
C H A P T E R  V

P E R V A P O R A T I V E  M E M B R A N E  R E A C T O R

A pervaporative membrane reactor is one of membrane reactor, while a 
reaction takes place in liquid phase as water is removed through a polymeric 
membrane in the permeate stream. The most common reaction system studied for the 
application of a pervaporative membrane reactor is an esterification reaction between 
an alcohol and acid.

In this work, a batch reactor integrated with pervaporation developed by Liu 
and coworkers (2001) has been studied. The batch reactor is used to carry out an 
exothermic and reversible esterification reaction of acetic acid and butanol. A jacket 
is used to maintain the temperature of the reactor at a desired set point. Figure 5.1 
shows the pervaporative membrane reactor with a jacket.

Figure 5.1 A pervaporative membrane reactor
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5.1 M a th e m a tic a l m ode l

The membrane reactor studied by L iu and coworkers (2001) is applied for the 
esterification o f acetic acid and n-butanol to produce butyl actate. This esterification 
reaction can be presented as follows:

k i
A + B < ^  E + พ

k 2

where A, B, E and พ  are acetic acid, butanol, butyl acetate and water respectively.

The mathematical model o f material and energy balance (Feng and Huang, 
1996) is developed to describe the dynamic o f pervaporation-based batch reactor and 
can be shown as follows:

M a te ria l Balance f o r  Component i

r f +c‘ f = - ' ^ s - ( 11)

Where Ci is the concentration o f components i within the reactor;

r, and Ji are the reaction rate and permeation flux through the pervaporative 
membrane o f component i respectively;

V is the reactor volume;
ร is the membrane area.

The reaction rate constant o f the esterification is obtained from the 
experimental results by Liu et al., (2001). The reaction rate can be shown as follows:

r, = k] Ca C b Ccat -  k jC u C w  Ccat (5.2)
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where Ca,Cb,Ce and Cw are concentration o f acetic acid, butanol, butyl acetate and 
water respectively (mol/1);

Ccat is the concentration o f catalyst (mol/1);
ki and k2 are rate constant o f forward and reverse reactions, respectively.

The rate constant, ki and k2, are described below:

k  1 = 4 .5 3  l x  106 exp f -6 3 9 Q S
TV 1 r

k 2 =  4 . 3 7 6 x 1 0 6 exp\ ■ 7090

(5.3)

(5.4)

The volume change expression o f reaction mixtures in the membrane reactor 
was proposed by Feng and Huang (1996). In addition, when an ideal case is 
considered that only water can permeate through the membrane during the 
esterification process, therefore the change o f volume can be shown as follows:

= _2  ^jMl s  - (5.5)dt 1 Pi

= .-JwM” ร (5.6)dt pw

where M w and p w are the molar mass and density o f water;

น/พ is water permeation flux which is assumed to be proportional to water 
concentration.

The permeation flux through ?.. pervaporation membrane is usually 
concentration dependent. To simplify the process model, it is assumed that the water 
flux is proportional to water concentration as seen in the following equation:



91

JVI P wCu (5.7)

where p w is the permeability coefficient o f water.

The correlation o f temperature-permeability coefficient from-experimental 
data (Liu et a l, 2001) is shown below:

p „  =  exp 4 .2 9 3 4 - 1039.24 (5.8)

By substituting equation (5.6) into equation (5.2), the concentration o f the 
components in the reaction can be determined.

- C  1S + V ^ L  = _ rV
p w dt

d C i =  r  1 Q  J y M v  ร  (5.9)
dt =  '  p w V

The concentration o f water can be determined through the following equation:

- c w ^ 2L S  +  v ^  =  - r V  - J wร
p w dt

d C พ _  r  ร  J  d  J p t w ร  (5 1 0)
dt ~ V w w p w V

E n e r g y  B a la n c e

For temperature control o f a batch reactor, a process model relating the reactor 
temperature, Tr, to the manipulated variable, the jacket temperature, Tj, is required. 
The energy balance around the reactor contents is given by the following equation:
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Reactor :

Q r =  ( - A H  ) r V

dTr _ Qr + U A (T j-T r)
~dt = M rCpr

dTr ( - A H ) r V  + UA(Tj -  Tr )
๕  =  M r c pr

Mr = (Ca + Cb + Ce + Cw)  . V

_ C pA.CA + c pB.CB + C pE.CE + C pW.Cw 
C a + C b + C e + C c

Jacket:
dTj _ FjPjCpj(T*p -T  1) - UA(Tj - Tr)
* =  V j P f *

where บ  is the heat transfer coefficient;
A  is the heat transfer area;
A H  is t he heat o f reaction; I
Mr is the mole o f the reactor contents;
Cpr is the molar heat capacity o f the reactor contents;
Fj is the coolant flow rate;
Tr and Tj are the temperature o f reactor and jacket respectively.

