Chapter 2
Feynman Path Integration

~ Inthis Qha{)ter Feymen path ntegration wes presented.  Unfortunately
sie the subject S large ve canot inoluce al aspec@. The Interested readess
ae eferred 10 RSL 32,33 3 3], Inthe first section we wil explain the elements
0f path integral formulation and show that it S equivalent to the conventiona
ormulation of Sotvodinger and Heisenoerg, Next e wil 9|ve e examples that
can be soved exactly. The third secton IS about statistical mechancs in the
anguage of Path Inteqral. The final section s the variational method n temms o
he Propagalor,

2.1 Path Integration in Nonrelativistic Quan-
tum Mechanics

The standard formulation of quantum mechenics developed more or s
concurrently by Sehvocinger, Heisenoerg and oters n the 19205, and shown to be
equvalent fo one another by Dirac, These apnroacties besed on the Hamiftonian
0fthe %stem Which s afunction of operators. In contrast Feynman path Integra
A010ach {0 quantum mechancs 1S tied to Lagrangian.  Then no subtiety o
pommutab|||t% 0f operator 1S Invovedl. The third formulation which develo
I the 14 J R, Feynman vies inspired by P A M. Dirac's remarks (3
31 Dirac made the obsenvafion that te action plays & central 1oe in cassica
MACRINGS, DUt Seeymed to have no Important role in quantum mechancs & I
Wes known & the time. He Speculated on how tis Situation migh be recified




iV,

and e amved f te conclusion {na e prooabilty ampituce of & patcle
arTve at particular space-ime point “corresoond to” exp{isyll, where s the
riassical action evaluated along the oiassical path, Feynman further the ioea ty
postﬂa&e thiat notust ciassical path contrioutes ot all paths by the protiabily
amplitude,

~ To get e picture of path mtePralllet oonSioer the double-Slt experment
Fg. 21" sows & diagram of double-Slt experiment,  The inerference on the
(e ectmgi S0reen aises from the superP03|t|on 0f t0 ampliuce.  Suppose ve
Icrease te number of s from o to tree. Then there willbe tree ampliude
sieeHg. 2.28) that we must add together o determing the probabilty ampltude
thiat particle reaches a particular point on the detecting Soreen Suppose vie et
Insert another opiacue Sereen with two sits behind the initial Sreen (Fig. 220
Now tere e Sk possile pains thiat the partile can takes to reach a point on
e (etecting Sreen. One can imagine t||||n(1 L the Space heaeen the source and
e (etecting Streen with an infinte Seies of oague soveens and then eliminating
16Se SIeens Wit an Infinie numoer of Sl I each soveen. [n this ey, e 2
nat the probabilty ampltude forthe partile to amve at apoint onthe detecting
S0reen With no Biamer In between the source and the defector must be the sum
0f the amplitudes for the particle to take every path between the source and the
(etecting point. Then we are led to the followng postultes;

1) All possile path contrioute e(iually, 18, form K I the Sae iy
a5 the amplitude: but oiferent paths contrioute with diferent preses
2) The priese of the contrbuton of a iven path is deiemined by the
acion — along this path (meastred n'e




vl -

F|gure 2.1: The two paths in the double-slit experiment. The amplitudes for these paths add
together to produce an interference pattern on a distant detecting screen.

F|gure 2.2 (a) The three paths for a triple-slit experiment, (b) Three of the six paths that
a particle may follow to reach a particular point on the detecting screen when an additional
screen with two slits is inserted.
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 The probiabity po, = that a particle wil o fiom Pomt o 8t e f0 e
Doint o at fime o 1S 0efined y the absolute squere of the complex amplitude
K(b,), N3 1S p(v.a) = wev.anz Futhemore the ampltude is guen by a
SUm of contrloution o Of all paths joiming = and s 18,

Kba)= > ¢lz(t). 2.1

Thteh cotoution o each ah e a ot proporionl o e ation - g
e, 18

SO\ = ¢ eXp{(i/h ' [X(t)]} 2.2)
Here ¢ 15 & nomialization constant that s yet o be determined. 1t the same
or al paihs, Snce all paihs contrioute with he same Weight

