
Chapter 3
Bose-Einstein Condensation: 

The Theoretical Aspects

This chapter provides the elementary scope of Bose-Einstein condensation 
in the dilute weakly interacting bose gas. First the noninteracting model was 
shown to predict that BEC can exist even in this limiting case. Also it guided 
the experimental physicists what to look for to confirm the realization of BEC. 
Next the interactions are included to show that, though weak they are, one gets 
better results compare with the ideal gas. From the interacting model, many 
features matched with experiment and new phenomena can be predicted using 
mean field approach.

3.1 Ideal B ose Gas in the Harm onic Trap

BEC in the harmonic trap is different from most of BEC written in text 
books, since the trapping potential considered here are inhomogeneous (spatially 
varying) potential. The system shows many interesting results. In almost all the 
experiments, the trap used can be approximated by harmonic potential [38]

Kxt(r) =  J  (o£r2+ u > y  +  u y ) ,  (3.1)

with the energy eigenvalue
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and the ground state wavefunction of free particle in the harmonic trap can be 
described by

, f N _  frn u jho\ 3/4^ (r) = ( ๗ r )  exp -■ ^{น1*? + น ,y2 +  UzZ2) , (3,3)

where
Who =  (พ:rWyWz )  ̂ -

Then the ground state wavefunction of N  noninteracting particles is

$ jv(ri,...,rjv) = (3-4)
The density distribution is obtained from

ท(r) =  JV| ®ofr)| 2, (3.5)

and the size of the cloud is determined not by N  but the characteristic length

0. =  m 1/2 (3.6)\ m นJhoj
which corresponds to the average width of the Gaussian wavefunction Eq. (3.3). 
At finite temperature some of the atoms are being thermally distributed in the 
excited state. The radius of the thermal cloud is larger than û h o -  The rough esti­
mation is done by assuming that k s T  >̂ hwho and using Boltzmann distribution

nd (r) oc e xp {-V ext(r)/A;Br } .  (3.7)

Choosing external potential to be

K x t ( r )  = h o r 2  
2 ’

the width of Gaussian is

(3.8)

R-T =  0 . ( ^ B ^ y / i w . ) 1^ 2 , (3.9)
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hence larger than Oho- Using Bose-Einstein distribution doesn’t change signifi­
cantly this estimation.

To obtain momentum distribution the ground state wave functions are Fourier 
transformed to give

M k )  =  I  <«r)efa , (3.10)
and the peak in momentum space is centered at zero momentum and having a 
width proportional to â o- The thermal cloud also spread in momentum space.

Eq. (3.5) predicts that BEC will show up with the appearance of the sharp 
peak in density distribution. This feature is different from the uniform case where 
the peak will show up only in momentum space, not in coordinate space, since 
the condensed and noncondensed particles fill the same volume.

The trap can be spherical or cylindrical symmetry. In the case of axial 
symmetry, the parameter À which defined to be

A = พ2/พ!, (3.11)

where <JÜ±,u z are radial and axial frequency. The asymmetry of the trap force 
has an advantage for giving further evidence of Bose-Einstein condensation from 
the analysis of the momentum distribution. From Eq. (3.10) the average of axial 
and radial width can be obtain. Their ratio is

\ f พ ิร ิพ ิ)  =  'Æ
= y (x2)/(z2), (3.12)

called aspect ra tio , is fixed by asymmetry parameter.

3>2G3ATTS1
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The condensate cloud in X  —  z  plane is an ellipse. Instead the noncondensate 
(thermal) cloud should be spherical, since they obey the equipartition principle. 
This feature has been interpreted from the beginning as an important signature 
of BEC [23, 29, 30],

From Bose-Einstein distribution, the total number of particles is given by

N = Y  (eXP{p(.£nxnynz -  ฟ } -  l ) -1. (3-13)
‘klx )7ly ,nz

where /X is classical potential and เ3 = 1 /k s T . When the BEC occurs the chemical 
potential is equal to the lowest state energy or

Pc = 2 h (3-14)

where นิ = (พ1 + น)y + cj2)/3 is arithmetic average of the trapping frequency. 
Apparently the lowest state occupation diverges so this term must be separated 
out. Then

N  -  No =  Y
TlX JUy ,nz ̂ 0

__________________1__________________
exp {P h  (u xnx +  LOyn y + Uzทz)} -  1 ’ (3.15)

Assuming that the level spacing becomes smaller and smaller the sum can be 
replaced by an integral

N  — No =  [  dnxdnydnz ---- — -----------------;-------TT--- 7 - (3.16)Jo exp{ p h  นJxnx +  iOyUy +  น)zทz))  -  1
This assumption corresponds to a semiclassical approximation for excited state 
and is good under conditions that N  is large and kBT  3> huj\10.