It is reasonable that the dynamics o f jacket temperature

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

control are
approximately first order (Liptak, 1986) with time constant zj and, hence, the Tjsp (kj, 
can be calculated by the following equation:



93

T to  ( k )  = โ •1 ( k - l ) +  T-J1 ( T - T  1 ( k - 1 »  (5.16)

where T = —
; V j

q j  is the jacket flowrate,
Pj is the jacket density,
V j  is the jacket volume,
C p j is the mass heat capacity o f the jacket.

Model parameters and an initial operating condition used in the model and control are 
given in Table 5.1.

Table 5.1 Process parameter values and initial condition

5 =  34 cm2 C pa =  124.265 J/mol K Ccat = 8.9 g/liter
V = 150 ml C pb = 177.025 J/mol K ฃ = 1 liter/hr
บ = 5 X 104 J/m2 h rK C-PE = 2555.5 J/mol K V j = 50 ml
A = 45 cm2 Cpw = 75.4 J/mol K P iv = 1000 g/liter
A H = - 3.97 X 103 J/mol Cpj = 4.2 J/g K P j = 1000 g/liter

M w = 18 g/mol -
1

In itia l con d ition

Ca ,0 = 8.4 mol/1 Ce .o = 0 mol/1 Tr,0 = 298 K
C b,0 = 5.47 mol/1 Cw,0 = 0 mol/1 Tj,0 = 298 K
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5.2 N e u ra l n e tw o rks  in  s ta te e s tim a tio n

Estim ation o f  heat release o f  reaction

In most Industrial processes, the state variables are not all'measurable or, not 
with sufficient accuracy for control purposes. Furthermore, measurements that are 
available often contain significant amounts o f random noise and systematic errors. For 
these situations, an estimator has been designed and applied to estimate state 
variables. Here, the heat releases o f reaction (Or), involved in the determination o f the 
control action, is an unmeasurable variable, so a neural network based estimator has 
been designed and incorporated with the controller to estimate unmeasurable heat 
release o f reaction. In this work, a multi-layered feed forward neural network has 
been used as an on-line estimator to estimate the amount o f heat release o f chemical 
reactions o f the batch reactor. It has been proven to be an accurate and fast on-line 
dynamic estimator (Aziz et al., 2000). In this case, A multilayered feedforward 
network is trained by using the Levenberg-Marquardt technique; the feedforward 
neural network is fed with past historical data, thus the input layers consists o f the 
present and past value o f Tj(t), Tjft-Ij , Tr (t), Tr(t-I) and Qr(t-I), and the output layer 
estimates the present value o f heat release. The five inputs are fed through the neural 
network forward model for training and learning. It obtains the output, Or . 800 input 
data are used to train the neural network, these are the train set; and 200 input data are 
used as the test set. The training iteration was set to 1000. The activation function in 
hidden and output layer are hyperbolic tangent and linear function respectively. The 
error between output and desired target is used as the training signal for neural 
network. The estimated Or is then used in the Neural Network based Controller to 
estimate the value o f บ(t).
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The selected structure o f multilayer feedforward network that has the 
minimum SSE (sum square error). Table 5.2 presents the SSE for neural network 
based estimator in each case; one hidden layer with 3, 5, 7, 9, 11 nodes, and two 
hidden layers with 3, 5, 7, 9, 11 nodes. This selected structure is composed o f 5 input- 
nodes with 2 hidden layers, 7 and 5 nodes (Figure 5.2).

Table 5.2 SSE of neural network based estimator for heat release of reaction
Neurons in 1st 
hidden layer

Neurons in 2nd 
hidden layer

SSE (x l0 ‘6) 
(train set)

SSE (x l0 ‘3) 
(test set)

3 0 0.87918 3.36369
oว 2.8054 3.64506

5 0.19798 3.51929

7 0.081270 3.76532

9 0.21787 3.57133

11 0.10486 3.06709

5 0 0.077370 3.91338

3 0.036188 3.78669

5 0.02546k 3.81442

7 0.19124 3.68467

9 0.036987 3.88118

11 0.058283 2.86973

7 0 0.049320 3.58749

3 0.058697 3.56366

5 0.062655 2.54139

7 0.040011 3.54088
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Neurons in Isf 
hidden layer

