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APPENDIX A

NEURALNETWORKTOOLBOX

MATLAB abbreviated from MATrix LABoratory is a technical computing

environment for high-performance numeric computation and visualization. MATLAB

integrates numerical analysis, matrix computation, signal processing, and graphics in

an easy-to-use environment where problems and solutions are expressed just as they

are written mathematically - without traditional program meaning. MATLAB '

functionality and versatility with the addition of optional application-specific

toolboxes can be extended. Toolboxes are comprised of suites of MATLAB functions

(M-files) written by world-class authorities on each of the respective topics. These

toolboxes cover avariety of disciplines as illustrated by the following list:

Matlab Toolbox * Control System Toolbox,
Signal Processing Toolbox ~ «  System Identification Toolbox
Optimization Toolbox

Neural Network Toolbox 1

Fuzzy Logic Toolbox

Model Predictive Control

A.l Neural Network Toolbox

In Neural Network Toolbox, it provides many useful toolbox functions

supporting programmers to do their programs easier. Four main toolbox

functions used for neural network programming are as follow:



Network creation functions

Weight/bias initialization functions

Training functions

Performance functions

A.2 Training Functions

Gradient descent and gradient descent with momentum are backpropagation
training algorithm. However, these two methods are often too slow for practical
problems. Consequently, high performance algorithms which can converge from ten
to one hundred times faster than those two algorithms,

These faster algorithms fall into two main categories. The first category uses
heuristic techniques, which were developed from an analysis of the performance of
the standard steepest descent algorithm. One heuristic modification is the momentum
technique. The others, which are more heuristic technique, are variable leaming rate
backpropagation, TRAINGDA, and resilient backpropagation, TRAINRP.

The second category of fast algorithms uses standard numerical optimization
techniques. Three types of numerical optimization techniques for neural network
training:  conjugate  gradient  (TRAINCGF, TRAINCGP, TRAJINCGB,
TRAINSCG), quasi-Newton (TRAINBFG, TRAINOSS), and Levenberg-Marquardt
(TRAINLM) are provided.

A.2.1 Gradient Descent Learning Rule

1) Variable Learning Rate (TRAINGDA TRAINGDX)



With standard steepest descent, the learning rate is held constant throughout
training. The performance of the algorithm is very sensitive to the proper setting of
the learning rate. If the leaming rate is set too high, the algorithm may oscillate and
become unstable. |f the learning rate is too small, the algorithm will take too long to
converge. It is not practical to determine the optimal setting for the learning rate
before training, and, in fact, the optimal learning rate change during the training
process, as the algorithm moves across the performance surface.

The performance of the steepest descent algorithm can be improved if we
allow the learning rate to change during the training process. An adaptive leaming
will attempt to keep the learning step size as large as possible while keeping learning
stable. The learning rate is made responsive to the complexity of the local error
surface.

2) Resilient Backpropagation (TRAINRP)

Multilayered networks typically use sigmoid transfer functions in the hidden
layers. These functions are often called squashing functions, since they compress an
infinite input range into a finite output range, Sigmoid functions are characterized by
the fact that their slope must approach zero as the inputs get large. This causes a
problem when using steepest descent to train a multilayered network with sigmoid
functions, since the gradient can have a very small magnitude, and therefore cause
small changes in the weights and biases, even though the weights and biases are far
from their optimal values.

The purpose of the resilient backpropagation (Rprop) training algorithm is to
eliminate these harmful effects of the magnitudes of the partial derivatives. Only the



sign of the derivative is used to determine the direction of the weight update; the
magnitude ofthe derivative has no effect on the weight update. The size ofthe weight
change is determined by a separate update value.

Rprop is generally much faster than the standard steepest descent algorithm.
It also has the nice property that it requires only a modest increase in memory
requirements. We do need to store the update values for each weight and bias, which
IS equivalent to storage ofthe gradient.

A.2.2 Conjugate Gradient Algorithms

The basic backpropagation algorithm adjusts the weights in the steepest
descent direction (negative of the gradient). This is the direction in which the
performance function is decreasing most rapidly. It turns out that, although the
function decreases most rapidly along the negative of the gradient, this does not
necessarily produce the fastest convergence. In the conjugate gradient algorithms a
search is performed along the conjugate directions, which produces generally faster
convergence Ithan steepest descent directions. In this section, four different variations
of conjugate gradient algorithm are presented.

1) Flecher-Reeves Update (TRAINCGF)

All ofthe conjugate gradient algorithms start out by searching in the steepest
descent direction (negative ofthe gradient) on the first iteration.

Po ="-go



A line search is then performed to determine the optimal distance along the current
search direction:

Xk+1 = Xk + akPk

Then the next search direction is determined so that it is conjugate to various
search directions. The general procedure for determining the new search direction is
to combine the new steepest descent direction with the previous search directions

Pk — -gk T PkPk-1

The various versions of conjugate gradient are distinguished by the researcher in
which the constant Pk is computed. For the Fletcher-Reeves update procedure is

Pk= gTk-igk
g ‘k-igk-1

This is the ratio of the norm squared ofthe current gradient to the mean squared of the
previous gradient.

