CHAPTER 4

LINEARIZED STATE SPACE MODEL OF POWER SYSTEMS
WITH 11VDC LINKS

4.1 Introduction to State Space Analysis _ _ _ o

In time domain, the system representation of differential equations can be difficult
to analyze. The mathematics get more burdensome as the order of the equations
Bncrea_%esd,fohe Ictombmanon of several differential equations into one single system could

e quite difficult.

q. State space form provides a convenient time-domain representation that is useful
for insight analysis. Furthermore, state variable descriptions need not assume zero initial
conditions, and hence allowing the analysis and de3|%n of system characteristics that are
not possible with frequency domain represe_ntahonsr[ 6]. _ _ _

State equations are simply collections of first order differential equations that
together represent exactly the same information as the_on%mal higher-order differential
equations. Nevertheless, the set of variables used to write these  first-order equations is
not unique. The state variahles are normally chosen for convenience in the analysis, as
one set of the state variables maﬁ result ‘in mathematical expressions that make the
solution or other characteristics of the system more apparent.

The collection of state variables at any given time is known as the state of the
system,_and the set of all values that can be taken on by the state is known as the state
sh)ace. The state of the system represents complete information of the system such that If
the state at time 10is known, it is possible to compute the state at all futtire times.

The behaviors of a dynamic system, such as a power system, may be described by
asetof first-order nonlinear ordinary differential equations of the following form [2] :

X=faxt,x2,..xn; 1L 2. 1) (4.1

. Where s the order of the system and r is the number of inputs. This can be
written in the following concise form using vector matrix notation:

X=1(x, 1) (42)
Where
X ! 7II
SR
Jn

~The column vector X iS referred to as the state vector, and its entries X as state

variables. The column vector s the input vector to the system. These are the external
signals_that influence the performance of the system. Time is denoted by t, and the
derivative of a state variable Xwith respect to timie is denoted b){, X. If the derivatives of
the state var}?bles)are not explicit functions of time, we can simplify equation (4.2)( 1%03)

x=/(X, .

We are often interested in output variables which can be observed on the actual
system. They can be expressed in terms of the state variables and the input variables in
the following form:



y=g(x, ) (44)
Wwhere |
y. g
y - y2 g= g2

Y : :
~ The column vector %/ is the vector of output variables, and ? is a vector of
nonlinear functions relating state and input variables to the output variables.

4.1.1 Linearization
_ If equations (4.3) and (4.4) are linarized around the given operating states and
inputs (x0,>0), then the linearized state and output equations can be written as follows :

Ax= AAx+ BAW 24.5;
AK = CAx + DAu 4.6
where
8 a0 AN
X f
A= ™ B=
dL [ ft ft.
XU g il ditl
dgl dg, dgl 21
S?(, 9\ dg 1 dur
T i T i
S, d?m d%l d%r
Where

Ax is the vector of state deviation from x0
Ay is the vector of output deviation from y0
All is the vector of input deviation from 0

A is the state or plant matrix of size nxn
B is the control Or input matrix of size nxr
¢ IS the output matrix of size mxn

D is the feedforward matrix of size mxr

Madern control theory which is based on state sPace conceths is extremely useful
not only for designing a specific optimal control s¥s em, but also for improving the
principles on which thé system will operate. By using the state space approach the control
engineer will be able to design the systems with performance characteristics that cannot
be“achieved by the classical dpproacti, such as the frequency response method or the root
locus method >fl?].
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_ A modem complex system may have many inputs and outputs, and they can be
interrelated in a complicated ‘manner. To analyze Such a system, it is essential 0 reduce
the complexity of the mathematical expressions. For smaII-3|gznaI analysis, the lingarized
state space approach to non-linear systems is best suited from this viewpoint, =~

While_ conventional control”theory is based on the input-output relationship, or
transfer function, modern control_theory 1s based on the description of system equations
in terms of ~ first order differential equations. The use of vector matrix notation” greatly
simplifies the mathematical representation of system equations. The increase ‘In the
number of state variables, the number of inputS, or the number of outputs does not
significantly increase the complexity of the equations.

4.1.2 Advantagfes of State Space Analysis _

Some of the advantages of the state space approach are as follows [18j:.

L It provides a convenient, compact notation, and allows the application of the
owerful vector matrix theory, _

2. The uniform notation for all systems, regardless of order, makes possible a
uniform set of solution techniques and computer algorithm., -

3 AtPI% tto define and explain more completely many system characteristics and
attributes.

After the state space representation of the system is obtained, we can see the
elpenvalues of the system by inspection of matrix A, which reveal the stability of s¥stem.
Also we can check Controllahility and observability of the system to see the possibility of
applying proper controller in thesystem.

