Chapter 4
Results

This chapter we will apply Feynman path integral formulation to Bose-
Einstein condensation in a system of a dilute weakly interacting bose ges trapped
In an anisotropic magnetic field. By using variational method we can derived
the approximated density matrix.  This lead to the ground state energy and
wavefunction. Our resuits are then compared to the mean field approach both
analytically [51] and numerically [49].

It Is known that magnetic trap can be approximated by harmonic osclk-
lator potential. The interaction potential is approximated by a zero-range (hard
sphere) potential in which the strength s given by the swave scattering length
&s mentioned in Chapter 3. Then the Lagrangian is

drh2a <&
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where m IS the atom|c mess of the alkali ges. i and 7 are the coordinates of
particles. & and oz are the radial and axial frequencies and a is Swave scattering

length.

We know from chapter 2 that density matrix can be written as propagator
In an imaginary time from Eq. (2.73)

b o
plE", BT 0) = /exp{—S(f,f,u)/fz}Df(u) (4.2)
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Where
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with the conditions
b=0, b=p 43

and r*,r' denote an initial and final points in the configuration space . pis
1/kT, Wwhere k is the Bolzmann's constant and T is the absolute temperature.
From now on h is et to unity and can be put back by dimensional investigation.
Note that the action in imaginary time is a real number.

Since this density matrix can not be soived exactly, we seek to approximate it
instead. One way to do this is the variational method in path integral formalism
first introduced by Feynman in the polaron problem [0,

From the definition of the partition function
Z /= /p(f‘,[j'; F,0) df (44

where the choice of the 3n—eoordinates f = (r!,r2,...,rN) is arbitrary. We have
neglected the permutation of the particle at the end paints. However this is not
actually correct when consider that the systemis composed of identical particles.
The effect of indistinguishability is the (anti)symmetry of density matrix when
any pair of (fermionic)bosonic particles have been exchanged. The correct form
of the partition function can then be written as

1 r r — =4
z = [ 5 X € po(Prpir,0)de (45)
P

where £ = +1 for bosons and £ = —1 for fermions, p denates the permutation
of the particles. pD is density matrix for distinguishable system. 1t should be
emphasized that p acts on the particle inclices, not on the components of r

Separately.
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However this is not the case in obtaining the ground state properties. Since
it wes denved from 1 = Olimit. Then we can write the density matrix as below

= $o(M)$S(r)e*” 0 (46)
Where so IS the ground state wavefunction.

Now we apply the variational method to our problem. \We choose the trial
action to be that of harmonic oscillator with transverse and axial frequency fi >~
&s variational parameters

':y 0[*|+ +yB @[]CU (4-7)

and the trial density matrix can be readily evaJuated by transform the propagator
of harmonic oscillator in real time to negative imaginary time. The result is

p'(r,/3;f,0) = ( 2rftsinh(f11 ))

X exp + *2)cosh(lir ).

XA {~ 2filh (fU ff) Lya+ §2) OSh&H) - 2 1)
xexp{-2»s.g )L(tt+z2) COSh(Q* - 2z7]} <48)

Consicer the average terms. Since the kinetic term in- and * always cancel
each other, the argument then

(-1, =y duf(ul-n2)(xR+ y*¥)5L+ ( ?-ft,) {zD) 3]

+oA A0 du(B(ri~ - (49)
Since there is no coupling between each coordinate then
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(+y)s —()usly) - (+10
First evaluate (x?) ., using generating function. Consider the system of forced

harmonic oscillator in ane dimension, the generating function in imaginary time
S as follow:

S OXO) M Ko ,PTx,0)
\ I S'(x) Kho(x',p-,x,0)
= es -30) (411)

where /() Is the force function and can be chosen arbitrarily. sd and @ is
the classical action in an imaginary time of the forced harmonic oscillator and

harmonic oscillator respectively.

