
Chapter 2
Feynm an P ath  Integration

In this chapter Feynman path integration was presented. Unfortunately 
since the subject is large we cannot include all aspects. The interested readers 
are referred to [31, 32, 33, 34, 35]. In the first section we will explain the elements 
of path integral formulation and show that it is equivalent to the conventional 
formulation of Schrodinger and Heisenberg. Next we will give the examples that 
can be solved exactly. The third section is about statistical mechanics in the 
language of path integral. The final section is the variational method in terms of 
the propagator.
2.1 P ath  Integration in N onrelativistic Quan­

tum  M echanics
The standard formulation of quantum mechanics developed more or less 

concurrently by Schrôdinger, Heisenberg and others in the 1920s, and shown to be 
equivalent to one another by Dirac. These approaches based on the Hamiltonian 
of the system which is a function of operators. In contrast Feynman path integral 
approach to quantum mechanics is tied to Lagrangian. Then no subtlety of 
commutability of operator is involved. The third formulation which developed 
in the 1940s by R. p. Feynman was inspired by P. A. M. Dirac’s remarks [36, 
37]. Dirac made the observation that the action plays a central role in classical 
mechanics, but seemed to have no important role in quantum mechanics as it 
was known at the time. He speculated on how this situation might be rectified,
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and he arrived at the conclusion that the probability amplitude of a particle to 
arrive at particular space-time point “correspond to” exp{isy/i}, where ร  is the 
classical action evaluated along the classical path. Feynman further the idea by 
postulate that not just classical path contributes but all paths by the probability 
amplitude.

To get the picture of path integral let consider the double-slit experiment. 
Fig. 2.1 shows a diagram of double-slit experiment. The interference on the 
detecting screen arises from the superposition of two amplitude. Suppose we 
increase the number of slits from two to three. Then there will be three amplitude 
(see Fig. 2.2a) that we must add together to determine the probability amplitude 
that particle reaches a particular point on the detecting screen. Suppose we next 
insert another opaque screen with two slits behind the initial screen (Fig. 2.2b). 
Now there are six possible paths that the particle can takes to reach a point on 
the detecting screen. One can imagine filling up the space between the source and 
the detecting screen with an infinite series of opaque screens and then eliminating 
these screens with an infinite number of slits in each screen. In this way, we see 
that the probability amplitude for the particle to arrive at a point on the detecting 
screen with no barrier in between the source and the detector must be the sum 
of the amplitudes for the particle to take every path between the source and the 
detecting point. Then we are led to the following postulates:

1) All possible path contribute equally, i.e. formally in the same way 
as the amplitude; but different paths contribute with different phases.
2) The phase of the contribution of a given path is determined by the 
action ร  along this path (measured in h).
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Figure 2.1: The two paths in the double-slit experiment. The amplitudes for these paths add 
together to produce an interference pattern on a distant detecting screen.

( a )

(b)

Figure 2.2: (a) The three paths for a triple-slit experiment, (b) Three of the six paths that 
a particle may follow to reach a particular point on the detecting screen when an additional 
screen with two slits is inserted.
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The probability p(b,  a) that a particle will go from point x a at time t a to the 
point Xb at time t b is defined by the absolute square of the complex amplitude 
K (b ,a ) , that is P (b ,a ) = \K (b ,a ) \2. Furthermore the amplitude is given by a 
sum of contribution (f ) [x{t) ] of all paths joining a and b, i.e.

The contribution of each path had a phase proportional to the action ร  along the 
path, i.e.

Here c is a normalization constant that has yet to be determined. It is the same 
for all paths, since all paths contribute with the same weight.