~ We will now discuss the: sum contained in g, (22) In more detal and ve
Will b ouicd by the anlogy to Riemann's definiion for an integral. For tis we
(Iscretze the time ntemval T = w —ca 10 - e partial Intervals of length e

Nfztb_ta tb>taa
€= b=t g =an o1z N —1,

to =1a tn = b,

(2.3)

L6 v ta 800 v, oo DR e 0 fecl end poits. W now consiruct certain
nath by choosing soeoil points  for all intermeclate fime: points « and comme
he Selected points by straqwt In ésee Fi. 2.32y szrehmngltms attce, We can
ANDIOXIMate every Path With any cesired qualty. Fenoe, It s natural to oefig
P sum over all paths as & multple integral over all VaeS of

K(b,a) w/d:m---d;rN_l lz(t)]. (24)
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Figure 2.3: The sum over paths is defined as a limit, in which at first the path is specified
by giving only its coordinate x at a large number of specified times separated by very small
intervals e. The path sum is then an integral over all these specific coordinates. Then to achieve
the correct measure, the limit is taken as e approaches 0.

L6t s now cifine the sum implied n Eq, dZ.l) M0 recsel. In Rieman'
Integral e can be maoe smaller and sy, Here one camot directly operate a
Wel-oefined imiting value I his Way. In orcer to force convergence, a nomal
zation factor ae), depending on e has o b introduced. Summation lead to te:
Dath integral
K(b,a) = Iim-Ay =t exp{(i/h)S[b,a]}, (2)
With the action ceine &
[b,a] = tha dtL(x,x,t). (2.6)
e g Integral alqn? ATOUR ax. =~ IOUGI the points i, We e
E (25) In the abbreviation form
k)= ]y XHewg A" 27)

Where 6vae) Oenotes the infinte Integral
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For the ampliude B QZ.S) a E(ﬂ' L), & important propertz, (A e
(erved. Let consioer the path mte%ral 0T O SUOOESSVR events (e H. 24)
Wit ta < tc < . The action fuflls the otwious property

b= ma+ [0 29)

quure 2.4: One way the sum over all paths can be taken is by first summing over paths which
go through the point at xc and time tc. The amplitude on each path that goes from a to bvia c
IS a product of two factors: (1) an amplitude to go from a to ¢ and (2) an amplitude to go from
¢ to b This is therefore valid also for the sum over all paths through c: the total amplitude to
go from a to b via ¢ is K(b,c)K(c,a). Thus summing over the alternatives (values of xc), we
get for the total amplitude to go from a to b, Eq. (2.11)

Now e consioer Et (25)

K(b,a) = lim 1 [dz; dzym-1dzcdzmy dan-
((b,a) = lim—~ ; -1 e S0 2
RExp {,%(S[h c] + Sle, a])} (2.9)

Wt ta< v < v <tist <

The Integration can e Performed I any oy, n Particular asfollow. First
for afived] . c, & a conslant with Tespect 0 the Integrafion Over .. P10



1

xv_i. TNE SAMe IS VAl for sgo.c7 Wit respect 0 the Infegrations over xi Up o
n-iv 1R mtegranon Oy t%e point In Dewen, Xc, s performed & the end
Rewniting E. (29) accordingly Yieds

K(ba) = J chelmAAJ e dnns gxglSlG 4 A

f1 fdxmet dXN- 1 ficn 1A (210)

. xu J A - - A ex»{hsb )’
which can also be denoted &

K(b, a) = J dxek (b,c)K(c,a). 2.1
We can immedliately generalze tis to
K(b,a) = J dui Mhxist-ik(b, N —1)K(N = |,n =2
Xeo-K(i+ 1,i) eeeK(\, a). (2.12)

For an infintesimal time inferval e = wei —« DEINBEN POINS .. AN i e
following is valid up to first ordey in @
K(E+ 1) = e dRpl 193] + 130
= -8y (hit d
| ALg epr{iﬁﬂ?(HZ_Xi Xit1-Xi € (213)
Thus the integral from Eq. (2.L2), 12, the ampliue for any complete path, can
DR Writen 8