4.1.3 Eigenvalue and Stability' _ _ _
The time dependent characteristic of a mode corresponding to an eigenvalues Atis

8|ven by an exponential term of eX. Therefore, the stability of the system can be
etermined by the eigenvalues as follows : _ _

a. Real "eigenvalues correspond to a non-osmllator_¥ mode. A negative real
eigenvalue represent a_decaying mode; the larger its maqmtude, the faster the
dacay. A positive real eigenvalue represent aperiodic instability.

b. ComPIex eigenvalues occur in conjugate pairs. Each pair” corresponds to an
oscillatory mode. _ _ _ o
The real ‘components of the eigenvalues give the damping, and the imaginary

components the frequency of oscillation. A nePatlve_ real part Tepresents a damped
oscillation whereas a positive real part represents oscillation of increasing amplitude.
Thus, for a complex pair of eigenvalues A =crt jco,

the frequency of oscillation in Hz is given by :
! (48)
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In addition, the damping ratio can be computed &s :
¢ (49)

a~ + Q0

The damping ratio C determines the rate of decay of the amplitude of the oscillation. The
time constant of amplitude decay is PJ. Positive damping ratio infers decaying mode,

while the negative damping ratio infers instability mode.

4,14 Participation Factor = S S
Participation factor analysis aids in the identification of how each state variable is

reflected onAa given mode or eigenvalue. Specifically, given a lingar system of the form :
X = AX

a participation factor which is equivalent to a sensitivity measure of an eigenvalue with

respect to a diagonal entry of the System A matrix, is defined as

F’Kda

where A( is the %‘system eigenvalue
akkis a diagonal entry in the system A matrix

p Lis the participation factor relating the k'hstate variable to the iheigenvalue.
The participation factor may also be defined by .

Pk = A — (4.11)

where  Kand vAare the k'L entries in the left and right eigenvector associated with the
I'h eigenvalue. The right eigenvector, v( and the left eigenvector 1associated with the
I'h eigenvalue A satisfy :
Avi= Ay, (4.12)
JA- 1A (4.13)
An eigenvector may be scaled by any value resulting in a new vector, which is
also an eigenvector. In any case, since 1 1VIl= I\4, it follow from (4.11) that the
sum of all the participation factors associated with a given eigenvalues is equal to 1, i,

| Pk,= 1

This property.Is useful since all participation factors lie on a scale from zero to one. To
handle partiipation factors corresponding to complex_eigenvalues, we introduce some
modifications as follows. The eigenvectors correspondingto a complex eigenvalue will
have complex elements. Hence, pkLis defined as

= 4.14
% | Iaqll/k PV 49

(4-10)
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A further normalization can be done by making the largest of the participation factors
equal to unity.

4.1.5 Controllability and Obseryability Apalysis _

_The state-space method is the moderri approach for control system design and
analysis. The controllability and observability are_ important structural properties of a
control sKstem. The controllability and observability” analysis can be used to check
whether the system is controllable or observable. This’s the formulation to conduct those

anall/sisc[l9! —_— - . .
ontrollability analysis is used to calculate the controllability matrix and check
whether the system s controllable. The controllability matrix is :

CM=p AB AB . A(-)b\ (4.15)

|f CM has full row rank, the system is controllable.
2. Observability is used to calculate the observability matrix and check whether the

system is observable. If the observability matrix

OM=LC CA CA2 .. C4")] (4.16)

|f OMhas full vector rank, the system is observable.

When the system is completely state controllable and available for feedback, then

Poles of the closed” loop system may be placed at any desired location by means of state
eedhack througzh an appropriate state feedback gain matrix. It's call 'oole placement or
pole-assignment technique. This job will be done by engineer in contro

4.1.6 PBH Test
PBH (Popov-BeIewch-Hautus% test provides a means to classﬁY the modes of a
system as controllable or uncontrollable and observable or unobservable. There are two
Kind of tests [19L: .
1 PBH rank test forcon_trollabnllty _ _
By duality, a pair {AB} is controllable ifand only if
Rank ([s/ - A B])=", VseA(, 1= (4.17)

where AL i=\,.., areeigenvalues ofA

2. PBH rank test for observability _

By duality, a palr {AC} is observable if and only if
C '_ . _

Rank Msi- Ay~ JVseAl i=1.., (4.18)

where A, /=1, are eigenvalues ofH

area.