Integrating Eq. (3.16) gives
k BT
k  น>ho

3
N  -  No =  C(3) (3.17)
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where Ç,(ท) is the Riemann zeta function. To obtain the transition temperature, 
imposing that No —■> 0 at the transition, then

/  TV \  1/3kBTc hui\10 ^ J
= 0.94/1 whoiV1/3. (3.18)

The condensate fraction is derived by inserting Eq. (3.18) into Eq. (3.17)

J f  = 1 ~ ( 0  ’ f° r T< Tc' (3'19)
Below critical temperature and in the thermodynamic limit, the density of ther­
mal particles is calculated from

" r ( r )  =  /  (2rtj5 e x p { / f e ( p , r ) } - l ’ (3-20)

where e(r, p) = p2/2 m  -f- v^xt(r). The result is

ท r(r) = x ^ g v 2{ e ~ ^ %  (3.21)

where AT is the thermal wavelength and

93/2 (z) = ^ 2  zn เท312. (3.22)

Though ideal gas model give a good agreement with experimental results, a 
more quantitative comparison requires the inclusion of the interaction between 
the particles in the system.

3.2 The Interacting Case

The inclusion of interaction is demonstrated, in this section, to give a much 
more accurate prediction. Using the mean field approach, which its validity shown
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to be fitted for dilute Bose gases since the depletion of condensate is about 1% 
or less.

Starting from a many-body Hamiltonian in second quantization notation

where T (r) and 'fb(r) are the boson field operators that annihilate and create a 
particle at the position r, respectively, and V ( r ' — r) is the two-body interaction 
potential.

This Hamiltonian can be used to calculate directly the static as well as 
thermodynamic properties. Though it can gives the exact results within the 
statistical error, as N  is become larger, the calculation can be heavy or even 
impractical. Mean-field approach shown to be overcome this hindrance. Also it 
allows one to understand the behavior of the system in terms of a set of parameters 
having a clear physical meaning.

This approach was first formulated by Bogoliubov [39] to described the su­
perfluidity phenomenon. This is done by separating the condensate contribution 
and considering this condensate operator to be a c-number: do = do = y/No- 
This is possible since No is large as compared with unity, the expression

J  dr'î't(r) - ^ V 2 + Hext(r) T(r)

a0a j -  น1น0 =  1 (3.24)

is small compare with do, «0 themselves.
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The field operator can now be

T(r) = ao0o(r) + ̂  Oi<f>i(r) 

=  T(r) + ^'(r), (3.25)

here <h(r, t) is a complex function defined as the expectation value of the field 
operator <h(r, t) = (T(r, t)) . The function $(r, t) is a classical field having the 
meaning of an order parameter and is often called “the condensate wavefunction” . 
The condensate wavefunction characterized the off-diagonaal long range behavior 
of the one-body density matrix

The density matrix takes a separable form p(r, r') = N(j)*0{ w h i c h  remain 
different from zero for macroscopic distance

In order to derive the equation for condensate wavefunction <h(r, t) the time 
evolution of the field operator T(r, t ) can be written by using Heisenberg equation 
with the many-body Hamiltonian

p(r',r) = (Tf (r)T(r')). (3.26)

1r/lim 00 p(r',r,f) = $*(r', f)$(r, t). (3.27)

Since the depletion of the condensate is small, the field operator can be
replaced by the classical field T. In the integral containing atom-atom interaction,



40

V (r ' — r), this replacement is a poor approximation when short distances (r' — r) 
are involved. In the dilute system the binary collisions are dominate the scenario. 
So one can replace an interaction term by psuedopotential (see Appendix B) in 
which the strength depend on the s-wave scattering length which can be express 
as follow

v ( r ' — r) = gô (r' — r) (3.29)
where

4n h2a9 = (3.30)
a is the s-wave scattering length.

This approximation is compatible with the replacing of T(r, t) by <F(r, t). 
Finally it gives

i h d t ^  = ( ~ ^ T  + Vext^  +  9 ^ ( T' 2)  (3-31)
This equation is known as Gross-Pitaevskii equation which was derived separately 
by E.p. Gross [40, 41] and by L. Pitaevskii [42], Its validity is based on the 
conditions that the s-wave scattering length must be smaller than the interatomic 
distance and N  is much larger than unity.