We will now discuss the sum contained in Eq. (2.2) in more detail and we 
will be guided by the analogy to Riemann’s definition for an integral. For this we 
discretize the time interval T  =  tb — t a into N  equal partial intervals of length e:

Let x a, t a and Xb, tb be the two fixed end points. We now construct a certain 
path by choosing special points Xi for all intermediate time points t i  and connect 
the selected points by straight line (see Fig. 2.3). By refining this lattice, we can 
approximate every path with any desired quality. Hence, it is natural to define 
the sum over all paths as a multiple integral over all values of X 1:

(2.1)

<t>[x(t)\ = c exp {( i / h ) • ร [x(t)]}. (2.2)

(2.4)



15

F ig u re  2.3: The sum over paths is defined as a limit, in which at first the path is specified 
by giving only its coordinate X at a large number of specified times separated by very small 
intervals e. The path sum is then an integral over all these specific coordinates. Then to achieve 
the correct measure, the limit is taken as e approaches 0.

Let US now define the sum implied in Eq. (2.1) more precisely. In Riemann’s 
integral e can be made smaller and smaller. Here one cannot directly operate a 
well-defined limiting value in this way. In order to force convergence, a normal­
ization factor A(e), depending on e, has to be introduced. Summation lead to the 
path integral:

K ( b ,a )  =  lim -^ y  . . . — ^ .  exp { ( i /h )S [b , a]}, (2.5)
with the action define as

ร [b, a] = f  d t L ( x , x , t ) .  (2.6)
J ta

ร  is the line integral along a route dx 1 - - - dxN - 1  through the points Xi. We write 
Eq. (2.5) in the abbreviation form:

K ( b , a ) =  j y x(t)eWS[̂ A ^
where โ6 V x ( t )  denotes the infinite integral.

(2.7)
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For the amplitude Eq. (2.5) and Eq. (2.7), an important property can be 
derived. Let consider the path integral for two successive events (see Fig. 2.4) 
with ta <  t c <  tb. The action fulfills the obvious property:

Figure 2.4: One way the sum over all paths can be taken is by first summing over paths which 
go through the point at x c and time t c. The amplitude on each path that goes from a to b via c 
is a product of two factors: (1) an amplitude to go from a to c and (2) an amplitude to go from 
c to b. This is therefore valid also for the sum over all paths through c: the total amplitude to 
go from a to b via c is K(b,c)K(c,a).  Thus summing over the alternatives (values of x c), we 
get for the total amplitude to go from a to b, Eq. (2.11)

Now we consider Eq. (2.5)

ร [b, a] = ร [b, c] +  ร'[c, a]. (2,8)

with t a <  t \ . . .  <  ÎM < t \ i + \  ■ ■ ■ <  tb-

The integration can be performed in any order, in particular as follow. First, 
for a fixed x c, 5[c, a] a constant with respect to the integration over X M + 1 up to
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Xyv_i. The same is valid for S[b,c] with respect to the integrations over Xi up to 
Xm - i • The integration over the point in between, xc, is performed at the end. 
Rewriting Eq. (2.9) accordingly yields

1 f  d x  1 d x M - 1K ( b , a ) =  J  dxclim^-^ J exp|^S[c, a] เ^
f  1 f  d x M+ 1 d x N- 1 f i c n 1ไ A

x u  J  A - - A ex» { h s[b' ๆ ) '

which can also be denoted as
K (b ,  a)  =  J  d x cK ( b , c ) K ( c , a ) .

We can immediately generalize this to
K ( b , a )  = J  d x i  ■ ■ ■ dxis f - iK(b ,  N  — 1 ) K ( N  — l, N  — 2) 

X • • - K ( i  +  1, i )  • • • K ( \ ,  a).

