
CHAPTER 3
POW ER SYSTEM  DYNAM IC M ODEL

3.1 Structure o f the Pow er System M odel
The overall power system representation in this thesis includes models for the 

following components :
• Synchronous generator and the associated excitation systems
• AC transmission network including static fixed-impedance, loads
• HVOC link

For system stability studies concerning electromechanical oscillation, it is 
appropriate to neglect the transmission network and the machine stator transients. The 
dynamics of synchronous generator rotor circuits, excitation systems and HVDC controls 
are represented by the sets of differential equations. The result is that the complete 
system model consists of a large number of non-linear ordinary differential and algebraic 
equations.

We can describe complex power system as our plant which consists of generators, 
transmission network, and HVDC links as depicted in Fig. 3.1. It is noted that there can 
be a number of generators and HVDC links included in the system.

For Thailand’s system, there is only one FIVDC link connected between the bus in 
Southern part of Thailand (Khlong Ngae) and the Northern part of Malaysia (Gurun). 
Power can be imported or exported through HVDC. When the Thailand system is under 
generation, it will import power from Malaysia so that the converter in Khlong Ngae bus 
will act as an inverter. On the other hand, when Thailand system has surplus of power, it 
will export power to Malaysia so the converter in Khlong Ngae bus will act as a rectifier.

External system

Figure 3.1 AC-DC power systems.
Optimal design and operation of HVDC system require detailed understanding of 

the various phenomena that result from interaction between the DC system and the AC 
system in which the DC link is embedded. The modeling of the various components of 
the AC/DC system needs to be applicable to the analysis and simulation under steady 
state and transient conditions. We have already presented the converter, the C/DC 
interface, and the HVDC link, and its basic control in previous chapter.

Now, we will present model of the AC system model which basically consists of 
generating units and the network. Each generating unit comprises of synchronous 
generator and its excitation.
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3.2 Synchronous G enerator M odel
We will use a simplified generator model with two axes adopted from [14] as 

show in Fig. 3.2.
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Figure 3.2 Two-axis synchronous machine model.
the d-axis transient synchronous reactance 
the q-axis transient synchronous reactance 
the armature resistance
the d-axis current referred to the machine reference frame 
the q-axis current referred to the machine reference frame 
the d-axis current referred to the network reference frame 
the q-axis current referred to the network reference frame 
the q-axis transient open circuit time constant 
the d-axis transient open circuit time constant 
the d-axis synchronous reactance 
the q-axis synchronous reactance
the angular position of the rotor with respect to a synchronously rotating 
reference
the angular velocity of rotor 
the q-axis transient voltage 
the d-axis transient voltage 
the DC field voltage
the rated value of an angular velocity of rotor in electrical radian
the.mechanical torque applied
the electromagnetic torque developed
the damping torque component
the damping factor 
the inertia constant
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From the above figure, the stator algebraic equation can be written as : 
Ve'e +{RS + j X ’11 )(/,, + 7 i y ° ^ ] - [ £ 1', + ( . r  -  A',',)/,, +7 £1;] / s~2> = 0(3.1)
Multiplying eq. (3.1) by e 2 and equating the real and the imaginary parts, we

obtain :
£ 1', -  V sin(8 -  e ) -  R J 11 + X J  11 = 0 (3.2)
r  -  V coJ5  -  e ) -  £ ./ ,  + X J  11 = 0 (3.3)
เท addition, the dynamic behaviors of the rotor motion and the rotor circuits can 

be describing using the following differential equations [14J:

where

8 = CO- COv (3.4)
^  (Tm - T - T d) 

M (3.5)
t  .( £ « - ( * „ - * ;  ) / , -  £ 1;) (3.6)

TJ0

V
(3.7)

M t 2H
a>,

(3.8)
T, = (£ .7 ,+  £,;/„ + ( X ^ - X 'W , 1,1) (3.9)
T0 = D{co- cos) (3.10)

The equations of importance in studying power system stability are the rotational 
inertia equations describing the effect of an imbalance between the electromagnetic 
torque and the mechanical torque of the individual machines. The equation of motion of a 
synchronous machine is commonly referred to as the swing equation because it represents 
swings in rotor angle 8  due to disturbances. These swing equations are represented by eq. 
(3.4) and (3.5).
3.3 Excitation System