Both classical action can be evaluated easily and the dfference between sd
and (s in the force-dependent terms. Sowe get
smi2 | (7—)

A= oA z nobpodut SN Cij_p
1 sinnf1 Lp — )sinh

+mtttdo dudo duf(Uf(L) sinhQip R
Functional derivative of Eq. (4.11) with respect to /( ) gves
(xu)etiu) iwdy), i )Scn psch-Sei (413
If one sets / = 0 gives
(sw O )Se') ) (414

Continue the procedure, obtains

1 BTG IRE) i A
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Substituting Eq. (4.12) into Eq. (4.15) and ignoring the coordinate dependent
terms gives

[ 2 sinhftx(/?- ) sinhftx
e mZsinhni/3 - (416)

Apply this method to A-body system. Since ather coordinates are not cou-
pled to xi and are cancelled out by the denominator. Resulting in
/ e5 22 D (u)
(3 (w)g = :
/ eS Di(u)

J es(Xm2V Xiu)

\]es'A T>Xi(u)
— (xi(u)) &) (417)
Also this argument is validl for (yf)3, and (zf)3,. In summary, we get

1 fsinhfix(p — )sinh +
= (/). y (sinh ) |)

snhfizg3— )sinh A
<. m\%_z& smhfzs 1 (418)

Next consider the average of delta function, using Fourier transformation

. TR S e
<& - 1l = /_oo ((2;))2 (e}, (et mm)g,
. / " ks sy (419

o O

where k&, kzare the wave number correspond to fix, #'z- In the case of x coordi-
nate, let us define

() = =xikj_5(u—") (4.20)
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then

AGlfEMxi(u)dur 16/ - ()Xj()dur oA (4.21)

both terms on the right-hand sice are the propagator of forced harmonic oscillator
divided by that of harmonic oscillator. In addition, since their prefactors are
identical, the only difference lies in the exponential term,
¢ ) Ik>*N = ep{sfe Fau rawr ) (e X"
+ hduf*(u) (*:SSjif + (/)
Again the end-point terms have no contribution to the energy, we neglect them
and substitute f +( ) into Eg. (4.22) to get

0T O L exD Slnhl X ?SI% Slnh |2LU\ (423)
for ~ () the result is the samg,
j —L [k Ld-xj)) _ Jdke £ fojsinh e~ )sinh 1
n 0 ‘> 2n € X 1+ SNh “p

{ sinh + \ 12
2\7T3|nh1 J§— SI?]h ] 424

Calculation for y and - coordinates can be done in the same manner. Replacing
this result in Eq. (4.19) gves

mfl 1 sinhcl 172 | mclzsinhcio | M2 (425)

0 (ri~ rj))s" = Zfsinhcl (fd—u)sinAQJ_ | 47Tsinh (99— )sinhnZ J

Finally substituting Eg. (4.18) and Eq. (4.25) into Eq. (4.9), we get
(- 3 Nm(u,l - 1)
x

I cllsinhc 3 Clzsinh02/3
\2ne |rg dul?T—m (P— )sinh ¢l y47Fsian<:|zZ((d—)sinh 2 (426)
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Consider the first term on the right-hand side of Eg. (4.26), the integrand
IS evaluated as follow

J3amn" A A p<igw = f (SN ooshg L —cothfik?sinh2gy )

sth%L \s/mh il ol /é]
A 21
Sinh2Q+/ —cosh2 /3 cothi/3
“Uitn
o The Ai vy

For the limit /3— 00, coth 243 = 1. The first term on the right-hand side of Eq,
(4.27) is smaller than the second one, then we ignore it. Also this is true in the
2-axis. Now evaluate the last integrand of Eq. (4.26) using the limit above

sinhQ,p . NN
sinhf2x(8 — ) sinh snh cosh —SIﬂEIZQi

Agfi L g—fij_u)*gO_Lti | g—n_Lu)  A>ntu g—Oxu)2

2 92—201 (428)

Then the Iast term of Eg. (4.26) is

d Sinhr"y? jh 23
Jb USnh 1 — Jsinh Y sinh Qz(?— )sinh [z

= \]0 dU{\ - e-ZnX«z)(lz- '2n2 )1/2 (429)

e approximate this term by neglecting the exponential terms. Then

P sinh JB3 sinh 2 _

0 Usihes—Tsmh vl — s - 2% 63

- l — - l IN N A
(-4 04 M) P8 LIVVUK23 Ay

\ 12

) 12 a0 m
= Nh ZQll , + g "4+ Nalil J}ﬁgzﬁhj (4.31)
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Now the approximated density matrix can be written s
p(rlif?;rlo) = po(r',/?;r,O)expj- ( i I) '\