(2.10)

(2.11)

(2.12)

For an infinitesimal time interval e = t i + i  — t i  between points X;+ 1 and Xi the 
following is valid up to first order in e:

K ( i  +  l , i )  — i e x p  | ^ 5 [ i  +  l , z ] |= i expl i 5[,+1' iI/
= -t exp { h i t  d

1 f i e  Xi+1 +  X i  X i + 1 - X i  € '
“  i e x p t i i ( - (2.13).4 { h ~ '  2

Thus the integral from Eq. (2.12), i.e. the amplitude for any complete path, can 
be written as

~  (2.14)<j>[x(t)] — lim PJ K ( i  +  l , i ) .
e~*° i=0

For the case of a particle’s motion in a potential R(x) the Lagragian, ac­
cording to Eq. (2.13), read

_  m  f  X j+ I  - X, 
=  ~2 {  6

V(x),
e

(2.15)
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inserting into Eq. (2.12) yields
K (b1 a) =  lim f  dx 1 - - - dxjv- 1  -7T7 exp e—0 J  A N Y f j  - v iX) . (2.16)

Now we want to prove that path integral approach is equivalent to the con­
ventional approach. In the Feynman and Hibbs book [32], they use K (b ,a ) to 
arrive at Schrôdinger equation of motion. But we do this in reverse direction. 
Starting from Schrôdinger equation we deduce path integral from it.

The Schrôdinger of motion for time dependent state vector is
( i h ~  -  f f )  |¥ (t)>  =  ว.

Define Greens operator or time evolution operator by
-  H^j G(t, t') =  i h i s ( t  -  t').

In the X basis or spatial representation Eq. (2.18) becomes
(^'^'0 ^ ~  G (x! ̂  x ' 1 0  — — x')S(t — £'),

where
G ( x , t ; x ' , t ’ ) =  ( x \G ( t , t ' ) \ x r).

(2.17)

(2.18)

(2.19)

(2.20)

Once G is known, the time-dependent state \ip(t)) can be deduced according to
|®(t)> =  G (ifO IW > -  (2-21)

For the case of a Hamiltonian H  that does not depend explicitly on time, a formal 
solution of Eq. (2.18) can be given immediately:

G(t,  t ') = 6(t — t ') exp - H ( t  — t ' ) ^  . (2.22)
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Here 9(t — t ') is the Heaviside step function. The Greens function in space and 
time results from this as a matrix element

G(x, t ; x', t ') =  0(t — t ' ) ( x I exp —H ( t  — f')^ \x'). (2.23)
with H  = T  + V . The following identity hold for the operator function:

exp Ô ะ= exp ( Ô / N )
N (2.24)

If we substitute A =  i ( t  — t ' ) / h  into Eq. (2.23), the Greens function becomes
G ( x , t - x ' , t ' )  =  lim (x \e- K ? + * ) / " e- K t + * ) / N  . . . 6 - x c t + * ) / N ^  (2.25)

N —t-oo

with t always exceed t ' .

We now apply the Trotter product (see Appendix A):
limiV—>0๐

^ 6 - \ ( T + V ) / N  j  N _  ^ 6 - X T /N  6 - XV/N^j ' =  0, (2.26)
and obtain

G (x , t - ,x ' , t ' ) = lim (x| (e~XT/Ne~xv/N\  |x'). (2.27)
iV —>0๐ V /

Inserting a complete set of spatial states yield
G ( x , t - , x ' , t ' ) — lim [  dx i  ■ ■ - d x N - iT ~ \  (x i+ i \e~XT/Ne~xv/N \xi), (2.28)jV—>oo / -*■ -*-J t=0

where Xq — X1 and XN =  X. Now the matrix elements appearing in Eq. (2.28) 
have to be determined. Since the operator for the potential energy V  is diagonal 
in space, we have

(*i+1 ๆ*,) = (xi+1 |e“Af'ๆ*,> - ^ ) " ' .  (2.29)
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In order to calculate the spatial matrix element of the operator e 
insert a complete set of momentum eigenstates:

( X i + 1  \e~x f / N \xi) =  J  dp{xi+1\e~x f / N \p)(p\xi)

=  f dp(xi+1\p) (p \x i )e -Xp2/2TnN
1 r°°i  /  . . \ „ 2  r t „ 1 7  . พ . . . . .