2) Polak-Ribiere Update (TRAINCGP)

Another version of the conjugate gradient algorithm was proposed by Polak
and Ribire. As with the Fletcher-Reeves algorithm, the search direction at each
iterationis determined by

Pk =-gk * pkPk-1

For the Polak-Rihiere Update, the constant Pk is computed by
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Pk="g kgk

0'kdgk-1
This is the inner product of the previous change in the gradient with the
current gradient divided by the norm squared of the previous gradient. The
TRAINCGP routine has performance similar to TRAINCGF. It is difficult to predict
which algorithm will perform best on a given problem. The storage requirements for
Polak- Ribiere (four vectors) are slightly larger than for Fletcher-Reeves (three

vectors).

3) Powell-Beale Restarts (TRAINCGB)

For all conjugate gradient algorithms, the search direction will be
periodically reset to the negative ofthe gradient. The standard reset point occurs when
the number of iterations is equal to the number of network parameters (weights and
biases), but there are other reset methods which can improve the efficiency of
training. One such reset methods was proposed by Powell, based on an eariler version
proposed by Beale. For this technique we will restartI if there is very little
orthogonality left between the current gradient and the previous gradient. This is
tested with the following inequality:

\gTkigd > 02\gkl2

|f this condition is satisfied, the search direction is reset to the negative of the
gradient. The TRAINCGB routine has performance which is somewhat better than
TRAINCGP for some problems, although performance on any given problem is



difficult to predict. The storage requirements for the Powell-Beale algorithm (six
vectors) are slightly larger than for Polak-Ribiere (four vectors).

4) Scaled Conjugate Gradient (TRAINSCG)

Each of the conjugate gradient algorithms which we have discussed so far
require a line search at each iteration. This line search is computationally expensive,
since it requires that the network response to all training inputs be computed several
times for each search. The scaled conjugate gradient algorithm (SCG) was designed to
avoid the time consuming line search. This algorithm is too complex to explain in a
few lines, but the hasic idea is to combine the model-trust region approach, which is
used in the Levenberg-Marquardt algorithm describe later, with the conjugate gradient
approach. The TRAINSCG routine may require more iteration to converge than the
other conjugate gradient algorithms, but the number of computations in each iteration
is significantly reduced because no line search is performed. The storage requirements
for the scaled conjugate gradient algorithm are about the same as those of Fletcher-
Reeves.

A.2.3 Quasi-Newton Algorithms
1) BFGS Algorithm (TRAINBFG)

Newton's method is an alternative to the conjugate gradient methods for fast
optimization. The basic step of Newton's method is

Xk+1 = Xk -A k L gk
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where ak, i the Hessian matrix (second derivatives) of the performance
index at the current values ofthe weights and biases. Newton's method often converge
faster than conjugate gradient methods. Unfortunately, it is complex.and expensive to
compute the Hessian matrix for feedforward neural networks. There is a class of
algorithms that are based on Newton's method but which do not require calculation of
second derivatives. These are called quasi-Newton (or secant) methods. They update
an approximate Hessian matrix at each iteration of the algorithm. The update is
computed &s a function of the gradient. The algorithm has been implemented in the
TRAINBFG routine.

2) One Step Secant Algorithm (TRAINOSS)

Since the BFGS algorithm requires more storage and computation in each iteration
than the conjugate gradient algorithms, there is need for a secant approximation
with smaller storage and computation requirements. The one step secant (OSS)
method is an attempt to bridge the gap between the conjugate gradient algorithms and
the quasi-Newton (secant) algorithms. This algorithm does not store the complete
Hessian matrix; it assumes that at each iteration the previous Hessian was the identity
matrix. This has the additional advantage that the new search direction can be
calculated without computing a matrix inverse

A.24 Levenberge-Marquardt (TRAINLM)

Like the quasi-Newton methods, the Levenberge-Marquardt algorithm was
designed to approach second order training speed without having to compute the
Hessian matrix. When the performance function has the form of a sum of squares (as



is typical in training feedforward networks), then the Hessian matrix can be

approximated as

and the gradient can be computed as

g =fe

where J is the Jacobian matrix, which contain first derivatives of the network errors
with respect to the weights and biases, and e is a vector of network errors. The
Jacobian matrix can be computed through a standard bhachpropagation technique that

is much less complex than computing the Hessian matrix.

The Levenberg-Marquardt algorithm uses this approximation to the Hessian

matrix in the following Newton like update:

Xkit=xk- [ f I+ 1] e

When the scalar // is zero, this is just Newton's method, "using the approximate
Hessian matrix. When // is large, this becomes gradient descent with a small step size.
Newton ' method is faster and more accurate near an error minimum, so the aim is to
shift towards Newton ' method as quickly as possible. Thus, fl. is decreased after
each successful step (reduction in performance function) and is increased only when a
tentative step would increase the performance function. In this way, the performance

function will always be reduced at each iteration of the algorithm.,



A.3 Speed and Memory Comparison of Training Functions

It is very difficult to know which training algorithm will be the fastest for a
given problem. It will depend on many factors, including the complexity of the
problem, the number of data points in the training set, the number of weights and
biases in the network, and the error goal. In general, on networks which contain up to
a few hundred weights the Levenberg-Marquardt algorithm will have the fastest
convergence. This advantage is especially noticeable if very accurate training is

required.