01 =My k(i 1), ll

For the case of & partice’s i a potential R(x) the Lagragian, &
ooraing to By (2.13) read

_om f X+ - X
a2 e V(x), (2.15)



nserting into Eq, (2.12) yields

K (0%) = iy f o e 7e Y ] -viY) . (219
oW e wan: o ,orove that path integral approach is equivalent to the con-

enfiond apﬁroach. 1 the Feynman and Hiohs hook !}%2], ey 188 k.a) 10

amve ot Schrodnger equation of mofin. But ve do thi In reverse directon
Starting from Schrocinger equation we Ceuce path integral from i,

The Sctvodnger of mofion for time dependent sate vector S

(ih~ - ff) 4> = . (2.17)
Defing Greers operator or Gme evolution operator by
- HY G(t, 1) = ihis(t - 1), 218

I the x bsis o spatal representation Eq (2.16) beoomes
(""" ~ G(X!Ax'10 = =x)S(t —£'), (2.19)

Where
G(x,t;x",t') = (x\G(t,t")\xr). (2.20)
Once 15 knoan, the time-Gependent sate oy Can be dedliced accordng t
0(t)> = G(if0 IW >- (2-2)

For the cage of a Hamionian w that does not cepend explicity on tme, afoma
solution of Eq, (2.18) can e gven immeciately

Gt t) =6t —t) EX)  -H (=), (2 )
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Here o —r) 15 the Heavisioe step function, The Greens function In Siace ang
fme: results rom ths & & marix element

G(x, t,x', t) = 0t _t')(xlexp —H(t —f')’\ ), (2.23)
With = 7+ v, The following identity hold for the opeator funcion

B0 = B om) " 22
f e substtute A= icc —eym Into By (223), the Greens function becomes
G(x,t-x",t') = N“_l;]:])o(x\e-K?+*)/"e-Kt+*)/N L B-xctEF)/NA (225)

Wit « auays exoeed v
We now apply the Trotter product (see Appendix A}
|\|J—m) - \(THV)ING N _ 86 XTING- XYY = (226)
and obtain
Gxb-xt) = iUﬁjO X‘V(e~XT/Ne~xv/N/\ ‘X'). (2.27)
Inserting & complete et of Spatil states Jield
G(x,t-,x‘,t‘)—j\m&)j dxi ll-de-iT~f&!8<i+i\e~XT/Ne~xv/N\xi), (228)

0PEEE e 0  = . Now te mativ clemers apPearing kg 22
Pave t0 be detemingd. Since the operator for the potential energy v IS dagond
I a8, Ve hae

FHL A ) Y
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~ Inoroer to calculate the sPatiaI nalr element of the operator e i g
Insert & complete Set of momentum eigenstates

Lo lexfINW) = J dpfxiLle~xfIN\p)(pli)
dp(xi+1\p)(p\xi)e-Xp22TnN
This 5 Gaussan ntegral in momentum pace, Ve know that
dyé ax2Hx A/’?g624a (23]_)
Using this formulation e obtain

23
Inserting E, (232) and Eo, (229) nto Eo, (228) reslt n
G(x,t]x',t') = limAJdx1---dxN-1 (20|
XJJ e - I (M- Zi)2- iV (Xi) (233)
We nsert 6= —vyn = nxsin &0 SUM e eXponental exessions

122 FTEm X - [ - V(X* (234)

This resut is dentical o the path integral In Eo, (2.16) and now the nor-
malization constant s dentfied &

. 2nihe\ o (235)
Note that g, (2:23) mplied another property for the propagator

imG(x, t;x",t) = S(x —x). (2.30)
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2.2 Examples

e now caloulate the free particle system & an examyle. The fiee partice
5the system with v = 0 Then the propagator for the fieg partioe s

