSC	HOSM	HOPG	HOTR	HVPK	HVPG
%	(N=14)	(N=14)	(N=13)	(N=19)	(N=19)	(N=20)	(N=29)	(N=27)	(N=16)	(N=23)	(N=28)	(N=4)
470	-	-	. . .	-	-	-	18	26	16	23	15	3
%	-	-	-	-	-	-	62.07	96.30	100.00	100.00	53.57	75.00
440	10	9	3	12	2	20	-	-	-	-	2	1
%	71.43	64.29	23.08	63.16	10.53	100.00	-	-	-	-	7.14	25.00
390	3	11	4	11	2	11	_	-	-	-	1	-
%	21.43	78.57	30.77	57.89	10.53	55.00	-	-	-	-	3.57	-

Size (bp)	HASH	HASM	HACH	HACB	HALB	HAPH
%	(N=14)	(N=14)	(N=13)	(N=19)	(N=19)	(N=20)
1480	-	-	1	-	-	9
%	-	-	7.69	-	-	45.00
1450	14	8	12	19	11	16
%	100.00	57.14	92.31	100.00	57.89	80.00
1300	14	14	13	18	18	18
%	100.00	100.00	100.00	94.74	94.74	90.00
1280	8	5	11	9	15	-
%	57.14	35.71	84.62	47.37	78.95	-
1250	13	8	6	14	18	-
%	92.86	57.14	46.15	73.68	94.74	-
1200	2	-	6	5	6	7
%	14.29	-	46.15	26.32	31.58	35
1160	13	5	13	14	16	9
%	92.86	35.71	100.00	73.68	84.21	45.00
1150	5	1	2	3	-	-
%	35.71	7.14	15.38	15.79	-	-
1080	-	-	6	5	13	9
%	-	-	46.15	26.32	68.42	45.00
1030	14	14	13	19	19	20
%	100.00	100.00	100.00	100.00	100.00	100.00
1000	-	-	1	4	-	-
%	-	-	7.69	21.05	-	-
970	13	14	13	14	19	10
%	92.86	100.00	100.00	73.68	100.00	50.00
910	9	9	6	15	-	1
%	64.29	64.29	46.15	78.95	-	5.00
890	14	10	13	19	18	20
%	100.00	71.43	100.00	100.00	94.74	100.00

C. 3 Frequencies of each amplified RAPD band within each conspecific population of *H. asinina* generated from primer UBC195

Size (bp)	HASH	HASM	HACH	HACB	HALB	HAPH
<u>%</u>	(N=14)	(N=14)	(N=13)	(N=19)	<u>(N=19)</u>	(<u>N=20</u>)
830	-	-	-	-	-	12
%	-	-	-	-	-	60.00
810	5	7	11	7	17	12
%	35.71	50.00	84.62	36.84	89.47	60.00
790	14	13	13	19	4	20
%	100.00	92.86	100.00	100.00	21.05	100.00
750	4	5	-	1	-	-
%	28.57	35.71	-	5.26	-	-
720	-	5	5	5	19	-
%	-	35.71	38.46	26.32	100.00	-
690	14	11	13	19	7	18
%	100.00	78.57	100.00	100.00	36.84	90.00
650	14	14	13	19	19	20
%	100.00	100.00	100.00	100.00	100.00	100.00
620	-	-	5	7	19	17
%	-	-	38.46	36.84	100.00	85.00
600	-	-	4	10	18	19
%	-	-	30.77	52.63	94.74	95.00
570	-	4	3	-	15	16
%	-	28.57	23.08	-	78.95	80.00
520	1	6	9	1	18	9
%	7.14	42.86	69.23	5.26	94.74	45.00

Size (bp)	HASH	HASM	HACH	HACB	HALB	HAPH
%	(N=14)	(N=14)	(N=13)	(N=19)	(N=19)	(N=20)
1480	12	6	12	18	19	18
%	85.71	42.86	92.31	94.74	100.00	90.00
1450	14	14	13	19	19	20
%	100.00	100.00	100.00	100,00	100.00	100.00
1250	13	11	12	17	5	3
%	92.86	78.57	92.31	89.47	26.32	15.00
1210	-	-	-	-	-	4
%	-	-	-	-	-	20.00
1200	-	-	-	-	18	19
%	-	-	-	-	94.74	95.00
1180	14	12	13	19	-	-
%	100	85.71	100	100	-	-
1170	2	1	-	-	9	-
%	14.29	7.14	-	_	47.37	-
1150	11	7	1	5	15	13
%	78.57	50.00	7.69	26.32	78.95	65.00
1050	12	14	13	19	19	20
%	85.71	100.00	100.00	100.00	100.00	100.00
980	-	-	-	-	10	-
%	-	-	-	-	52.63	-
920	13	9	7	14	-	19
%	92.86	64.29	53.85	73.68	-	95.00
900	11	2	10	12	14	6
%	78.57	14.29	76.92	63.16	73.68	30.00
850	8	11	13	13	17	20
%	57.14	78.57	100.00	68.42	89.47	100.00
800	14	13	13	18	1	6
%	100.00	92.86	100.00	94.74	5.26	30.00