N
mfly
\2nhsmh.(rij_/3)) \2nhsinh(flz3)

o r WISTnnﬁ(CQl]__/ ) \(x2+ x2+ y2+y2) 00sh(Y /3) —2xxr —2yy'\l

Xexp
Xexpgf—tglw/ Jx p I W2 e 1

22 42X - 4 + 4 + (art)

Now we ready to evaluate the ground state energy and wavefunction. First we
approximate the prefactor

mEl+ 'mils
A27rftsinh(f2_1/3) \h QG - g- I

! ﬂi N . g-ntl3 \ N (432)

nh \ — g—22i/3 )

Again 3— o, then e-204* = (. This gives

f2 \ \TH TR
emisnn(d) Ll (43
Consequently the approximated density matrix is written as
7 VAR +\N tt NmVt
firf) - ((Tr% (e e~ 2ismnCais) 2+ 2)008ha) - 224)
Xep ' ZfBTnﬁ(féJUBS (X 2+ Y +y2+ y2) cosh(fixp) —2xx’ —2yy]|

Xeq: M3 {4 6+ %+ gyt 1y N A T

N N 1 N

434

We can see that the ground state energy is

; /m \ :
E = « (S +4f|2 +\2nh) /ZNafIi ﬂ.ZJ (435)
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This Is exactly the same as Baym'swork Eq. (3.44) which derive from the mean
field Gross-Pitaevskil equation (see Appendix D). Minimizing the energy with
respect o wie get the relation

=1 (4.3)
Where

1/2

AZ(lt<sM £f)
and

| I 7 F ? ) I
Now Eq. (4.35) is arranged to be

E{n2) = Nh WIA+-f+ 4<éz (437)

Minimizing the ground state energy with respect to 2, we get

1/2

A 327 J (4.39)

Solving Qz for eacn N, We can determine fixiez and e (see Appendix E). In
ordler to compare with the work of Dalfovo and Stringari, we use the same scaling
factors such that

E = hujtEi
ro=all (439
Where ax = Uz/in — 220 Hz, the asymmetry parameter of the trap is

A= fjzicy>and a = 10080, where a0is the Bohr radius. The ground state energy
are then shown in Table 4.1
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Table 41 The %round state energies are evaluated from Eq. (4.35). Energy are in units of
hw L in accord with [49].

The ground state wavefunction is determined from the coordinate-dependent
term in the trial propagator. This is similar to the Rayleigh-Ritz variation method
in term of trial wavefunction. \We then denve the expression for the condensation

wavefunction s
bo(rK (1) = mCIx \ N (mQz\ N o Nmil.
[(J2+12+ y2+ yAcosh(fix/ - L' - Iyy})
Ko | 2hs'}r%?ty2y?) 2+ 22cosh(fd) —zz)3 . (440)
In the limit p =00

sm h(lni P) ar S A = (441

then
$o(r) = n*«)

N 1/2
msdy mSl, msdy , g ‘o mf), 1
i H< h > ( Th ) OXP{ 2h (@ + ) 25"

=1

N N/2 N
- msd, -—sz exp —mNQL (2% +y) — Mzrz (4.42)
wh 2h 2h

wh
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In the scaled units mentioned previously the ground state wavefunction then be
3/4

M) = S)i(zQi/4 (i) exp {—;Z}—i ra — % 22}. (4 )

the single-particle ground state wavefunction is plotted and displayed in Figure
41

2

Z

Figure 41 The ground state wavefunctions are obtained from Eq. 34.42). Dis-
tances are in units of ax in accord with [49].  Each line corresponds to N =
100,200,500,1000,2000,5000,104, 1.5 X 104, in descending order of central density.

From Eq. (35), the width of the condensate cloud is corresponaing to the
width of the Gaussian wavefunction. Fromthe Figure 4.1 we seethat the radius of

the cloud in x —y plane is larger than the z direction. This is due to the trapping
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IS Weaker in the x — y plane. The anisotropy provides the evidence for Bose
condensate. Because if it was not condensed the distribution should be identical
due to the equipartition theorem. The increasing in N means the strength of
interaction is increased.  This causes the condensate cloud to expand. So the
interaction plays an important role in the phenomena. Without interaction the
condensate cloud is not affected by the different kind of atomic ges and by the
increasing of N. Our result is similar to the work of Dalfovo and Stringari [49].
This fact confirms that the variational path integral is also applicable to BEC
problem.,
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