-A f /N we

27xh dpe -\p2/2mN i p ( x i + 1 - X i )

This is Gaussian integral in momentum space. We know that
dxé -ax2+bx _  /̂ )g62/4a

A a

(2.30)

(2.31)

(2.32)

(2.33)

Using this formulation we obtain

Inserting Eq. (2.32) and Eq. (2.29) into Eq. (2.28) result in 
G ( x , t ] x ' , t ' )  = l i m ^ J d x 1 - - - d x N- l ( ^ 0 ^ j

X JJ exp - ^ - (Zi+1 -  Zi)2 -  j j V ( X i )

We insert 6 =  (t — t ' ) / N  =  h X / i N  and sum the exponential expressions:

โ . ,  « - 1I ze TT-k m  X i + 1 -

This result is identical to the path integral in Eq. (2.16) and now the nor­
malization constant is identified as

r  -  V ( x ,)]c (2.34)

. / 2 n i h e \ 1̂
^  = -

Note that Eq. (2.23) implied another property for the propagator
(2.35)

lim G(x, t ; x ', t') = S(x — x'). (2.36)
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2.2 Exam ples
We now calculate the free particle system as an example. The free particle 

is the system with V  =  0. Then the propagator for the free particle is
,  1 โ  im

K(b,  a) = lim / dx 1--- dxN- r—  e xp  ^ ( x 7+ i -  Xj)2
^  J I e j=0

(2.37)
with x 0 =  xa, X/V =  x b, and Ne =  t b — t a. The various integrations appearing in 
Eq. (2.37) are reducible to simple Gaussian integrals by means of the quadratic 
supplement in the exponent. The successive performance of the N  — 1 integrations 
leads to a set of Gaussian integrations:

rJ  —c
dy ea(x-y)2+b(z-y)2 1/2

CL T  b
exp ab

CL +  b
{x -  z f (2.38)

Let us begin with the integration over X\ (/i  =  i m / 2 h e ):

f  dx gM -̂ziP+Mzi-zo)2 = ( —7r̂  e/i(z2-xo)2/2
7-00 \ 2  n ) (2.39)

Integration over X2 gives:
/ z i V /2 e«<«2- . . ) ’ +เ.!. . - . 2)’  =  / - ๆ ‘ ' 7 - x i  
v w  t w  V3m/2 j- i r

dxo
1/2 1/2

3/i (x 3 - x 0)2/3

m ( x 3 - * o ) 2 / 3 (2.40)
Performance the N  — 1 integration one after the other yields

r  d x i  ■ ■ - dxN- 16{ฬ(*n-*n- i)2+--+(*i -*o)2]}
1 / _ 71-\  (AT-l)/2_ 1 ( _ ?L j e/i(x,v-zo)2/2__  J - ( 7 ï Y

Then the propagator takes the form
(2,41)

, 1 /  27ri/te \ ;V/2 /  m  \ 1/2 [zm (x& -  XQ)
m j (2 0)) exp[ii(̂ 7y (2.42)
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Putting Eq. (2.35) into Eq. (2.42) and take the limit e->0we get
K(b, a) = m

1/2 exp im  (xb —  X a Y (2.43)2mh{tb- t a)J  [2h (tb -  ta)

The next example is a harmonic oscillator system. But this time we shall 
not go through the tedious calculation as in case of the free particle, since we can 
determine the most important characteristics of the propagator in the following 
manner. Note that this technique apply to only a quadratic Lagrangian.