There is an alternative way to derive the GP equation. This is done by 
variational procedure (see Appendix C)

., 5 _ _ 6E
lh d E  =  s ¥ '

where the energy functional E  is given by

£[4-1 = J d r  |V 4 f + น , )  I 4 f + § |4f

(3.32)

(3.33)
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GP equation provides US a tool to investigate static and dynamic properties 
of Bose-Einstein condensate in a cold dilute gas. It should be noted that due to 
the assumption T' = 0, the formalism is strictly valid only in the limit of zero 
temperature.

To obtain a stationary solution, one can write the solution in the form

$(r,t) =  e~i,dt/V (r). (3.34)

Applied this solution to GP equation Eq. (3.31) then time-independent GP equa­
tion can now be written as

' fi2V2 
2m +  Kxt(r) +g<fi2{r) 0(r) = แ(f)( r). (3.35)

The s-wave scattering length entering in the interaction term may be negative 
or positive correspond to the effective attraction or repulsion, respectively. For a 
noninteracting case, the condensate has a form of a Gaussian of average width Oho, 
and the central density is proportional to N . When the interaction has taken into 
account the scenario is changed. The shape of condensate is decreased (increased) 
when the value of a is positive (negative), with respect to the Gaussian (see Fig.
3.1 and Fig. 3.2). The change can be dramatic when the interaction energy is 
much greater than the kinetic energy, that is, when iV|a|/aho 3> 1.

This parameter is obtained by comparing the interaction versus kinetic en­
ergy. The first estimation is done by calculating the interaction energy on the 
ground state of the harmonic oscillator. This energy is given by g N n , where the 
average density is of the order of N /a l0 so that E int oc N 2\a\/a^o- On the other
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Figure 3.1: Condensate wave function, at T  — 0, obtained by solving numerically the sta­
tionary GP equation (Eq. (3.35)) in a spherical trap and with attractive interaction among the 
atoms (a < 0). The three solid lines correspond to 7 V |a | /a h o  = 0.1,0.3,0.5. The dashed line is 
the prediction for the ideal gas. Here the radius, r , is in units of the oscillator length dho and 
Plot ( ° - L / N ) 1/2<t>(r ) on the vertical axis, so that the curves are normalized to 1, from [43].

r  (u n its  o f ah0)

Figure 3.2: Condensate wave function, at T  = 0, obtained by solving numerically the sta­
tionary GP equation (Eq. (3.35)) in a spherical trap and with repulsive interaction among the 
atoms (a > 0). The three solid lines correspond to 7 V |a | /a h o  = 1,10,100. The dashed line is 
the prediction for the ideal gas. Here the radius, r, is in units of the oscillator length a ho and 
plot « y ./V )1/20(r) on the vertical axis, so that the curves are normalized to 1, from [43].
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hand, the kinetic energy is of the order of NhiOho and thus Ekin oc N a ~ \ One 
finally finds

Eint N  I a, I 1 ^T T 1 oc - (3.36)
■ Ekin Q ho

The numerical solution of the GP equation for the ground state wave func­
tions with the repulsive interactions have been obtained by a variety of groups for 
both the isotropic case [44, 45, 46] and the anisotropic case [47, 48, 49]. Compared 
to the bare harmonic oscillator ground state wavefunction; the wavefunction for 
the condensate is broaden in space as a result of interactions and its shape devi­
ates markedly from a Gaussian, with a much flatter density profile in the central 
region for sufficiently large N . The broaden increases as N  increases, and for 
an anisotropic case, the extent of broadening is greatest in directions where the 
restoring forces are weakest. Fig. 3.3 illustrates these features for a 87Rb conden­
sate.

By direct integration of the stationary GP Equation (3.35), one finds the 
useful expression

A4 = (-Ekin + Eho + 2Eint) / N  (3.37)
for the chemical potential in terms of the different contributions to the energy 
function Eq. (3.33). Another important expression derived by applying the virial 
theorem

(p i)  mujx 2 1 117, _ n ,99^
2ÜT -  2 {x  > +  วิ.E i °'  (3'38)

and similarly for y and 2 . By summing over the three directions one finally finds

2Ekin — 2£ho + 3Ejnt = 0. (3.39)
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Figure 3.3: Ground state wavefunction for 87Rb along the X  axis (upper part) and z  axis 
(lower part). Distances are in units of ah0 = ( h /m u ’h o ) ly /2> with พ* =  น}y = Who arid 
น;2 =  \ / ร พ ho- The dashed line is for noninteracting atoms; the solid lines correspond to 
N  = 100,200,500,1000,2000,5000,104, in descending order of central density, from Dalfovo 
and Stringari [49].