C. 4 Frequencies of each amplified RAPD band within each conspecific population of *H. asinina* generated from primer UBC197

Size (bp)	HASH	HASM	HACH	HACB	HALB	HAPH
%	(N=14)	(N=14)	(N=13)	(N=19)	(N=19)	(N=20)
750	14	14	13	19	19	20
%	100.00	100.00	100.00	100.00	100.00	100.00
700	14	14	13	19	19	0
%	100.00	100.00	100.00	100.00	100.00	0.00
680	4	1	4	-	4	13
%	28.57	7.14	30.77	-	21.05	65.00
650	0	3	1	8	7	4
%	0.00	21.43	7.69	42.11	36.84	20.00
620	10	13	10	15	7	17
%	71.43	92.86	76.92	78.95	36.84	85.00
600	5	-	5	-	17	13
%	35.71	-	38.46	-	89.47	65.00
570	-	1	-	1	14	11
%	-	7.14	-	5.26	73.68	55.00
520	14	13	13	19	19	13
%	100.00	92.86	100.00	100.00	100.00	65.00
500	14	12	13	18	19	12
%	100.00	85.71	100.00	94.74	100.00	60.00

Size (bp)	HASH	HASM	HACH	HACB	HALB	HAPH
%	(N=14)	(N=14)	(N=13)	(N=19)	(N=19)	(N=20)
1020	14	13	13	19	19	20
%	100.00	92.86	100.00	100.00	100.00	100.00
1000	3	5	5	13	3	1
%	21.43	35.71	38.46	68.42	15.79	5.00
880	-	-	-	-	19	-
%	-	-	-	-	100.00	-
680	14	14	13	19	19	20
%	100.00	100.00	100.00	100.00	100.00	100.00
480	-	-	-	-	19	20
%	-	-	-	-	100.00	100.00
475	6	6	7	5	-	-
%	42.86	42.86	53.85	26.32	-	-
470	3	5	-	5	2	14
%	21.43	35.71	-	26.32	10.53	70.00
370	14	14	13	19	17	14
%	100.00	100.00	100.00	100.00	89.47	70.00
320	5	10	12	7	6	1
%	35.71	71.43	92.31	36.84	31.58	5.00
280	7	3	1	2	-	11
%	50.00	21.43	7.69	10.53	-	55.00
270	-	-	-	-	19	19
%	-	-	-	-	100.00	95.00
250	14	14	10	19	-	-
%	100.00	100.00	76.92	100.00	-	-

C. 5 Frequencies of each amplified RAPD band within each conspecific population of *H. asinina* generated from primer UBC271

Appendix D

D. 1 Pairwise comparisons of inter - and intraspecific similarity indices (above diagonal) and genetic distances (below diagonal) of *H. asinina, H. ovina* and *H. varia* samples using primers UBC101

Dii/Sii	HASH	HASM	HACH	HACB	HALB	HAPH	HOSC	HOSM	HOPG	HOTR	HVPK	HVPG
jj	(<i>N</i> =14)	(<i>N</i> =14)	(<i>N</i> =13)	(<i>N</i> =19)	(<i>N</i> =19)	(<i>N</i> =20)	(<i>N</i> =29)	(<i>N</i> =27)	(<i>N</i> =16)	(<i>N</i> =23)	(<i>N</i> =28)	(<i>N</i> =4)
HASH	-	0.8531	0.8668	0.8613	0.7354	0.6953	0.3448	0.3501	0.3380	0.3287	0.3284	0.2603
HASM	0.1469	-	0.8494	0.8511	0.7277	0.6749	0.3892	0.3927	0.3528	0.3547	0.3395	0.2801
HACH	0.1332	0.1506	-	0.8540	0.7068	0.7027	0.3802	0.3900	0.3615	0.3657	0.3045	0.2326
НАСВ	0.1387	0.1489	0.1460	-	0.6998	0.7177	0.3860	0.3876	0.3576	0.3613	0.3509	0.2728
HALB	0.2646	0.2723	0.2932	0.3002	-	0.5886	0.4133	0.4030	0.4113	0.3866	0.3940	0.3663
НАРН	0.3047	0.3251	0.2973	0.2823	0.4114	-	0.4520	0.4552	0.4358	0.4420	0.3892	0.2987
HOSC	0.6552	0.6108	0.6198	0.6140	0.5867	0.5480	-	0.6989	0.6685	0.6657	0.4863	0.4173
HOSM	0.6499	0.6073	0.6100	0.6124	0.5970	0.5448	0.3011	-	0.6627	0.6491	0.4450	0.3973
HOPG	0.6620	0.6472	0.6385	0.6424	0.5887	0.5642	0.3315	0.3373		0.7115	0.4448	0.3806
HOTR	0.6713	0.6453	0.6343	0.6387	0.6134	0.5580	0.3343	0.3509	0.2885	-	0.4588	0.3862
HVPU	0.6716	0.6605	0.6955	0.6491	0.6060	0.6108	0.5137	0.5550	0.5552	0.5412	-	0.6377
HVPG	0.7397	0.7199	0.7674	0.7272	0.6337	0.7013	0.5827	0.6027	0.6194	0.6138	0.3623	