To illustrate how the method works, consider a particle whose Lagrangian 
has the form

L  = a ( t ) x2 + b( t)xx + c ( t )x2 -f- d [ t )x  + e( t)x + f ( t ) .  (2.44)
Let x( t ) be the classical path between the specific end points. This is the path 
which is an extremum for the action ร. In the notation we have been using

Sd[b, a] = ร'[ริ^)]- (2.45)
Define the deviation of any path from X  as y  (see Fig.2.5):

X  —  X  + y, (2.46)
and the deviation y at the end points is zero

y(ta) =  y ( tb) = 0. (2.47)
At each t the variables X  and y differ by the constant X .  Therefore, clearly, 
d X i  = d y i  for each specific point t i  in the subdivision of time. In general, we may 
say V x ( t )  =  Vy { t ) .
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Figure 2.5: The difference between the classical path x(t) and some possible alternative path 
x(t) is the function y(t). Since the paths must both reach the same end points, y(ta) = y(tb) =  0. 
In between these end points y(t) can take any form. Since the classical path is completely 
fixed, any variation in the alternative path x(t) is equivalent to the associated variation in the 
difference y(t). Thus, in a path integral, the path differential Vx(t)  can be replaced by T>y(t), 
and the path x(t) by x(t) +  y(t). In this form X  is a constant for the integration over paths. 
Furthermore, the new path variable y(t) is restricted to take the value 0 at both end points. 
This substitution leads to a path integral independent of end-point positions.

The integral for the action can be written

If all the terms which do not involve y are collected, the resulting integral is just 
ร'[x(£)] = Sd. If all the terms which contain y as a linear factor are collected, the 
resulting integral vanishes. The remaining terms are the second-order terms in 
y. Then

S [x(t)} =  ร  [x +  y (t)]

The integral over paths does not depend upon the classical path, so the
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propagator can be written

K (b ,a ) = e«/ft)SdM j-0 V y { t) (exp { {  Jt^ [a ( t)ÿ 2 +  b (t)yy  +  c (t)y 2] d t ^ y  (2.50)

Since all paths y ( t) start from and return to the point y = 0, the integral over 
paths can be a function only of times at the end points. This means that the 
propagator can be written as

If the coefficients a, b and c are time-independent, then it follows that F  is a 
function of the time difference: F(tb  — ta). Applying this technique to a harmonic 
oscillator which has a quadratic Lagrangian. Then the problem is to evaluate the 
classical action and prefactor F(tb  — ta).

It can be proved straightforwardly that the expression of the classical action 
is:

K {b ,a ) =  el i / h ) S M F ( tb, t a). (2.51)

Sci[b, a] =  m d t â  + x l )  cos(wT) -  2xax b],z J (2.52)
where T  = tb — ta and iüT  ทาโ.

We employ the group property of K (b ,a ), and Eq. (2.36). Thus

6(x 2 - X i ) =  K ( x 2, t ; x i , t )

Here we substitute
K ( x2, t] X,  0 )  
K * (x  1 , t; X,  0 )
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Hence we can continue to write

<5(x2 -  X  1)=  f  d x \F ( t) \2ed^h‘ 
J — ๐๐

/h)[Sci (X2,t;i,0)-Scj(®i,t;i,0)j (2.55)

The exponential can also be written as (x2 = X\ +  A);
d S d (x i, t\ x , 0)S d{x \ + Ax, £;x,0) — S c i(x i, t ]x ,0 )  = d x \

=  c*(x)(x2 -  Xi),
(x2 -  X i)

(2.56)

where

a (x ) — d S d (x i, t ;  X, 0) 
d x 1

d (  m u
d x \ \2sin(cuf) [{x \ + x \) cos{นJt) — 2xix]

mcu
sin (cut) (xx cos(cot) — x). (2.57)

Note that a (x ) is linear function of X , so that แ is independence of X . With 
this information, we can continue to write

dx6(x 2 - x i ) = [

- L

da
๐๐
๐๐

da
เ^โ '/^ |2e (tM)a(x)(x2- i i )

d a  c ( i / h ) a ( x ) ( x 2- x i ) 2 n h \ F ( t ) \ :
2n h \d a /d x \ (2.58)