As N  increases, the interaction energy increases and the repulsion interaction 
pushes the cloud to the region where trapping potential is higher, thus increasing 
Eh0. Conversely, the kinetic energy decreases. Dalfovo and Stringari [49] have 
explicitly demonstrated this aspect in their numerical results ( see Table 3.1).

In the experiment done by Wieman’s group when the trapping potential is 
suddenly switched off, the cloud is allowed to expand. The image of the cloud 
has been taken via light absorption technique. Also the velocity distribution is 
obtained and by integrating over the distribution the kinetic energy of the system 
is obtained. This energy, which is called release energy, coincides with the sum
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N Ml ( E J N ) (£1/AQkin ( £ i / £ ) h o (£l/A0kin
1 2 .4 1 4 2 .4 1 4 1 .2 0 7 1 .2 0 7 0.000

100 2 .8 8 2 .6 6 1 .0 6 1 .3 9 0 .2 1
2 0 0 3 .2 1 2 .8 6 0 .9 8 1 .5 2 0 .3 6
5 0 0 3 .9 4 3 .3 0 0 .8 6 1 .8 1 0 .6 3

1 0 0 0 4 .7 7 3 .8 4 0 .7 6 2 .1 5 0 .9 3
2 0 0 0 5 .9 3 4 .6 1 0 .6 6 2 .6 4 1 .32
5 0 0 0 8 .1 4 6 .1 2 0 .5 4 3 .5 7 2 .0 2

1 0 0 0 0 1 0 .5 7 .7 6 0 .4 5 4 .5 7 2 .7 4
1 5 0 0 0 1 2 .2 8 .9 8 0 .4 1 5 .3 1 3 .2 6
2 0 0 0 0 1 3 .7 9 .9 8 0 .3 8 5 .9 1 3 .6 8

Table 3 .1 : R esu lts  for th e  ground  s ta te  o f 87R b  a to m s in a  t r a p  w ith  A = '/ร ิ. T h e  sub scrip t 
kin ., ho ., an d  in t. refer to  kinetic, harm on ic  an d  in te ra c tio n  energy. (1 \ an d  E l  a re  chem ical 
p o te n tia l an d  energy  a re  in u n its  hw_L,with ujz / 2 tt =  220 Hz. L en g th  is in  un its  ax, from  [49].

of the kinetic and interaction energies at the beginning of the expansion since at 
that instant the harmonic potential was excluded:

-Erel =  -Ekin +  -Ejnt- (3 .4 0 )

Since energy is conserved during the expansion, its initial value, calculated with 
the stationary GP equation, can be directly compared with experiments.

From the comparison, it shows the evidence for the crucial role played by 
two-body interactions. The noninteracting case gives E re\ /N  — 2 ( l + 2 ) Ê ho, 
independent of N . In contrast the interacting model gives a good agreement with 
the observed release energy which depends rather strongly on N . Fig. 3 .4  and 
Fig. 3 .5  show the data obtained at JILA [50] and MIT [23] respectively.

Contrasting to the noninteracting case, now consider the situation where 
the interaction is strong. This can be achieved when N  is increased so that the 
parameter N \a \ /a h0 is much larger than unity. The effect of strong repulsive inter­
action is that atoms are pushed outwards. The condensate wavefunction become
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Figure 3.4: Comparison of the release energy as a function of interaction strength from the 
stationary GP equation (solid line) and the experimental measurements (solid circles). Inset 
shows the expansion of widths of the condensate in the horizontal (empty circles) and vertical 
(crosses) directions against the predictions of the time dependent GP equation (dashed and 
solid lines) for the data point at 10~i N v1/2 =  0.53. Here y is the frequency of the trapping 
potential and the trapped gas is rubidium. Prom Holland e t al. [50].

Number of Condensed Atoms N0 (106)

Figure 3.5: Release energy of the condensate as a function of the number of condensed atoms 
in the MIT trap with sodium atoms. For these condensates the initial kinetic energy is negligible 
and the release energy coincides with the mean-field energy. The symbol Uint is here used for the 
mean-field energy per particle. Triangles: clouds with no visible thermal component. Circles: 
clouds with both thermal and condensed fractions visible. The solid line is a fit proportional 
to N q^5 ). From Mewes e t  al. [23].
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rather flat at center of the trap. Consequently the gradient of the condensate is 
small compare to others terms and can be neglected. Now the solution of the 
stationary GP Equation (3.35) takes the form

which provides the accurate description of the exact solution in the interior of the 
atomic cloud. This approximation is known as Thomas-Fermi which is opposed 
to the noninteracting limit.