4.2 Characteristics of Small Signal Stability Problems _
In large power systems, small signal “stability problems may be either local or
global in nature.
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4.2.1 Local Problems _ _

Local problems involve a small part of the system. They maY be associated with
rotor angle oscillations of a smqle dgenerator or a single plant against the rest of the power
system. Such oscillations are called” local plant mode oscillations.

Local problems may also be associated with oscillations between the rotor of few
generators close to each other. Such oscillations are called intermachine or interplant
mode oscillations. Usuall¥, the local plant mode and interplant mode oscillations have
frequencies inthe range of 1 to 3Hz. S _ _

Other possible local problems include instability of modes associated with
controls of equipment such as generator excitation systems, HVDC converters, and static
var. comPensators. The problems associated with control modes are due to inadequate
tuning of the control systems. N _ _ _

Analysis of local small signal stability problems requires a detailed representation
of a small portion of the complete interconnected power system.

4.2.2 Global Problems - _ _
Global small S|gnal stability problems are caused by interactions among large
groups of generators and have wideSpread effects. _ o _
They involve oscillations of a gro%p of generators in one area sw,m?mg against a
groulpll t_of (enerators in another area. Such oscillations are called inferarea mode
oscillations;
" t_Large interconnected system usually have two distinct forms of interarea
oscillations
a. Avery low frequency mode involving all the generators in the system. The
fre uencY of this mode of oscillation is on the order of 0.1 t0 0.3 Hz.
b. Higher frequency modes involving subgroups. of generators sswinging
against each other. The frequency of these oscillations is typically in"the
range of 0.4 to 1Hz.

4.3 Linearized State Space Model of Power Systems with HYDC Links

_ Dynamic stability of power system is analyzed by monitoring the eigenvalues of
the linearized system as a power systém i Rrogresswely 0aded. Instability occurs when a
pair of complex eu;envalues crosses the right half plang [14!]. o

~ The formulation of the state equations involves the development of linearized
equation about an operating point and elimination of all non state and non input variables.
However, the need to allow for the representation of extensive transmission network,
loads, excitation system, and HVDC' links makes the process very complex [2].
Therefore, the formulation of the state equations requires a Systematic procedure for
treating the wide range of devices. _

The objective of this thesis is to gzenerate an algorithm to develop the state model
of complex power system, which consists of generators, AC network and HVDC links.
Firstly, we have t0 get the mathematical eguanons which represent the dynamic
behaviors of all comﬁ)onents. It means we need to get the differential equations of all
components. Beside that, we have to interface each component, so we need equation
which connected component to others. After that we need to linearize all equations and



28

arrange them in the matrix form. Lastly, we need to eliminate the non-state and non-input
variable by substitution. This algorithm is shown in Fig. 4.1,

Start

Collect
differential
and
algebraic  /
equations

Linearize all
| equations with
respect to all
variables

Y.

Construct
equations in matrix
form

P

Eliminate all
variables cther
{than state or input
variables

 —— —————
Get the
linearized
/ state space
model of f
the system

A4

end

Figure 4.1 Main algorithm to generate linearized state space model.

4.3.1 Collections of the Equations _

_To develop state model, we need to collect equations of all components. We use
both differential equations and algebraic eguatlons to get the model.
From all components that explained above, thus we have:

a. Generating Unit _ _

_ Th|s-8art consists of synchronous generator and exciter system which are
explained at Chapter 3, thus we Have:

L Four differential equations for each synchronous generator (3.4 3.52 (3.62, {3.7)
and three differential equations for each exciter (3.11), (3.12), (3.13) so that we
have seven differential equations for each generating unit, 7m."

2. Two real stator algebraic equations (3.2), (3.3) for each generating unit



29

b. HVDC
;. Three differential equations (2.12), (2.13), (2.15) for each HVDC link, 3n.
. Two AC/DC interface equations, we have to choose whether the HVDC export or
import power. When it exports we use equations (2.1), (2.7).When it imports we
Use equations (2.2), (2.10).
¢. Network _
1 Two real network equations ?3.14), (3.1\5/)Dfor each generator buses.
2. Two real network eguanons or each HVDC buses, when it exports power, we use
egli%nons (3.16). (3.17) and when it imports power, we use equations (3.18),

3. Two real network eguations (3.20), (3.20) for each load buses.
We assigned already buses of generator as t=12,...«7, buses of HVDC as

=m+ +0, and the rest buses of the network is load buses as
[=m+d + +d+p. Note that m is the number of generator, d is the number of
HVDC, p is the number of loads and is the number ofbus ( - +d+» )

