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Appendices



Appendix A:
Trotter Product Formula

To prove the Trotter product we first show that the two operator functions
F@@ = edF+* and
G(@) = e-"e~ with a= (Al)

which differ only by commutation terms, and vanish in the limit N —00.
An operator function is defined by its Taylor series, e.g.

- /N (A
In the following, a useful operator identity will be applied:
k(a) = I (A3)

with [A, 10= & JO)=& 1, & 0= A ]],.... Forthe proof of
Eq. (A.3) the coefficients (dnk/d a nyja=o0 of the Taylor series have to be calcu-

MAgnSoiu m

%l; Ae+aiEe-ah - eaj*EAe~al
eailA £]e-ai (A6)
e RB):=R ] A7)
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=2
%2552 = PeaA[A ¢]e~ah - caili, é]Ae~ah
= eaA[A,[A,é}}E~aA, (A8)
%Zakz o [ATAR]} = [A£10) (A9)
For any  one has
%lﬁ IQ:O [Aqtlm[-é ]] (A'].O)

Inserting Eq. (A.10) into the Taylor series for k(a) yields the identity Eq. (A.3).
Turning to the operator function G(a) = e~aTe~aV and calculating explicitly
the first terms of its Taylor series, we obtain:

| G(a)|Q0= T; (A.11)
=1
Moo= ()f0(a) (e -atve-al
= (-)TG(a) + (-)e-afveafe-afe~ay
= (hre@)t() (v +f; vjw) GW,
= (-)(f+ V)G(a) + (-7)71f_1;h “rylwG(a), (AL
TS (A13

da a=0



&

)
cPG
a2
cwf DA (30
g?z' . (-1)2T+E)2+ (-1)2T, E], (AL5)

In the way indicated, all higher derivatives can be determined. Then one gets

gzﬁ = (=Dn(T + V)n+ commutator terms. (A.16)

Inserting this into the Taylor expansion Eq. (A.2) and performing the summation
one obtains
0(a) =F(a) + —T,

Hence we find
[F(ar-(G (a))" =0(a2), (A.18)

Le. the above difference is at least proportional to a2 = X2N2. In the limit
N — oo the right-hand side of Eq. (A.18) vanishes, which proves the validity of

Trotter’s formula.

V]+ 0(a:



Appendix B: Pseudopotential

In this appendix, we give some details of deriving the pseudopotential. The

argument follows Huang [62, 63].
We consider the two-body problem. Each particle has the mass, m, and an

inter-particle potential, V(r), is the “hard-sphere” one,
SIPE 6)

where a is the hard-sphere diameter with r the relative position vector between
two particles and r = |r|. The Schrodinger equation in the center-of-mass system

s
(V2+ BN (r) = V{r) ), (B.2)

where p means the reduced mass,
= m/2. (B.3)

Obviously, /{r) is the wavefunction in the center-of-mass coordinate system, and
(hk)2/{2ji) is the energy of the relative motion. Substituting (B.I) into (B.2), we
have

(V2+ k2 Ip(r) = 0 (r>a),
Nr) = 0 (r<a) (B.4)

In terms of the spherical coordinate,

r —(rsinOcos0, r sin Osin 1 cos () 1 (+)



77
the solution of Eq. (B.4) for r > a can be written as

In(r) = EE VIm(0,4>)Am(Ji(kr) - tan Inj(fcr)), (B.6)

1=0 m ——I

with the boundary condition,
V(r)r=a —0- (B.7)

Here Yim{6,(p) is a normalized spherical harmonic function, ji(x) and /(x) the
spherical Bessel and Neumann functions respectively, and Aim and 1 constants.
We note that the constant 1 is determined by the condition (B.7) as

tan 1= ji(ka)/ni(ka). (B.§)
The scattering length ai for the partial I-wave is defined by
al = —lim tan TI(A)A. (B.9)

In what follows, we assume that the energy of the relative motion (hk)2/(2fi) is
sufficiently small, and thus we consicer a spherically symmetric (s-wave) solution,

In(r) = A (jo(kr) - tan Ton0(kr)), (B.10)
where
jo(x) = sinx/x, (B.I1)
n0(x) = —cosx/x, (B.12)
A = Aoo/\VMr, (B.13)

From (B.8), (B.Il) and (B.12), we have
tan77o = —tan (ka), (B.14)
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leading to
0= —ka. (B.15)

Thus, a is identified with the s-wave scattering length.

An idea of the pseudopotential is as follows: we find an equation with some
“potential” such that (B.10) is the solution everywhere. For sufficiently small x,
jo(x) and o(x) behave like

jo(x) « L, n0(x) & —L/x (x <c ). (B.16)
Thus, from (B.10), for sufficiently small kr, we get
Tipl)=A +~~fA) (B-17)

which gives
A=dr(r® (B-18)
We remark that the relation (B.18) is used only at r = 0. Because jo(x) is regular
at x = 0, jo(kr) satisfies
(V2+ k2)jo(kr) = 0, (B.19)

for all r. On the other hand, o(x) is singular at x = 0. Then, we calculate
FO(r) = (V2+ k2)nO(kr), (B.20)

with greater care. We integrate FO(r) over a sphere V of radius e about the origin.
From (B.20), we have

J[V d3rFO(r) = va d3r Xn0(kr) + k2 JL/ d3r nO(kr). (B.21)



¢

By applying the divergence theorem to the first term in the right-hand side of
Eq. (B.21), we get

J[V d3rV n0(fer) = JLlV dS . VnO(kr)
= 47T62d—r n0(fcr)
= 4Tresin(lce) + 1 cos(ke). (B.22)
The second terman . (B.21) gives
sz (ﬁnO(kr) = 47” radr Sk