เท order to improve the damping characteristics of the synchronous generator, 
supplementary excitation controls have been widely employed. เท this study, we use the 
IEEE type J exciter as shown in Fig. 3.3 [14, 15].
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Figure 3.3 Block diagram of the IEEE type I excitation control.
From the block diagram above, we have three following equations :

Rr, =

V,1 K
t / f -
K

K ÀK ,
TATE- E „ + - (K ,,~  ท

Æ +
T1-' (r« )

ท—E2 ^fdi
ร , =A ,X

where
Efd is the exciter voltage
V* is the regulator voltage
R, is the stabilizer voltage
k a is the voltage regulator gain
Ta is the voltage regulator time constant
K b is the exciter gain
T1-: is the exciter time constant
K f is the regulator stabilizing circuit gain
tf is the regulator stabilizing circuit time constant
S ex is the rotating exciter saturation at ceiling voltage
A EX is the saturation constant for rotating exciters
Bex is the saturation constant for rotating exciters

(3.11)

(3.12)

(3.13)

3.4 Network C haracteristic Equations
The network characteristics can be described in the form of power balance. From 

Fig. 3.1, we see that the network is connected to generating units and F1VDC links. The 
network also interfaces dynamic interactions between generators and HVDC links.

The network can consist of many electrical buses and branches depending on the 
system of interest. Some of the buses connect to the generators, and others of buses
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connect to HVDC. The rest of the buses which are not connected to generating units or 
HVDC can be an open-circuit bus or a load bus. Equations below describe steady-state 
performance of each bus with regard to the type of such bus.

It is assumed that the ordering of the buses here starts from generator buses, 
HVDC buses, and lastly the load buses. The numbering of the buses is as follows :

I = 1,2,..., m are a group of generator buses
h -  m + 1,..., เท + cl are a group of HVDC buses
l = ทา + d  + 1....,/» + cl + p  are a group of load buses
ท = เท + cl + P

where
m is the number of generators 
d is the number of HVDC 
p  is the number of loads 
ท is the number of buses

3.4.1 G enerator Buses
The two equations representing real and reactive power balance for each 

generator bus are given below.
For real power balance,
L v, sin(s , - 9 , )  + 111,K cos(ร' - 0 , ) ~ X K v*Y1เ1 cos(0, -0* - « 1*) = 0 (3.14)
For reactive power balance,
Iàv, cos(ô, - 6 t) - l q,v1 s\n(S, - 0 , ) -  Ê V'y*V't s'in(9, - 0k -  « 1*) = ° (3-15)
for t = 1,2,..., เท

3.4.2 HVDC Buses
Similarly, the two equations which are represented real and reactive power 

balance in HVDC bus. Reactive power is needed for AC-DC conversion. The real power 
flowing through the HVDC link can be in either direction. When the power is exported to 
another system, we have these following equations :
For real power balance,
EjJjch Yhk C0S(°I, - ° k ~  «M ) = 0 (3.16)
For reactive power balance,
EjJ m  tan(^;, ) -  X  vhvk Ykk sin( ^  - 0 k -  a hk ) = 0 (3.17)
for h = m + โ,.'..,m + d

On the contrary, when the power is imported to the system of interest we have 
these following equations :
For real power balance,

- £  VAr„  cos (ชุ, - e t -  a „  ) = 0 (3.18)
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For reactive power balance.
EjJ m  tan(^/, ) -  X  VhVkYhk sin(^  -  0* -  «M ) = ° (3.19)
for h  -  เท + 1,..., /77 +  d

3.4.3 Load Buses
For the load buses, we have equations for both real and reactive power also.

for / = m  +  d  +  ไ , . . . , m  +  d  +  P
Pn and Qu and are voltage dependence loads. In this thesis, loads are assumed as 
constant power type.
3.5 Load Flow Analysis

Load flow analysis is an essential tool for planning, design and operation of the 
power systems. It is basically to determine the operating point of the system in steady 
state condition, which in here will be used for initializing variables for dynamic study.
3.5.1 AC Load Flow

Under normal condition, power systems operate in their steady state mode. The 
basic calculation to determine the characteristic of this state is called load flow (or power 
flow).