From the definition of delta function

<$(x2 -  X i)  =  J ( i / h ) a ( x ) ( x 2- x i )  d c *
27rh’

then
เ ^ ) ! 2 = 2nh

da
dx

From Eq. (2.57) we know that
da
dx

ไทน
sin(cuf)

(2.59)

(2.60)
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Finally we get

\F(t.)\2 =
' ■ { ) l  2 T T h s i n ( u t )

1 m  1 
2nh t s \n (u t) /u t (2.61)

The phase of the prefactor F ( t ) can be determined from our knowledge of the 
free particle propagator. Using lim -----= 1, we obtain from Eq. (2.43)

X —<0 X

F ( t) m
2-k ih t for บ (2.62)

Thereby we have found the propagator for the linear harmonic oscillator 
(T  =  t b -  ta):

K ( x b, tb; x a, t a) =  ^ 27ท่เ™“ {น}T ) exp + x ^  -  2 x b X -
(2.63)

2.3 Statistical M echanics via  P ath  Integral

The path integral turns out to provide an elegant way of doing statistical 
mechanics. And since Bose-Einstein condensation is the result of quantum statis­
tical mechanics, we then want to describe how path integral connect to statistical 
mechanics.

The prime quantity in statistical mechanics is the partition function which 
express in the form below:

2  = (2.64)
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where P — 1 / k BT  and T  is temperature in the absolute unit. Ej  is the energy of 
the state |j). We can rewrite this as

z  = Tr e~pH, (2.65)

where the trace is taken in the eigenbasis of H

m  = E , \ j) . (2.66)

Now we exploit the fact that the trace is invariant under a unitary change 
of basis and switch to the :r-basis to obtain

z =  [  (x\e~PH \x )d x .
J — ๐๐

Then the integrand is defined as density matrix:

p (x ,x ') ะ= (x\e~pH\x '),

inserting the complete set of energy eigenstates obtain:

p (x ,x ')  =  ^ 2 (x \e ~ pH\ j ) ( j \ x ')

(2.67)

(2.68)

(2.69)

where 4>j(x') means the eigenfunction corresponds to the eigenstate j .

Recall that the propagator is a time translation matrix element Eq. (2.23) 

K ( x , t ; x ' , t ' )  =  (x\e~EH^ _t )|x')

=  ^ 2 ^ j ( x ') ( f> j(x ) e ~ ^ E j( t~ n - (2.70)
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It is easily seen that the density matrix bears a close resemblance to the 
propagator. The only difference between them is lied in the argument of the 
exponential term. Actually if we set (t — t ') equal to —i(3h the Eq. (2.70) is 
identical to Eq. (2.69). In other word, the density matrix is the propagator in 
the negative imaginary time. In ordinary (real) time,

K ( x ,T ,x ' , 0 )  =  J v x ( t ) e x p ^ J ^  d t - V ( x ) ^ j j .  (2.71)

With T -i(3h,

K { x ) —ij3 h \x \ 0) = y W x p j l /  dt --- V (x)^ j> (2.72)

where we now integrate along the negative imaginary time axis (Figure 2.6).
1m t

-iP

Re t

Figure 2.6: Path in the complex time plane.

Let us define a real variable for this integration, T  =  i t .  T  is called the 
imaginary time, since when the time t  is imaginary, T is real. Then integral over 
T is along its real axis: when £ = 0 —> —i/3h, then T = 0 —> ph. We can write 
X  as a function of the variable r  : x ( t )  —> x(r); theni =  The propagator
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becomes

K ( x , - i / 3 h ] x ' ,  0) =  J  V x (t ) exp เ ^  + v  (x) j  rfrJ

=  J  V x (r) exp I  —̂ - J  Ce (x , x )( It (2.73)

CE is called the euclidean Lagrangian. Note that Ce  iร the sum of the euclidean 
kinetic energy and real time potential energy. Thus the particle obeying the 
euclidean equations of motion will see the potential upside down.