—ATresin(Ase) —|k’!cos(ke) e (B.23)
Substituting (B.22) and (B.23) Jwto (B.21), we obtain
d3rFor) = (B.24)

Noting that FO(r) is identically equal to zero for r -0, we conclude from (B.24)

that
FO(r) = (V2+ k2)nO(kr) = (B.25)

Using (B.14), (B.18), (B.19) and (B.25) in Eq. (B.10), we have an equation that
the solution (B.10) satisfies everywhere,

(V2+ k2xNr) = Ak tan(fca) (1) bAr' (rip(r)). (B.26)

For sufficiently small ka, we can replace tan(ka) by ka. Then, by dividing both
sides of Eq. (B.26) by h2/(2/]), we finally arrive at

AV A () +wn i) =~ K200, (8.27)
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where

A

(B -28)

The operator (r) (B.28) is known as the pseudopotential [62, 63]. We note that
d/dr(r-) appearing in (B.28) is not a hermitian operator. But, if ~(r) is well
behaved, namely differentiable at the origin, we can replace d/dr(r-) by unity.
So far, we have considered a to be positive. In general, however, the “diameter”
of the hard-sphere a can be extended to be negative. This occurs when we may
replace the low energy scattering from an attractive inter-particle potential of
finite range by that from a hard-sphere one, known as the “shape-independent
approximation.”



Appendix C:
Gross-Pitaevskil Equation

The alternative way to derive the GP equation is presented. We first write
the energy functional as

E[*M] = [<i3r[~;|V8(r.t)2+ Vho(r)[4.(r,0)]2+ ||$(r,t)]; . (C.)

where terms on the right-hand side denote the kinetic, harmonic and interaction
energies. First we consider the kinetic term. Applying the divergence theorem,
we can write in explicit form as J

~N
sV 92
Using the identity
S = =), c3)
The functional der Jvatlve of kinetic term gives /\
~h2 6 d3r $*(r,t) V28§(r, 4d3| 5(r —r) V2<h(r, 1)

2m ES$*(r,.t)

C4)
For the harmonic term, it is easily obtained

M) H(M) =) d3rglr- 1) Vho(r) $(r.t)
= uh0(r")$(r\t). (C5)
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The interaction term can be obtained in the same manner

9
s | M J it M M)
=1 Jd3rtf(r-r') 21$(r,t)[28(r 1)
= 0 H[2*(rY). (C.6)
Finally we get

iftau(r,i) = PV M) <EM) ()



Appendix D:
Baym’s Approach

Now we show the detail calculation of the ground state energy by the mean
field approach in Baym’s Jvork [61]. The energy functional is written as

£[45(r)]= aa M-+ + o QI+ [1$(r)(D.))

where r£ —x 1+ y J. They chose the trial wavefunction in the form of the

Gaussian
§(r) = N2 12 114(7%%\ 3 ostnintri +naz2)2 0.2)

Putting the trial wavefunction into the Kinetic term, then we get

2 £ MRNUL \"2h2
BRI

f\A2NO: TR 2
\7 ) 2

. 2fdh [ 2r\+ ZZ eem(firitnz |

Using formulae

X2 2d = 1 Ur
REETREGX T AV a

Cradx = (D.4)

J—C

then the rL component is integrated to be

A3rr26-m(nj_r*+n2z2)in 312 ) )
milq mil,
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and the z component can be obtained to be

R 0\ — h \32 h
J d3rz26-™( Lrl+n*2)n — 132 m02 - 2moOx (D.6)

Finally the kinetic energy term is
312 IV O x0y2/i27r3/2

o 4TIV *(D)p = (] o
+ 1 Iml
m02 20x V m
¢ Ox 0
= Nh 7 4 4 (D.7)

Next consider the harmonic term

frejea.iuw s = (B O

J d3r (@2 +W2) e-™(n-Lri+iz22)fft(j) g)

then
/d3rwiri e-mmir2dn)fi = wp 010 (D.9)
.m0 | m02 '
and
| Axxx = N (5:*-) (M-)32. (D.A0)
Substituting 31 (D.9) and Eq. (D.10) into Eq. (D.8), we get
- K
A3 (url+ uz2\$(n\2 = Nho,p 440 (D -1l

The interaction is straightforwardly evaluated

FA3rfS(r)2 = — J3— ((fe)!f 1r"
gN20202fm\3 T | nh
\mh)  2mOx V 2m02

Wi VaOxOrrz |2r2h (D.12)
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Putting Eq. (D.7), Eq. (D.ll) and Eq. (D.12) into Eq. (D.l), we finally get

moiA)= e LIt +1+ r+WaixS2( )1 . (D1



Appendix E:
Numerical Program

The numerical results shown in Chapter 4 is done on Mathematica. Here
we give the commands to obtain them. First we declare the constants in the
calculation as follows: subscript 1 denotes Land 2 denotes z.

In[l]l:= 2=2Pi 220
In[2):=wl = A
In[3]:=a = 0529 x 10~8
In[4]:=al = 1222 x 106
In[5]:= hbar = 1.055 x 10-34
In each loop, we need to clear the remaining value in each function:
In[6]:= Clear|n, k, delta, 21,02, en, enl, enkin, enho, enint]
In[7]:=  =%put the number of particles%
In[8]:= k =
In[9]:= Solve[k x ~ aaxif, 2x (I +kxy 2 wy ' +1- (g)2== 10
In[10]:= 02 = %put the value from the above command%
In|ll]:=delta = yiT k (121" ,])*2
In[l2]=m = &
In[13]:=en = hbar "Cd delta + » + *)

I|l | | lﬁ

| | ”I |

In[16]:= enint = n4BAYH 22
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