D. 2 Pairwise comparisons of inter - and intraspecific similarity indices (above diagonal) and genetic distances (below diagonal) of

H. asinina, H. ovina and H. varia samples using primers OPB11

Dij/Sij	HASH	HASM	HACH	HACB	HALB	HAPH	HOSC	HOSM	HOPG	HOTR	HVPK	HVPG
	(<i>N</i> ==14)	(<i>N</i> =14)	(<i>N</i> =13)	(<i>N</i> ≔19)	(<i>N</i> =19)	(<i>N</i> =20)	(<i>N</i> =29)	(<i>N</i> =27)	(<i>N</i> =16)	(<i>N</i> ==23)	(<i>N</i> =28)	(<i>N</i> =4)
HASH	-	0.7604	0.8023	0.8232	0.5253	0.5583	0.1607	0.1217	0.1731	0.2118	0.2630	0.2268
HASM	0.2396	-	0.7476	0.7959	0.4967	0.5815	0.1471	0.1058	0.1724	0.2197	0.2438	0.2127
HACH	0.1977	0.2524	-	0.8064	0.5276	0.5159	0.1609	0.1169	0.1705	0.2073	0.2605	0.2180
	0.15(0	0.0044	0.100.6			0.5000	0.1.501	0.1000	0.1.6.0			
HACB	0.1768	0.2041	0.1936	-	0.5366	0.5839	0.1591	0.1230	0.1663	0.2201	0.2653	0.2173
	0 4747	0.5022	0.4704	0.4(2.4		0.5(00	0.1904	0.1(20	0.2655	0.2116	0.2075	0.0250
HALB	0.4/4/	0.5033	0.4724	0.4634	-	0.5699	0.1804	0.1030	0.2000	0.3110	0.3075	0.2358
ЦАДЦ	0.4417	0.4185	0.4841	0.4161	0.4301	· · ·	0.1556	0.7104	0.2610	0 3053	0 2472	0 2003
IIAIII	0.4417	0.4105	0.4041	0.4101	0.4501	-	0.1550	0.7194	0.2019	0.5055	0.2472	0.2903
HOSC	0.8393	0.8529	0.8391	0.8409	0.8196	0 8444		0 6493	0.3661	0 3745	0 3913	0 3788
nose	0.0075	0.001	0.0571	0.0109	0.0170	0.0111		0.0125	0.5001	0.5715	0.5715	0.5700
HOSM	0.8783	0.8942	0.8831	0.8770	0.8370	0.2806	0.3507	-	0.4408	0.4437	0.3968	0.4229
HOPG	0.8269	0.8276	0.8295	0.8337	0.7345	0.7381	0.6339	0.5592	-	0.4751	0.3073	0.3562
HOTR	0.7882	0.7803	0.7927	0.7799	0.6884	0.6947	0.6255	0.5563	0.5249	-	0.3018	0.3253
HVPU	0.7370	0.7562	0 7395	0_7347	0.6925	0 7528	0.6087	0_6032	0_6927	0.6982	-	0.5034
HVPG	0.7732	0.7873	0.7820	0.7827	0.7642	0.7097	0.6212	0.5771	0.6438	0.6747	0.4966	~

D. 3 Pairwise comparisons of intraspecific similarity indices (above diagonal) and genetic distances (below diagonal) of *H. asinina* using primer UBC101

Daij /Saij	HASH ($N=14$)	HASM $(N=14)$	HACH ($N=13$)	HACB (N=19)	HALB (N=19)	HAPH (<i>N</i> =20)
HASH	-	0.9840	0.9919	0.9887	0.8875	0.8351
HASM	0.0160	-	0.9865	0.9905	0.8919	0.8268
HACH	0.0081	0.0135	-	0.9877	0.8652	0.8488
НАСВ	0.0113	0.0095	0.0123	-	0.8605	0.8661
HALB	0.1125	0.1081	0.1348	0.1395	-	0.7617
НАРН	0.1649	0.1732	0.1512	0.1339	0.2383	-

