
C hap ter II

E lectronic s tru c tu re  of carbon
nano tubes

This chapter aims at setting the stage with a brief review of the essential 
concepts which we shall encounter in later chapters of this research. This makes 
us gradually understand the limitation of the theory to understand the behavior 
of carbon nanotube field emission and assumptions used.

2.1 E lectron ic band stru ctu re o f graph ite
Graphite band structure takes an essential role to define the band structure of 
carbon nanotubes. Insight understanding on the electronic structure of graphite 
will merit in detailed understanding the physical behavior of carbon nanotube 
electronic wave functions which directs US to the understanding of field emission 
from carbon nanotubes. Electrons in graphite can be separated into three groups: 
a) the core electrons Is which cannot go further than atomic neighborhood that it 
belongs to, b) the hybridization electrons 2s2p2, so-called a bond electrons, and c) 
The 7T bonding electrons e.g. atomic electronic orbital hybridization of 2pz electron 
of each carbon atom in graphene plane which have quite most mobility of electron 
in our carbon material (valence electrons) and anti-7T bonding electrons which are 
the most mobility of electron in our carbon material (conduction electrons). In 
our problem, we assume no <7 electron emitted from our carbon nanotubes. I f
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this group of electrons emit, the deterioration will occur at the tip of our carbon 
nanotube. We assume that the emitted electrons come only from anti-7T bonding 
electrons which have much larger mobility and more sensitivity to get response 
from external electric held and have much larger tunneling probability at the end 
of nanotip. To concern with the behavior of electrons in carbon nanotube we start 
from the electronic structure of graphite.

Unit cell and Brillouin zone of graphite

(b)

Figure 2.1: (a) The unit cell and (b) Brillouin zone of two dimensional graphite 
are shown as the dotted rhombus and the shaded hexagon, respectively, a,, and 
bi, ( i= l,2) are unit vectors and reciprocal lattice vectors, respectively.

In Fig. 2.1, the real space unit vectors ~a 1 and ~a 2 can be defined as

; a - K l  = K l  =  0.142\/ริ =  0.246 nm
( 2 . 1 )

From the real and reciprocal lattice basis vectors, b 1 and b 2, relationship
at ■ bi = 27r, at - &2 =  0 

น2 ' bi =  0 , น2 • 62 =  2n
( 2 . 2 )
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We get corresponding unit vectors in reciprocal space of this 2D graphite as given 
by

f  2-JX 2tt\
พ เ พ ,

/  27T _ 2 tt\
\a \/3  fl / (2.3)

H value (eV) 5 value
Hss -6.769 Sss 0.212

Hsp -5.580 ร8■ ทุ 0.102

Ha -5.037 Sa 0.146

III -3.033 ร7r  —  ร 0.129
-8.868

The value for £23 is given relative to setting £2p =  0.

Table 2.1: Values for the coupling parameter for carbon atoms corresponding to 
the Hamiltonian for 7T and a bonds in 2D graphite. £28 is the energy of electron 
at 2s orbital.

7T bonds of tw o-dim ensional g raph ite

Using the secular equation and carbon coupling parameter given in Table 2.1, we 
get the following dispersion relationship

JP £ 2p  ±  tw{ k  )
ป ีg2D{ K ) =  — ----------y=>—

1 ±  รพ ( k ) (2.4)

where £2p represents the orbital energy of the 2p level. The values of atomic energy 
for the crystal potential of carbon material is given in Table 2.1. The + signs in 
the numerator and denominator give the bonding 7r band, and likewise for the - 
signs, give the anti-bonding 7T* band, and t is the transfer integral of 7T bond and 
is given by

H 7T -3.033๙14 (2.5)
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where H is our 7r electronic orbital Hamiltonian derived from the geometry of real 
space unit cell structure of our crystal, <pA and <ps are the wave functions of 7T 
electrons at A site and B site in our crystal unit cell see Fig. 2.1 and ร is the 
overlap integral between the nearest neighbor atoms of carbon material given by

ร =  -  R) -  Æ ')) =  Sit = 0.129/; eV
while the function พ ( k ) is given by:

(2 .6)

1 + 4 cos cos + 4 cos2 (2.7)

The energy dispersion relation in the case of ร = 0 (i.e., in the Slater-Koster 
scheme) are commonly used as a simple approximation for the electronic structure 
of a graphene layer:

C g 2D  (^ X )  k y )  —  h i t \ 1 + 4 cos y/ร ิ kxa j  cos [ ^ Y ^ j  +  4 cos2 (ç Y ^ j  (2.8)

Eq. 2.8 will be used for the energy dispersion relation of carbon nanotube in the 
next section.