Neurons in 2nd 
hidden layer

SSE (xlO'6) 
(train set)

SSE (xlO'3) 
(test set)

9 0.019495 3.8391
11 0.038159 4.03308

9 0 0.11256 2.97813

3 0.018721 4.38206
- 5 0.062077 3.63461

7 0.036271 3.64492
9 0.013141 4.53948
11 0.046293 3.24221

11 0 0.031542 3.89897
oว 0.018475 4.04435
5 0.031984 4.00384
7 0.028705 4.85143
9 0.020285 3.89123
11 0.040978 3.21351

5.3 N e u ra l n e tw o rk  based c o n tro l

Neural networks are often used in many control configurations; inverse 
models based control is a one o f neural network control configurations. It can be 
applied in various chemical process plants, because it offers a promising improvement 
o f process modeling and control o f nonlinear system. Inverse model is basically the 
network structure representing the inverse o f the system dynamics at the completion 
o f training. The training in this case is called inverse model; this inverse model is



97

trained by inputs or command signals i.e. set point, past system outputs and past 
inputs. Moreover, error signals used to train the network is the difference between 
signals and system outputs; all inputs are fed in the network to predict the output o f a 
process.

In p u t Layer H idden Layer 1 H idden Layer 2

Figure 5.2 Neural network based estimator t

For the neural network based inverse model control strategy, the inverse 
model acts as a controller in cascade under a controlled system or plant. This 
controller has to learn to supply at its output, appropriate control parameters for a 
desired target at its input. In this control scheme, the desired set point acts as the 
desired output which is fed to neural network together with past plant inputs and 
outputs in order to predict desired current plant inputs (Pao et ah, 1992). Neural
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network based inverse model control strategy has been investigated in many chemical 
systems (Hussain et al., 2001).

In this work, a NIMC has been developed to control an optimal temperature 
(Jr) o f a pervaporative membrane reactor for esterification. That the reactor 
temperature control is very important as it affects the product quality and process 
operation. 800 input data are used as training set, and 200 input data are used as the 
test set. The training iteration was set to 1000. The activation function in hidden and 
output layer are hyperbolic tangent and linear function respectively.

Table 5.3 shows the SSE for neural network inverse model. In this case, the 
configuration o f network with minimum SSE is selected as neural network based 
controller. Figure 5.3 presents the NIMC configuration with the inputs, hidden and 
output layers. The configuration is consisting o f 5 input-nodes, 11 l sl hidden-nodes, 9 
2nd hidden-nodes and 1 output-node network.

Table 5.3 SSE of neural network inverse model
Neurons in Ist Neurons in 2nd SSE (xl(X8) .- SSE (xio-4)
hidden layer hidden layer (train set) (test set)

3 0 1.1806 0.82751

3 0.20235 0.0085336

5 1.0085 0.442947

7 4.0018 0.0020357

9 0.25948 0.0047379

11 6.2347 0.946301

5 0 0.11315 0.11783
oว 0.56305 0.0264759
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Neurons in 1st 
hidden layer

Neurons in 2nd 
hidden layer

SSE (xlO'4) 
(train set)

SSE (x l0 ‘4) 
(test set)

5 0.73076 0.89673

7 0.64173 _ 0.270081

9 0.073711 0.182112

11 0.28814 0.51301

■ 7 0 0.44143 0.87655

3 0.25152 0.3720022

5 0.49863 3.76349

7 1.1368 4.6952

9 0.0046821 0.332644

11 0.072196 1.30621

9

i

0 0.29583 0.13169

3 0.018585 0.263365

5 0.013273 0.254399

7 0.59287 3.57522

9 0.0041139 0.00541086

11 0.0017049 0.00587774

11 0 0.60764 0.14471

3 0.005307 0.1089

5 0.004265 0.150074

7 0.0060895 0.581917

9 0.0034168 0.00100569

11 0.11929 0.615228
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In p u t Layer H idden L ayer 1 H idden L ayer 2

F i g u r e  5 .3  Neural network based controller for esterification

Figure 5.4 shows the structure o f neural network based inverse model control 
integrated with neural network based estimator, that utilized in this work.