K(b, @ = um " dx1--- de—r—1 exp |imelj\:0(x7+i " Xj)2 (237)
Wit 0= oy =, 800 e = to—ta, TR VAIIOLS ntEQYaHONS appearing n
) f2.37) are reducinle to Smple Gaussian integrals by means of the quadratic
seua;gﬁement Inhe exponent, The Sccessve performance ofthe n —Lintegrafions
oAt 10 & s of Gaussian integyatons

J[C dy eE(X-y)th(Z-Y)Z A N\ eXp (ﬁbb{x' A (2 )
L&t us Degin with te Integration V8 . gi = im/ane):
t ox QWMZPMzi20)2= \(2—n7;’\ diz2x0)d2 23)

o100
Itegration over x. (Ves;
dxo [z iV /29«<«2—.,)’+,!,,-,2)’ B ‘1'/27 - X i_llz ahi(e3- x0y2/3
V- w W V3m/2j
- | r o (L)

Perfomance the s —Lintegration one atter te other yiels
i -gn- Q) (nFnei24{5- ")
_ b el 04)
Then the propagator takes the form

L | i J\_;V/z / o m @Sﬂzep I(f&(,\ég’; (2.42)
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Putting Eoy. (235) into By (242) and take the imit e->Qwe g

Y2 oym im (xb- ..

0.2 = gnrin- 120 P 2 (b o) 24

The next example 1s & hamonic oscilator system. But this tme ve sl

not go through the tecious calculation &S n case of the free parice, Sinog v can

(terming the most important charactersics of the propagator in the folowing
manner. Note that this tectniaue apply 1o only a quadratic Lagrangan,

T0 Ilustrate: how the medhod works, consicer a particle whose Lagrangjan
s the fom

L= a(xet b (et ax e i, (2. )

Let x(o be the classical path beween the Specific end points.  This s the path
WhIch 1S an eremum for the action . In the notation We have begn Lsing

s, = | )} 249
Defin the deviation of any path fiom. & (58 Fig.25)
oy 249
a1 the deviaton y & the end poits 1S 280
y(ta) = y(tb) =) (2.47)

At each « the vanabies . and y ciffer by the constant . Therefore, dleay
.= Tor eaon pectic point . i the slbdvision of tme. In generdl, we ey

Sy vx(t) = vy,
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Flgure 2.5: The difference between the classical path x(t) and some possible alternative path
X(t) is the function y(t). Since the paths must both reach the same end points, y(ta) = y(th) = 0.
In between these end points y(t) can take any form. Since the classical path is completely
fixed, any variation in the alternative path x(t) is equivalent to the associated variation in the
difference y(t). Thus, in a path integral, the path differential Vx(t) can be replaced by T>y(t),
and the path x(t) by x(t) + y(t). In this form x is a constant for the integration over paths.
Furthermore, the new path variable y(t) is restricted to take the value 0 at both end points.
This substitution leads to a path integral independent of end-point positions.

The integral for the action can be written

S =[x+ y(]

ty
x / (a(t) G2 + 289 +97) + .. Jdt. (2.48)
la

If all the terms which do not involve y are collected, the resulting integral is just
XE)| = sd. If all the terms which contain y as & linear factor are collected, the
resulting integral vanishes. The remaining terms are the seconc-order terms in

y. Then
S[a(t)) = Sa(b, a] + / " [a(e)3? + b + Pl (2.49)

The integral over paths coes not depend upon the classical path, so the
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propagator can be written
= e«f)SAMOVy{t) (exp{{ Jr[a()y2+ b(t)yy + c(tygdtry (250)

Since all paths y(t) start from and return to the point y = 0, the integral over
paths can be a function only of times at the end paints. This mears that the
propagator can ke written &s

K{b,a) = eli’h)S M F (th ta). (251)

If the coefficients & b and ¢ are time-independent, then it follows that  is a
function of the time cifference: F(th —ta). Applying this technique to a harmonic
oscillator which hes a quadratic Lagrangian. Then the problem is to evaluate the
classical action and prefactor F(th —ta).