The normalization condition provides the relation between chemical potential 
and number of particles:

Moreover, since [I = d E /d N , the energy per particle turns out to be E / N  =  
(5/7)/z. Finally, in the large N  limit, the release energy coincides with the inter­
action energy: E re\ /N  =  (2/7)/i.

The chemical potential, as well as the interaction and oscillator energies ob­
tained by solving numerically the stationary GP Equation (3.35) become closer 
and closer to the Thomas-Fermi values when N  increases ( see for instance, 
[49]). For sodium atoms in the MIT traps, where N  is larger than 106, the 
Thomas-Fermi approximation is practically indistinguishable from the solution 
of GP equation. The release energy per particle measured by [23] is indeed well 
fitted with a N 2/5 law, as shown in Fig. 3.5.

= [sk { a * —  l e x t ( r ) }  ) (3.41)

The Gross-Pitaevskii equation cannot be solved analytically and even nu­
merical solution is difficult or impractical to obtain when the number of particle
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is large. It is therefore sensible to attempt approximation solutions, in order to 
obtain some physical insight and a qualitative understanding of the condensate 
behavior. One approach is a variational method [51]. In this approach the wave- 
function can be applied over the range of interaction. Still, it requires one to fits 
parameters in the solution with the result obtained by experiments. The reason­
able choice for the trial wavefunction to be the form of the lowest single particle 
mode and now the trapping frequencies is interpret as variational parameters, as

<f>(r) =  N 1/2f lY 2n l /4 ( - ^ )  3/4 e~m{çl^ +çlzz2)/2h (3.43)

where fijL and fไz are the effective frequencies treated as variational parameters. 
Substituting Eq. (3.43) into Eq. (3.33) yields the ground state energy

m ± ,fy  = Nh(%. + |2- + อุ‘  + ^  + iv.3ท1! (ร: ) : (3.44)

In the attractive interaction case, which corresponds to negative value of 
scattering length, the central density of the cloud increases rapidly with N . This 
is the effect of adding more and more attractive interaction energy. In the in­
homogeneous gas this effect is counterbalanced by the zero point kinetic energy, 
often called quantum pressure. It should be noted that in homogeneous case 
the quantum pressure is absent hence the condensate is always unstable. As the 
number of particle increases to some definite degrees the attractive force surpass 
the quantum pressure. Consequently the condensate is unstable. This implied 
that for the attractive interaction the number of particle participate in the cloud 
is limited.

The limiting number of particle N cr can be calculated at the zero temperature 
by means of Gross-Pitaevskii equation. It is obvious from energy functional that
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there is no global minimum. Fortunately the quantum pressure when exceed 
the interaction can produce the local minimum. Fig. 3.1 shows the condensate 
corresponding to local minimum for different N . As N  increases the depth of the 
local minima decreases. Above the critical value the local minima is no longer 
exist and GP equation has no solution. In the spherical trap the critical value is 
[46]

N c1 = 0.575^. (3.45)
M

For axially symmetric trap with 7Li used in [52, 53, 54] the numerical result 
predicts N CT ~ 1400 [49, 55] which is consistent with the measurements made by 
[53, 54],

Again the variational method is applied to obtain an insight of the conden­
sate. For a spherical trap one can minimized the energy functional Eq. (3.33) 
using the trial wavefunction

0(r) = ) exp ( 2^ )  - (3'46)
where m  is a dimensionless variational parameter which fixes the width of the 
condensate. One gets

= ? (0,-* + น,ๆ  -  ( 2 น ) - พ ป ี^ น , - 3. (3.47)
Nfrwho 4 ah0

This energy is plotted in Fig. 3.6 as a function of โบ, for several values of the 
parameter Af|a|/ah0. It is obvious that the local minima disappears when this 
parameter surpass the critical value. To determine the critical number of particle, 
one requires that

d E  d2E  
dm dm 2 (3.48)
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Thus one obtains
N „  ~  0 .6 7 ^ , (3.49)

about 20% greater than the value obtained numerically. The comparison give a
measure of the accuracy of the Gaussian wavefunction approximation.

Figure 3.6: Energy per particle, in units of hwho, for atoms in a spherical trap interacting 
with attractive forces, as a function of the effective width พ  in the Gaussian model of Eq. 
(3.46) - Eq. (3.47). Curves are plotted for several values of the parameter 7V|a|/aho- The local 
minimum disappears at N  =  N Cr, from [43].
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