The objective of load flow calculation is to determine the steady state operating 
characteristic of the power generation/ transmission system for a given set of loads. 
Loads are normally specified by their constant active and reactive power requirement.

The solution is expect to provide information of voltage magnitudes and angles, 
active and reactive power flows in the lines, power losses, and the reactive power 
generated or absorbed at the voltage-controlled buses.

The complete definitions of power flow require knowledge of four variables at 
each bus k in the system, which are :

Pk ะ the injected real or reactive power 
Qk : the injected reactive power 
Vk ะ the voltage magnitude 
0k : the voltage phase angle

Generally, only two variables are known for each bus, and the aim of the load flow 
analysis is to solve for the remaining two variables of that bus.

We define three different types of buses on the steady-state assumption as follows
1. Nonvoltage-controlled bus.

The total injected power Pk + jQ k, is specified at this type of bus. Both Pk and Ok 
are assumed to be unaffected by small variations in voltage magnitude of the bus.

(3.20)

Qu (K )~  ) = O (3.21)
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2. Voltage-controlled bus.
The total injected active power Pk is specified, and the voltage magnitude Vk is 
maintained at specified value by reactive power injection. This type of bus 
generally corresponds to a generator where Pk is fixed by turbine governor setting 
and Vk is fixed by automatic voltage regulators acting on the machine excitation, 
or reactive power supply from static shunt capacitors or rotating synchronous 
compensator.

3. Slack (swing) bus.
This bus arises because the system losses are not known precisely in advance of 
the load flow calculation. Therefore the total injected power cannot be specified at 
every single bus. It is usual to choose one of the available voltage controlled 
buses as slack, and to regard its active and reactive power as an unknown. Phase 
angle of the slack bus is usually assigned as the system phase reference. Hence, 
for this bus its complex voltage Vsz 0X is completely specified.

The load flow program solves a set of simultaneous nonlinear algebraic equations for the 
two unknown variables at each bus in a system normally using numerical techniques such 
as the Newton-Raphson method.
3.5.2 DC Load Flow

Incorporation of the HVDC transmission system into the AC networks has been a 
major challenge programs during the last few years. It requires some modification in the 
load flow and stability programs.

The objective of power flow calculation of the AC-DC interconnected system is 
to find equilibrium states which satisfy operating conditions of both AC and DC systems, 
and also satisfy a set of relation between AC and DC quantities.

In performing AC power flow calculation, two variables are specified while the 
remaining two are solved iteratively. เท case of AC-DC interconnected system, a set of 
equations for DC system and several relations between AC and DC quantities must be 
simultaneously solved, as well. The iterative procedure is repeated until all the relations 
between the AC and DC quantities are satisfied with sufficiently small errors.

The magnitude of the AC voltages and the complex power of the AC-DC 
interconnecting equations must be coincident at the interconnecting point of the AC-DC 
system, of which it implies that three variables must coincide at the interconnecting point 
[16].

In AC power flow calculation of AC systems, three variables cannot be specified 
at a single bus. Therefore two specified variables are used to obtain an equilibrium state 
of the AC system, while the remaining one variable, in general, can be different from that 
determined by DC power flow calculation. The DC quantities are then recalculate on the 
basis of the new solutions of AC load flow.

The-iterative calculation above is repeated until the three variables at the 
interconnecting point (HVDC bus) become coincident in both AC and DC systems. First, 
the active and reactive power and the bus voltages to be supplied from the AC system are 
calculated using the specified values and the initial conditions of the DC system. After 
that the bus voltage will be evaluated by the AC power-flow calculations. Then we will 
compare the bus voltage from DC and AC calculation. This comparison will be used to 
select proper tap position of the power transformer of HVDC. The AC and DC
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calculations are performed iteratively until the voltage difference due to the tap position 
becomes sufficiently small.
3.6 Initial Condition Calculations

น is necessary to compute the initial values of all dynamic states under the given 
inputs. เท power system dynamic analysis, the fixed inputs and initial conditions are 
normally found from a base case load flow solution, assuming that such load-flow 
solution exists.
3.6.1 Initial Conditions o f IIVDC

To do the computation, it is assumed that E 111, l Jc, a  and y are given. Also the 
parameters in the HVDC such as R 111., Rcr, Ra are given. After running load flow which 
also involves DC calculation as described above, initial conditions of HVDC can be 
calculated by following steps below. Here subscript r denotes rectifier, and i for inverter.