F i g u r e  5.4 Neural network inverse-model-based control strategy
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5.4 C o n tro l and e s tim a tio n  im p le m en ta tio n  re su lt

This section demonstrates the simulation studies which are carried out to 
investigate the performance o f NIMC together with a neural network based heat 
release estimator. The concentration o f product C e  at 5.2016 mol/1 at the end o f batch 
time which takes up 8 hours is obtained by using neural networks. The objective is to 
control the optimal temperature set point o f pervaporative membrane reactor at 363 K. 
That the control manipulated input บ, represents the jacket temperature while the 
controlled output is the reactor temperature. The control results o f NIMC are also 
compared with the performance o f GMC with Kalman filter (Orladda, 2002).

Figure 5.5 presents the simulation result o f open-loop response for the 
pervaporative membrane reactor where the parameters and constant values are given 
in table 5.1. The reactor temperature increase with the time from 298 K to 333 K, 
which does not reach the optimal temperature, 363 K. Therefore, to operate the 
reactor efficiently, it is necessary to control the reactor temperature to the optimal 
operating temperature. Figure 5.6 shows the concentration profile o f esterification o f 
butanol. *

The performance o f controller coupled with estimator are simulated in 
nominal case, in which all model parameter used to simulate are specified correctly, 
and plant/model mismatch case, in which some parameters have changed from their 
nominal values. The robustness test in this work can be divided into 9 cases:

• Increase 30% o f rate constant, ki\

• Decrease 30% o f rate constant, k2\



• Decrease 30% o f rate constant, k]\

• Increase 30% o f rate constant, k2,

• Increase 30% o f rate constant both kj and k2\

• Increase 30% o f heat o f reaction, À H

• Increase 30% o f heat transfer coefficient, บ

• Decrease 30% o f heat transfer coefficient, บ

• Decrease 30% o f k], k2 , and increase 30% o f บ and À H

Open-loop

Figure 5.5 Open-loop o f pervaperative membrane reactor 

In this work, the controller controls the reactor temperature in every 0.
hours or 36 second, by adjustment the jacket temperature.
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1. C ontro l perform ance is evaluated under nom ina l condition

Figure 5.7 shows the heat release estimation, and Figure 5.17 shows the 
response o f NIMC in an optimal set point, 363 K. o f a pervaporative membrane 
reactor operating under nominal case. The simulation results have shown that the 
neural network-based estimator is able to provide good estimate o f the unmeasurable 
heat release. Moreover the NIMC also provides good performance without overshoot 
in this normal condition. From table 5.4, IAE o f the NIMC is slightly better than 
GMC.couploed with Kalman Filter, so the performance o f NIMC and GMC coupled 
with Kalman Filter is the same. Figure 5.18 shows the control response o f GMC with 
Kalman Filter in nominal case.

Figure 5.6 Concentration profile
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2. Robustness o f  contro lle r is evaluated by p la n t mismatch condition

• Mismatch in rate constant

When the rate constant, k] / k2 are changed, the results o f estimation the heat 
release is not sensitive (it is still similar nominal condition) because o f large value o f 
rate constant both kJ and k2. The system can shift to equilibrium faster in case of 
increase k1 and decrease k2.

In this mismatch cases, the NIMC has still provides good control performance. 
The results o f estimation and control by utilizing neural networks are given in Figure 
5.8-5.12. Furthermore, the comparison o f IAE value between NIMC and GMC 
coupled with Kalman Filter in Table 5.4 shows that the performance o f NIMC as 
same as GMC coupled with Kalman Filter ; the control responses o f NIMC and GMC 
coupled with Kalman filter are shown in Figure 5.19-5.26. The IAE value in this 
mismatch is small different from nominal case.

• Mismatch in heat of reaction

The result o f heat released estimation is shown in Figure 5.13. In this case, 
heat o f reaction has been increased by 30%, the neural network based estimator still 
provides good estimation result. Heat release by chemical reaction increase with heat 
o f reaction. The NIMC is still robust. However the IAE value o f GMC coupled with 
Kalman filter is slightly better than NIMC. Figure 5.27 and 5.28 show the control 
responses by using NIMC and GMC coupled with Kalman Filter respectively.

• Mismatch in heat transfer coefficient
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Figure 5.14 and 5.15 give the simulation results o f heat released estimation. Heat 
released by esterification reaction is sensitive to changing heat transfer coefficient. 
Heat released by esterification reaction increase when heat transfer coefficient is 
increased. On the other hand, heat release decrease when heat transfer coefficient is 
decreased. In case o f increasing heat transfer coefficient, the NIMC is found that it 
provides slightly overshoot response. The IAE value o f NIMC is also higher than 
GMC coupled with Kalman Filter. This is due to uncovering the range o f training the 
networks in all possible process condition. Figure 5.29 -  5.32 show the control 
responses o f NIMC and GMC with Kalman Filter in this mismatch cases.