2.4 Variational M ethod

There are very few system which can be solved exactly either in Hamiltonian 
or Lagrangian approach. Then some approximations are needed. Hence in this 
section we shall now describe perturbation technique for the evaluation of the 
path integral defining the partition, applicable to those system where ร  is real.

Suppose we wish to evaluate the free energy of a system. The problem can 
be expressed in terms of path integrals by starting with the partition function 
defined as

.2 = e~pF. (2.74)
In Eq. (2.67) it was expressed as an integral over the density matrix. In Eq. 
(2.73) the density matrix is expressed in terms of path integral. Then it allows 
us to write

Z =  J J  exp |  — Vx(t) dxi (2-75)

ร =  [  CE(x,x)dT.
Jo

where
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From now on we are choosing units in such a way that the value of h is 1. 
It can be so included by a straightforward dimension inspection.

Suppose that some other ร ' can be found which satisfies two conditions: 
First, ร ' is simple enough that expression such as f  e~s V x { r ) or f  Ge~s'V x ( r ) ,  
for simple functionals G, can be evaluated. Second, the important paths in the 
integral f  e~sV x ( r )  and those in the integral f  e~s'V x ( r )  are similar, that is, 
ร , and ร  are similar when they are both small. And let F ' be the free energy 
associated with ร '. Then

where the subscript ร ' means that the weighting function is the path integral 
corresponds to ร '. This means that e~P(F~F  ̂ is the average value of e~(s~s') 
where this average is take over all paths with the same initial and final point and 
the weight of each path is e~s'V x { r ) .

Introducing Feynman-Jensen inequality which states that the average of X  

when X is a random variable always exceeds or equals the exponential of the 
average value of X , as long as X  is real and the weights used in the averaging 
process are positive. That is,

(2.76)

Then since e~s =  e~̂ s~s>s>e~s\  we write Eq. (2.76) as
[  f  e~^s~s>>e~s V x { r ) d x  

g - P ( F - F ' )  _  J i l l _____________________________________________

(2.77)

( e - ๆ  >  e - ( l ) (2.78)
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where (x ) =  the weighted average of X.  The geometrical interpretation of this 
relation is as shown in Fig. 2.7.

Figure 2.7: Geometrical interpretation of (e~f)  > e(~-0

Now Eq. (2.77) becomes

e- h ( F - n  =  (6- (ร -ร ')) 31

>  e~{s~s>)s'. (2.79)

This result implies that
F  < F '  + 6, (2.80)

where
*  =  i ( S - S V

This is a minimum principle which says that, if we calculate F ' +  Ô for various 
“actions” ร ', that calculation which gives the smallest result is nearest to the true 
free energy. Or if only a reasonable general form of ร ' can be guessed but certain 
parameters still remain uncertain, the calculation of F ' + ร can be made leaving
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these parameters undetermined. Then the nearest approximation of F  will be the 
lowest F ' + <5 available. That is, the “best” values of the parameters are those 
which minimize F ' + ร.

This principle can be used to find an approximation value for the lowest 
energy state of the system E q. Recall that

As the temperature becomes lower and lower, this is, as (3 grows larger, the 
contribution of each state decreases exponentially. At the hmit /3 —» oo the 
ground state dominates the rest in the series. That is

This means that at large f3 we can replace F  by Eq. Then Eq. (2.80) becomes

In approximating Eq we can disregard the specification that the initial and 
final points of the paths be the same. To understand this, we refer back to 
Eq. (2.69) and note that as (3 becomes large the density matrix p (x ',x ) is also 
dominated by the zero-order term and approach e~PE°(po(x')(f)Q(x). Thus the 
dependence on X and x' enter into a multiplying factor but does not affect the 
nature of the exponential behavior of the function. It is this exponential behavior 
which is fundamental in the evaluation of Eq by this technique.

(2,81)

lim z  =  e~PE°/3-+0๐ (2.82)

E q < E '0 + ร. (2.83)
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