1. Compute E11'.
From Fig. 2.5 we can get this following relationship :
Edr = E d ,+ ^dA , (3-22)

2. Compute E 11'.0

E «พ) = cos(a) 
Compute £ 1110

(3.23)

EjiO =
+ i x ' I j
cos(y)

Compute AC voltage at interface bus
(3.24)

■‘di 0

V. =
k

Edr 0

where k = 3V 2

5. Compute (f> using eqs. 2.7 and 2.10
(j)r = cos'

(เ) 1 = cos'

Edr
■ 'dr0 y
r, \

V EdiO
Compute p  using eqs. 2.5 and 2.8
p  = E Ir r Ljdr1dc
P = E ,1 1I I I I  lie

6.
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7. Compute Q usine eqs. 2.6 and 2.9 
Q r  -  P r tan(0,)
Q, = Ç tan (^ )

8. Compute /rfcr
Using eq. 2.15 by setting derivative equal to zero :

(3.25)
9. Compute Aw

Using eq. 2.13 by setting derivative equal to zero :
t o = ~ *  น - 1*. (3.26)

Finally, we obtain p  and Q of HVDC to be used for AC load flow calculation.

3.6.2 Initial Conditions o f Generating Unit
To do the computation, it is assumed that P, Q, V and 0 at the generator buses are 

given from load flow results. Also the parameters in the generator and exciter are given. 
Initial conditions of generating unit can be calculated by following steps below :

1. Compute current in the generator bus.

To make clear, assign 10. to be 100. Note that subscribe DQ ( 00) is for
network reference frame and subscribe dq ( 1111) is for machine reference frame.
We can use transformation (T) to transform the value in network reference 
frame to machine reference frame and vise versa. The machine - network 
transformation is given by

(3.27)
J(S--)This current is in the network reference frame and is equal to (Ij + j l  11)e 2 3

F + = T  * F00
, [sin£  -cos<5where T =

(3.28)
(3.29)cos 5 sin 5

(3.30)
(3.31)-co s  5  sin 5

The variable F  above can be either /  or V .
2. Compute 5 ( delta).

5 = angle on (v00 + (R x + jX  11 )100 )
3. Compute I j , I q,Vd,V  for the machine.

(3.32)
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4.

5.

6 . 

7.

From eq. 3.28 we can obtain the values of 11: J 1. V 11, F, by multiply and 
V00 with T. 100 is from calculation no 1. and V110 is come from the load กoพ 
solution. V00 is the voltage at the generator buses.
IJ s in  O' - c o s e ) In

c o s  5 s in  5 Jo_V s in  -COSÔ \v,;
c o s  ร s in e ) [vQ_

C o m p u te  E'j u s in g  eq . 3 .2.
£'11= V sm (S -0 )  + R J d - X '11!11 
Compute E '11 using eq. 3.3.
£'11 = -V  cos(<5 - 0 )  + R J 11 + X '11111
Compute E 111 using eq. 3.6 by setting the derivative term equal to zero :
E 1,=  E'c1 H X d - X [1)! u (2.35)
Compute R j ,V r , V0,1 , CO, โ M
With the Field voltage E 111 known, the other variables R 1, Vu and V01 can be 
found using eqs. 3.11 -3.13 by setting relevant derivative terms equal to zero : 
VR= (K r l s , : {E h1))E111 (3.36)

R,

K „ = y + ' X

(3.37)

(3.38)
The mechanical states CO and ThU are found using eqs. 3.4 and 3.5 by setting 
the associated derivative terms equal to zero :
CO = cos (3.39)
TM = K I J + E '11! 11 + ( * ; - * ;  ) /„ /, (3.40)

This completes all the computations required for determining initial conditions of 
the states variables and necessary inputs to be used for linearization process which will be 
the topic of discussion in the next chapter.
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