4.3.2  Linearized Model of Generating Units

~In this thesis, each fgeneratmg unit comﬁrlses of synch,ronous,gienerator and
exciter. To do linearization of'generating unit, we have to collect differential equations of
synchronous generator and exciter. Beside that, we have to collect stator algebraic
equations also. We will recall those equations and rewrite in this part. After that we will
linearize all equations respect to all variables. _ _ _

In this case, we have multiple number of generator. Recall differential equations

for generating unit in (3.4), (3.9), 83.6), (3.7), 311, (3.12), (3.13) :

B TUIH(E; - X;ulw)ly +(K - Xp 1)1 -d m <))
E, K -(*, -X',.V,,-K)
((*,-%K-K )
@ N BT
c=p-HyV-  B+2(,-v)

R. . K,
(Cv)z Ef]
for /- 12..,

Recall stator algebraic equations (3.2), (3.3) :
K, - Ksinw -0,)- RI* +k I, =0
K - Kcos(h, -0,)- R 1+ X MM=0
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for [=12...u
a. The linearization of the differential equations from generating unit yields
As, = Al (4.19)
- . A A A

Am,-NﬁT\S,, M, Al 1+ M, A|1+XM Al AT’AF, -
Forn Iooa Ao, Al |
QA A e Tyl

4 ,=A-A£,,,,--m|7A£; (yy1Fta, (421)

- T o (4.22)
10 4!
AE1L= -fS{ETO)AEL, +~AV 1 (423)

AVr,=-— AVR+ "-AR, -X*E£7- AELl+-"-AV. - — AK (4.24)

A = _T_*y* +Zr%(}) (425)
where fx{E 110 = "7 +Eﬁh<p81(/\/m) +E/:(EJC|,Q
for [=12,../



Writing those linearized equations in matrix notation, vve obtain:

A

0 4 i o1 0 0
i 00 m 0 0 AW
A SR A
M 00 0 g O o1 -
BHd 0o 0 o 0 JER 0 AL
Al Kok A
R, 00 0 o BB ’

00 0 0 zili i
KOK -K )-£0 2006*-K )- E

A,

( 10 ) 0 *
' 0 / Al

: ()

0 0

0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 Mo o AL
+0 0 AK) +0 0 A\/Fgll
0 0 £
00 00

) Pk Ae|' N .
Denoting ~ =AIA 1 =ARY T =Aw
g&AK AL

%atmn (4.26) can be written as
4, +BAL QAR
For them machmes sE 4.27) can bl% [gssed in matrix form as
Axg= Ark+BAIGHC, Ake+ iﬁﬁ

where/1115,, ¢c,and £ are block diagonal matrices

(426)

(427)
(429)
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h. Linearize the stator algebraic e}zuations from generating unit yields :

e sin{ 0- 000K~ Kocos(( - O0)A(, +Kocos((,,- 00& 409

AE-cos( 10- 0,0AV, +WUsin (*0- £QA(,- K0 ' ( - 00)AF,

RAJg KAI11=0
fort=12 [T
Writing (4.29) and (4.30) in matrix form, we have :
A£l
Am

H0cos(0-00) 0 0 10 0 0 AL aty A,
A.

(4.30)

Fsin((0-£0 0 10 000 o0 " A

AC,

A

20056, -00) - i (5.0-0,0)1 A0 _

Ao ' (Eo-£,0) - cos((;0-0,08aK
Rewriting (4.31 ) we obtain

0= ADIAXT + B2M [1+ ¢ 24y, (4.32)
In matrix notation (4.32) can be written as
0—AGAXN & All+c2AL1 (4.33)

Where At2, £2and C2 are block diagonal matrices

(431)

0

4,3.3 Linearized Model of HVDC _
Recall differential equations for HVDC in egs. (2.12), (2.13), (2.15):

V2 cosal- Vicosyrs -1 (Xih- XT+RE L

T ch*clch
a ="kh~Id+A») -4,
A x(0-91L1-1 0yl
th
for  m+ +
For AC/DC interface we need to know whether in the interface bus the power
export or import through HVDC. When the J)ower Import to our System, its mean

interface bus in our systém acts as a rectifier, and when the power import to our system, it
means interface bus in our system acts as an inverter.
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Figure 4.2 System configuration with exporting power.
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Figure 4.3 Silns't"émrﬁ'configuration with importing power.
In Fig 4.2, when power export to other system so we use equation 2.1 and 2.7 ;
Fjh =3 2pboosal- 3¢ 3 e