T a b l e  5.4 The IAE and ISE comparison o f Neural network based controller, GMC 
with Kalman filter

Condition
I A E I S E

NNcontroller GMC % Dirt NNcontroller
(xio3)

GMC % Diff

Nominalcase 43.5097 45.089 3.5 1.8310 1.864 1.77

+30% k, 43.4965 44.639 2.5 1.7889 -1.839 2.7
-30% k, 43.5173 - - 1.8311 - -
-30% c 43.508 45.032 3.4 1.8308 1.863 1.73
+30% k2 43.509 - - 1.8310 - -
+30% k, 
+30 %k2

43.5098 44.702 2.7 1.8310 1.838 0.38

+30% AH 44.3305 43.452 1.9 1.8512 1.831 1.09
+30% บ 45.7760 36.930 19.32 1.8736 1.531 18.29
-30% บ 76.0855 60.261 20.79 2.5268 2.468 2.37

-30% kl, k2 
+30% AH, บ

45.5130 36.497 19.81 1.8539 1.524 17.79
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• Mismatch in rate constants, heat of reaction and heat transfer coefficient.

Figure 5.16 shows the performances o f the neural network based estimator for case o f 
mismatch in rate constant, heat o f reaction and heat transfer coefficient. Neural 
network based estimator can estimate heat release precisely. Furthermore, the NIMC  
is able to provide adequate control, but IAE is higher than GMC controller. The 
reason o f higher IAE is as same as case o f mismatch in heat transfer coefficient. 
Figure 5.33 and 5.34 show the control response o f NIMC and GMC controller.

t
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Figure 5.7 Estimates o f heat released for nominal case.
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F i g u r e  5 .1 9  Response o f pervaporative membrane reactor in plant/model 
mismatch , +30% kl (NN)

GMC Controller + EKF

Time (hr)

Figure 5.20 Response o f pervaporative membrane reactor in plant/model
mismatch , +30% k l  (GMC, Orladda, 2002)
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Figure 5.21 Response o f pervaporative membrane reactor in plant/model 
mismatch , -30% lc2 (NN)

GMC Controller + EKF

Time (hr)

Figure 5.22 Response of pervaporative membrane reactor in plant/modelmismatch 5 -30% k2 (GMC, Orladda, 2002)
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Figure 5.23 Response o f pervaporative membrane reactor in plant/model 
mismatch 5 -30% k l (NN)

Figure 5.24 Response o f pervaporative membrane reactor in plant/model
mismatch , +30% k2  (N N )
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Figure 5.25 Response o f pervaporative membrane reactor in plant/model 
mismatch , +30% k l, +30%k2 (NN)

GMC Controller + EKF

Time (hr)
Figure 5.26 Response o f pervaporative membrane reactor in plant/model
mismatch , +30% k l ,  +30% k2 (G M C , O rladda , 2002)
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Figure 5.27 Response o f pervaporative membrane reactor in plant/model 
mismatch , +30% AH (NN)

GMC Controller + EKF

Figure 5.28 Response o f pervaporative membrane reactor in plant/model
mismatch , +30% A H  (G M C , O rladda , 2002)
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Figure 5.29 Response o f pervaporative membrane reactor in plant/model 
mismatch , +30% บ (NN)

GMC Controller + EKF

Time (hr)
Figure 5.30 Response of pervaporative membrane reactor in plant/modelmismatch , +30% บ  (GMC, Orladda, 2002)
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Figure 5.31 Response o f pervaporative membrane reactor in plant/model 
mismatch , -30% บ (NN)

GMC Controller + EKF

Figure 5.32 Response o f  pervaporative membrane reactor in plant/model
mismatch , -3 0 %  บ  (G M C , O rladda , 2002)
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Figure 5.33 Response o f pervaporative membrane reactor in plant/model 
mismatch , -30% kl,k2 and +30%A H, บ (NN)

GMC Controller + EKF

Time (hr)
F igure 5.34 Response o f pervaporative membrane reactor in plant/model
mismatch , -3 0 %  k l ,k 2  a n d  + 30 % A  H, บ  (G M C , O rlad da , 2002)


	Chapter V Pervaporative membrane reactor
	5.1 Mathematical model
	5.2 Neural networks in state estimation
	5.3 Neural network based control
	5.4 Control and estimation implementation result