It can be proved straightforwardly that the expression of the classical action

scfb,a] =, mgita +xl) COSWT) - 2xaxt], (252)
Where T = th —ta and iuT

We employ the group property of K (b,a), and Eg. (2.36). Thus

6(x2-x i) = K(x2t;xi,t)

8

dz K (z5,t;2,0)K(z,0; z1,1)

e,
88

dz K (z2,t;2,0)K*(21,t;2,0). (2.53)

8

Here we substitute

K(XZ,'[]X, 0)
K*(x1,t; x, 0)

[

F(t)e(i/}")sct(lz,t;z,O)
i G <t)(3d(i/ﬁ')5cl(11 ,t;2,0)
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Hence we can continue to write
G- 137 1 dnredHS (K2t 0-4®1510) (255)

The exponential can also be written & (x2= x\ + A);
dsd(xi, tix,0)

sd{x\ + AX, £,0) —Sci(xi,jx,0) = 4 (x2- xi)
= c*(X)(x2- Xi), (256)
Wwhere
A — de(()j(i(,t:;LX,O)

d (- m

o \23in(guf) [{x\ +x1) 008{ Jt) —2xiX]
sin(ct) X000 ) 257)

Note that a(x) is linear function of x, sothat s independence of x. With
this information, we can continue to write

6x2- xi) = [ da & " ReMepeii)

da
Ay 2dnahc(i/h)a(x)(x2-xi)ZIwAI/:d(Xt{\: (258)
From the definition of delta function
2~ Xi) :J (ifh)a(x)(x2-xi) 2(17crh
then
M= onp gi (259
From Eg. (257) we know that
da
dx  sin(cuf) (260)
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Finally we get

'\|F({t)q\2 - 2TThsin(ut)

I'm 1
2nh t s\n(ut)/ut (2'61)

The phase of the prefactor  (t) can be determined from our knowledge of the
free particle propagator. Using lim -----= 1, we abtain from Eq (243)

F(t) sy 10T (262)

Thereby we have found the propagator for the linear harmonic oscillator
(T = th- ta).

K(xbthxata)= * 27 ™ {11) e + XA - 2XbX-
(263)

2.3 Statistical Mechanics via Path Integral

The path integral tums out to provide an elegant way of doing statistical
mechanics. And since Bose-Einstein condensation is the result of quantum statis-
tical mechanics, we then want to describe how path integral connect to statistical
mechanics.

The prime quantity in statistical mechanics is the partition function which

express in the form below:
= (2.64)
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Wwhere P — Ik BT and T Is temperature in the absolute unit. Ej is the energy of
the state [J). e can rewrite this as

Z = Tre-pH, (265)
where the trace is taken in the eigenbasis of H
m  =E\). (2.66)
Now we exploit the fact that the trace is invariant under a unitary change
of basis and switch to the -hasis to obtain
27 ] (Me-PHW)dx. (267)
Then the integrand is defined s density matrix;
p(x.x’) = (xle~pHix), (2.68)
Inserting the complete set of energy eigenstates obtain:
p(x.x’) = "2(xle~pH\j)(j\x’)
(269)
Where 45j(x) means the eigenfunction comesponds to the eigenstate j.
Recall that the propagator is a time translation matrix element Eq. (2.23)

K(tx,t) = (xie~EHr_t)[X)

- A2 N (XX )e~Ej(ton - (2.70)
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It is easlly seen that the density matrix bears a close resemblance to the
propagator. The only difference between them is lied in the argument of the
exponential term.  Actually if we set (t —t) equal to —i3h the Eg. (270) Is
identical to Eq. (269). In other word, the density matrix is the propagator in
the negative imaginary time. In ordinary (real) time,

K(x,T,x',0) = Jvx(t)exprJIr dt V(X)M. (2.71)
With T -i(3h,
K{)—ishx\ )=y W x p JI[ dt —=VX*p (27

Where We now integrate along the negative imaginary time axis (Figure 2.6).

b

Ret

-iP
Figure 26: Path in the complex time plane.