2.2 C arbon nanotube physics
Carbon nanotube can be described as a graphene sheet rolled into a cylindrical 
shape. We can define any carbon nanotube spiral conformation from chirality 
which is given by a single vector in real space of two dimensional graphene sheet 
called the chiral vector. Many important parameters of carbon nanotubes can be 
derived from the chiral vector. The chiral vector Ch can be expressed in terms of 
the real space unit vectors "o’1 and ไ? 2 of the hexagonal lattice as

Ch = 'ท.นิ! + ทใ.นิ2 — (ท, ทใ.) (2.9)
where ท and ไท are intergers. 0 < |m| < ท. The diameter of the carbon nanotube. 
dt, is given by
dt = L j7T, L =  |C?| = \jC), • Ch — a/ท 2 +  ใ'ท2 +  2nm cos 8 — aVn2 + m2 + nm

( 2 .1 0 )
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Type e ch Shape of cross section Symmetry
armchair CO o o (ท, ท) cis-type Dn ci

zigzag 0° (ท, 0) trans-type Dn ® Ci
chiral 0° < |0| < 30° (ท,m) mixture of cis and trans Cd <s> Cu/d

Table 2.2: Classification of carbon nanotubes.

where L is the perimeter of CNT given by above expression.
The chiral angle 9 is defined by taking the inner product of C'n and ~a 1, to

reach cosO as: 0 ch-a{ 2 n + m
~ |C^||Ô?| 2 'ร/ท2 + m 2 +  nm (2 .1 1 )

Translational vector:T

The translational vector T  is defined to be the unit vector of carbon nanotube 
which is parallel to the nanotube axis and normal to the chiral vector. Thus, we 
can expressed T  in terms of the basis vectors in real space of two dimensional 
graphite as:

T  =  ti<i\ +  t2a2 — (tl) ^ )  (2.12)
where ti and f2 are integers which we can define them as following

t , =
2m + ท

^2 — ---
2ท + m (2.13)d,R dft

where dR is the greatest common divisor of (2m+n) and (2n+m). The area of the 
nanotube unit cell \ch X T\. Then we can get the number of hexagons per unit 
cell N as a function of ท and m  as:

S x f
N  = 2 (m2 +  ท2 + nm) 2 L2

a{ X a2 df a? dp (2.14)

It should be noted that each hexagon contains two carbon atoms. Thus, there are 
2N carbon atoms in each unit cell of the carbon nanotube.
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Figure 2.2: The unrolled honeycomb lattice of a nanotube is shown. OA and 
OB define the chiral vector Ch and the translational vector T  of a nanotube, 
respectively. The rectangle OAB'B defines a unit cell for the nanotube. The 
vector R  denotes a symmetry vector. This figure corresponds to Ch = (4,2). 
d = clแ =  2 , f  =  (4, -5 ) , N  =  28, R — (i, -1 ).

Unit cells and Brillouin zones of carbon nanotube

Since we have 2N carbon atoms in each CNT unit cell, we will have 2N 7T bonds and 
2N anti-7r bonds. The reciprocal lattice vectors of carbon nanotubes are defined 
by K\ and K 2. Kl is the unit vector in the circumferential direction. Therefore 
K 2 is the unit vector along the nanotube axis. Both K\ and I< 2  are obtained from 
the relation

Ch - K 1 = 2tt T . K , = 0, 
( îh -%  = 0 T - k I = 2tt.

(2.15)
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We get expressions for Ky and K 2 as

Ky = -^ (~t2by+tyb2 )̂ , E2 =  (rnby -  nb2) (2.16)

where 6 1 and 6 2 are the reciprocal lattice vectors of two dimensional graphite.

Electronic band structure of single wall carbon nanotubes

Figure 2.3: The Brillouin zone of a carbon nanotube is represented by the line 
segment พ พ '  which is parallel to k 2. The vectors Ky and พ2 are reciprocal 
lattice vectors corresponding to Ch and T,  respectively. The figure corresponds to 
Ch = (4,2), f  = (4, -5 ), N = 28, ky  = (5by + 462)/28, k 2 = (2by -  462)/28.

By using periodic boundary conditions in the circumferential direction, the 
wave vector associated with the c  h direction becomes quantized, while the wave 
vector associated with the direction of the translational vector T remains contin­
uous for a nanotube of infinite length. Thus the energy bands consist of a set of 
one-dimensional energy dispersion relations which are cross sections of those for 
two-dimensional graphite. This ID energy dispersion relation is given by

Ep (k) =  E ij2d I k K

K, +  /i/V] ; / i  =  0 , • • • 1 N  -  1 and — — < A: < —T T
(2 .1 7 )
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The periodic boundary condition for (ท,ท) armchair carbon nanotubes is given by

ทV3kxqa -= 2nq, (q = l , . . . ,2 n )  (2-18)

Substitution of these discrete allowed wave vectors in the circumferential direction, 
we will get the energy dispersion relation for the armchair nanotube (ท,ท) as

(2.19)
where k is the magnitude of wave vector in the direction of K 2 which corresponds 
to the direction from r point to K  point in 2D Brillouin zone of graphite.

In the next chapter, we will review the basic of electron emission that we 
have to apply to our carbon nanotube model to find the charateristics of emission 
current which depend on the external applied electric field.

(—7T < ka < ท), { q  —  1,.Eq (k) = ± t J  1 ±  4 cos ^ . . , 2 n )
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