The quasi-Newton methods are often the next fastest algorithms on networks
of moderate size. The BFGS algorithm does require? storage of the approximate
Hessian matrix, but is generally faster than the conjugate gradient algorithms. O f the
conjugate gradient algorithms, the Powell-Beale procedure requires the most storage,
but usually has the fastest convergence. Rprop and the scaled conjugate gradient
algorithm do not require a line search and have small storage requirements. They are
reasonably fast, and are very useful for large problems. The variable learning rate
algorithm is usually much slower than the other method, and has about the same

storage requirements as Rprop, but it can still be useful for some problems.

For most situations, Levenberg-Marquardt algorithm is recommended to try
first. 1f this algorithm requires too much memory, then try the BFGS algorithm, or
one ofthe conjugate gradient methods. The Rprop algorithm is also very fast, and has

relatively small memory requirements.

For most situations, Levenberg-Marquardt algorithm is recommended to try

first. If this algorithm requires too much memory, then try the BFGS algorithm
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TRAINBFG, or one of the conjugate gradient methods. The Rprop algorithm

TRAINRP is also very fast, and has relatively small memory requirements.



APPENDIX B

BACKPROPAGATION ALGORITHM

B.I Conclusion of the Backpropagation Algorithm

« Weight Initialization

Set all weights and node thresholds to small random numbers. Note that the node
threshold is the negative of the weight from the bias unit (whose activation level is

fixed at 1).
+ Calculation ofactivation function

1. The activation level of an input unit is determined by the instance

presented to the network.
2. The activation level O] of a hidden and output unit is determined by
0j = F(ZWji0i + 0)

where Wjiis the weight from an input Oi , ojis the node threshold, and F is the

sigmoid function:

« Weight Training

1L Start atthe output units and work backward to the hidden layers
recursively. Adjust weights by
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wjit+ 1) =W + AW

where Wji (t) is the weight from unit i to unitj attime t (or the iteration) and AWji is

the weight adjustment.
2. The weight change is computed by
AWj1= ] jOi

where 771is a trial-independent learning rate (0<?xy e.g., 0.3) and s j is the error

gradient at unit j. Convergence is sometimes faster by adding a momentum term:
wijitt+1) = Wi () + 873 1ta [Wji (1) - Wi (t-1)]
where 0<a <1.
3. The error gradient is given by:
- For the output units:
8j= 0j0 -0j) (T)- 0))

where Tjis the desired (target) output activation and 0, is the actual output

activation at output unitj .
- For the hidden unit
51= 0j(1-0) ZOkWK|

where 8 k is the error gradient at unit k to which a connection points from

hidden unitj .
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4, Repeat iterations until convergence in terms of the selected error
criterion. An iteration includes presenting an instance, calculating

activations, and modifying weights.

The name "backpropagation™ comes from the fact that the error (gradient) of
hidden units are derived from propagating backward the errors associated with output
units_since the target values for the hidden units are not given. In the backpropagation
network, the activation function chosen is the sigmoid function, which compresses the
output value into the range between 0 and I. The sigmoid function is advantageous in
that it can accommodate large signals without saturation while allows the passing of
small signals without excessive attenuation. Also, it is a smooth function so that

gradients can be calculated, which are required for a gradient descent search.
B.2 Example of Calculation

To solve the exclusive-or problem, we build a backpropagation network as shown in

Figure B.l. The network will be trained on the following instances:
[

-0.02
0.03
-0.01 0.2

0.02
-0.01 4

b 0.01

Bias Unit 3

Figure B1 A backpropagation network for learning the exclusive-or function



Inputs Output
(L,1) 0
(1,0) 1
(0.1) !
(0,0) 0

The weights are initialized randomly as follows:

3=0.02, 4=003 12=-002, 28=0.0J

24=002,w,b=-001, 2b=-0.01

Calculation of Activation: Consider a training instance with the input vector = (1,1)

and the desired output vector =(0)

02 =1/[L+ e(Ix0) +Ix02- 0> = 0.505

Q1_ 1/ [1+ e -0s05x002+1X02+1x0.03 - 1X00L)s _ Quq-
W eight Training: Assume that the learning rate = 0.3.

0j= 0.508(1 - 0.508)(0 - 0.508) =-0.127

AW =03x(-0.127) x1 = -0.038

82 = 0.505(1-0.505)(-0.127 x-0.02) = 0.0006

144
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The rest of the weight adjustments are omitted. Note that the threshold
(which is the negative of the weight from the bias unit) is adjusted likewise. It takes
many iterations like this before the learning (training) process stops. The following set

of the final weights gives the mean squared error of less that 0431: AWz = 0.3 X
0.0006 X 1=10.002

13=498, 14=1498, 12=-1130, 23=5.62,
24=562, 1=-2.16, 2b=-8.83

Backpropagation has been applied to classification tasks, speech synthesis
from text adaptive robotic control, scoring of bank loan applications, system

modeling, data compression, and many others.
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