Let us define a real variable for this integration, « = . 1 IS called the
Imaginary time, since when the time « is imaginary, T s real. Then integral over
T is along its real axis. when £= 0 ——#3, then T= 0—ph. We can write
. & afunction of the variable r ..., —x(r); theni=  The propagator
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becomes
Jvxpep A tv (X)) rfrd
Jvx(epl 2 ce(x) (279

ce I called the euclidean Lagrangian. Note that ce I the sum of the euclidean
kinetic energy and real time potential energy. Thus the particle obeying the
euclidean eguations of motion will see the potential upside down.

2.4 Variational Method

K(x,-i/3h]x", 0)

There are very few system which can be solved exactly either in Hamiltonian
or Lagrangian approach. Then some approximations are needed. Hence in this
section we shall now cescribe perturbation technique for the evaluation of the
path integral defining the partition, applicable to those system where  is redl.

Supnose we wish to evaluate the free energy of a System. The problem can
be expressed in terms of path integrals by starting with the partition function

defined &
2= e~pF. (274)
In Eg. (267) it wes expressed s an integral over the density matrix. In Eq,
(273) the density matrix is exoressed in terms of path integral. Then it allows
S to write
z=11 OP|- vx()dx (&-79)

\Where
= JL CE(x,x)dT.
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From now on we are choosing units in such away that the value of h is 1
It can be soincluded by a straightforward dimension inspection.

Suppose that some other * can ke found which satisfies two conditions:
First, * is simple enough that expression SUch 8 e~s V x{r) Of f Ge~s'Vx(r),
for simple functionals 6, can be evaluated. Second, the important paths in the
integral f e~svx(r) and those in the integral f e~s'vx(r) are similar, that is

cand  are S|m|Iar when they are both small. And let F* be the free energy
associated with . Then

I

Then since e~s = e~s~sse~s\ We Write kg, (2.76) &
} fes~s»e~s Vx{r)dx

//:1 e~5'Dz(7) dz,
= AT (277)

where the subscript ' means that the weighting function is the path integral
coresponds to . This means that e~p(F~F" is the average value of e~(s~s)
where this average Is take over all paths with the same initial and final point and
the weight of each path IS e~s'v x{r).

Introducing Feynman-Jensen inequality which states that the average of
when X is a random variable always exceeds or equals the exponential of the
average value of x, s long & x is real and the weights used in the averaging
rocess are positive. That is,

g-P(F-F) _

(e- > e () (2.78)
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where (x) = the weighted average of x. The geometrical interpretation of this
relation is & shown in Fig. 27.

Figure 2.7. Ceometical interpretation of (e~f) > e(~40)

Now Eq. (2.77) becomes
e-h(F-n = (6-(- )4
> e~{5-9)s. 279
This result implies that
F<F'+6 (280)
Wwhere
¥z (S-S V

This is aminimum principle which says that, if we calculate F* + Ofor various
“actions” , that calculation which gives the smallest result is nearest to the true
free energy. O if only a reasonable general form of * can be quessed but certain
parameters still remain uncertain, the calculation of F' +  can be made leaving



32

these parameters undetermined. Then the nearest approximation of F will be the
lowest £ + bavallable. That is, the “best” values of the parameters are those
which minimize F* + .

This principle can be used to find an approximation value for the lowest
energy state of the system e q. Recall that

Z=efF= i e PEs, (2,81)

§=0

As the temperature becomes lower and lower, this Is, as 3 grows larger, the
contribution of each state decreases exponentially. At the hmit 3 — oo the
ground state dominates the rest in the series. That is

A Z- efE (282
This means that at large 13 we can replace F by Eq. Then Eq. (2.80) becomes
Eq<ED+ . (283

In approximating Eq e can disregard the specification that the initial and
final points of the paths ke the same. To understand this, we refer back to
Eq. (269) and note that as (3 becomes large the density matrix p(x'x) IS also
dominated by the zero-order term and approach e~PE°(po(x)(f)Q(x).  Thus the
dependence on X and x' enter into a multiplying factor but does not affect the
nature ofthe exponential behavior of the function. It is this exponential behavior
which is fundamental in the evaluation of Eq by this technique.
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