D. 4 Pairwise comparisons of intraspecific similarity indices (above diagonal) and genetic distances (below diagonal) of *H. asinina* using primer OPB11

Daij/Saij	HASH	HASM	HACH	HACB	HALB	HAPH
	(<i>N</i> =14)	(<i>N</i> =14)	(<i>N</i> =13)	(<i>N</i> =19)	(<i>N</i> =19)	(<i>N</i> =20)
HASH	-	0.9632	0.998	0.997	0.7131	0.7455
HASM	0.0368	-	0.9574	0.9838	0.6985	0.7828
НАСН	0.0020	0.0426	-	0.9872	0.7223	0.7101
НАСВ	0.0030	0.0162	0.0128	-	0.7094	0.7562
HALB	0.2869	0.3015	0.2777	0.2906	-	0.7561
НАРН	0.2545	0.2172	0.2899	0.2438	0.2439	-

D. 5 Pairwise comparisons of intraspecific similarity indices (above diagonal) and genetic distances (below diagonal) of *H. asinina* using primer UBC195

Daij/Saij	HASH	HASM	HACH	HACB	HALB	HAPH
	(<i>N</i> =14)	(<i>N</i> =14)	(<i>N</i> =13)	(<i>N</i> =19)	(<i>N</i> =19)	(<i>N</i> =20)
HASH	-	0.9565	0.9417	0.9766	0.7548	0.7926
HASM	0.0435	-	0.9405	0.9494	0.8152	0.8373
HACH	0.0583	0.0595	-	0.9652	0.9003	0.8881
HACB	0.0234	0.0506	0.0348	-	0.8289	0.8782
HALB	0.2452	0.1848	0.0997	0.1711	-	0.839
НАРН	0.2074	0.1627	0.1119	0.1218	0.1610	-

D. 6 Pairwise comparisons of intraspecific similarity indices (above diagonal) and genetic distances (below diagonal) of *H. asinina* using primer UBC197

Daij/Saij	HASH	HASM	HACH	HACB	HALB	НАРН
	(<i>N</i> =14)	(<i>N</i> =14)	(<i>N</i> =13)	(<i>N</i> =19)	(<i>N</i> =19)	(<i>N</i> =20)
HASH	-	0.9678	0.9767	0.9834	0.8084	0.8098
HASM	0.0322	-	0.9658	0.982	0.7898	0.8102
НАСН	0.0233	0.0342	-	0.9908	0.8092	0.8008
HACB	0.0166	0.0180	0.0092	-	0.8028	0.7976
HALB	0.1916	0.2102	0.1908	0.1972	-	0.8785
НАРН	0.1902	0.1898	0.1992	0.2024	0.1215	-

D. 7 Pairwise comparisons of intraspecific similarity indices (above diagonal) and genetic distances (below diagonal) of *H. asinina* using primer UBC271

Daij/Saij	HASH	HASM	HACH	HACB	HALB	HAPH
	(<i>N</i> =14)	(<i>N</i> =14)	(<i>N</i> =13)	(<i>N</i> =19)	(<i>N</i> =19)	(<i>N</i> =20)
HASH	-	0.9935	0.9604	0.9763	0.6458	0.7073
HASM	0.0065	-	0.9915	0.9847	0.6476	0.6784
НАСН	0.0396	0.0085	-	0.9523	0.6551	0.6344
НАСВ	0.0237	0.0153	0.0477	-	0.6437	0.6683
HALB	0.3542	0.3524	0.3449	0.3563	-	0.8661
HAPH	0.2927	0.3216	0.3656	0.3317	0.1339	-

Appendix E

Neighbor - joining trees illustrating genetic relationships of 3 tropical abalone found in Thailand, *Haliotis asinina*, *H. ovina*, and *H. varia*, base on genetic distances resulted from RAPD analysis using primer UBC101 (E. 1), OPB11 (E. 2). Detailed information and abbreviations of sample sites are shown in Appendix A.

E. 1 UBC101

Appendix F

Neighbor - joining trees illustrating genetic relationships of 6 populations of *Haliotis asinina*, base on genetic distances resulted from RAPD analysis using primer UBC101 (F. 1), OPB11 (F. 2), UBC195 (F. 3), UBC197 (F. 4), and UBC271 (F. 5). Detailed information and abbreviations of sample sites are shown in Appendix A.

F. 1 UBC101

F. 2 OPB11

F. 3 UBC195

F. 4 UBC197

F. 5 UBC271

BIOGRAPHY

Miss Aporn Popongviwat was born on June 16, 1974 in Kanchanaburi, Thailand. She graduated with the Bachelor of Science degree in Marine Science from Department of Marine Science, Faculty of Science, Chulalongkorn University in 1995.