__/\_ —
COS“:'H'W E X -

for h=m+1..m+d )
In Fig 4.2, when power import to our system so we Use equation 2.2 and 240

Eh= VlcosYh- 2-X ML

=B gy o
C5"1= g =5 gy
forh=m+ +(

a, The linearization of the differential equations rePresentln FIVDC performance

When power export to other system, it means the interface bus acts as rectifier, we

consider linearization respect to' voltage at rectifier and we did not consider voltage at

zrzwlezr%er_bledcau'se it is out of the system. Because of this reason, linearization of equation
12) yie
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N 2

. cosa. vin0sin «/,, 1(/)0 sin th
AA -AK A, +- Ar,,
' (O - (434)
X X B4R
+ - e v Al

r( X, . . .
\When, power import to other system, it means the interface bus acts as inverter o
linearization of equation (2.12) yield :

“ cosy,,0 —  osinwo — PAsinT
Alc=- * -AF, Aalt- ‘All
G (., ( G (4.35)
1 R ,'AlJch
TJchX Jeh

For equa,tions,l(lz.13, (2.15), even the system import or export power when we do

linearization will yield ;
Aah=- 'Aa, o Jch s ow |MGA+ Awqm (436)
An 13h ¢ Ar,"'/\ A / Jerh (437)

Writing those linearized equations in matrix notation, we obtain :
When power export to other system :

V2 . 3V2 .
'(* ,'*,*) + % Jh kho SINa Ao ~r,0 SIN 7ho
A, r¢.*, FroitA Tacn* kn ) AJch
Aah L Aah
Ay A YN

(4.39)
§ |

0 0 0
0 JChS,kh 'Ad,:ll N X rh X|]1 A/H
0

0 [af‘] I Th Al
L 13 J

3\*/2 cosald
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When power being imported to the system.
XD HRT 3wl |«
"ai Tk ~ ThR,h TtthEfa'm Eu.Rjch ‘al, 1,

~ B g ’ o
= 0 1 oL
Eh

N>

(439)

3V2 quM 0

0 - e 0
+ 0 Td%]m(h A£,, + R Kr,, Aljcrh
0

2:0 _.‘ 1 r A 11
0 08k1
T4

LT e s AVE
Denoting =~ 1 LAY AV, A Au.
Equation (4.38) and (4.39) can be written as :

AF], = AchAx™ +£>,* AVOHE chAull (4.40)
For the d-HVDC system, (4.40) can be expressed in matrix form as :

Ai. = ALAX1+ D1AV, + EcAwl (4.41)
Where AcbZ), and Ec are block diagonal matrices.

b, The linearization of the AC/DC interfacing equations on HVDC side
There are two possibilities, whether the power export to another system, or import to our

system.
ase 1:The power export to another system, so we have these following equations :

AETh cosalAvit+ M V0 alAah+ ", Alc=0 (442)
-sinthM'h - V'0'AEM, +EJI0~ ~ VIIB2AV", =0 (443)
Writing those linearized equations in matrix notation, we obtain:
dONEE sVs . )
éx th Ve \:/Lrho I 0 Aah + B cosa;0 A,(‘?’
0 0 0 AW ElllO_K'\ﬁp - (4.44)

0 |
J 1 A<

. o
sin® vim  AED

MV oolo 5*3
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Case 2 : The power import to put system, so we have these following equations

2] - 3V2 ., Vo2, . = _ (445)
nen - gpp ey B (4
Writing those linearized equations in matrix notation, we obtain;
AJJ V2 0011
5.0 3y[2V,H)siinYm e ]+0 o Z\O'/'
0" 0 0 AYh 0 EWD%\% Vilg2 G (447)
0 1
P 0
3 aEm _
Equation (4.46) and (4.47) can be written as ;
0= A1+ DAVt +GIAVT (4.48)
Where A 0
AEch_ AEM_  _AEI,_ ; _
For the d-HVDC system, (4.48& can be expressed in matrix form as
0=Al2Axc+D2AVe+GAVL (4.49)

Where A2, D2 and Gl are block diagonal matrices.

4.3.4 Linearized Model of Transmission Network _
~__the network we have generator bus, HVDC bus and load bus. We will do
linearization of power halance equations for all those kind of bus.

a. Generator buses
Recall equations for generator bus (3.14), (3.15):

L Visin( ,-0,) +14V cos(tf, - 0,)- X VIV.Y, cos(9,-0,- a1) =0

LK cos{ ,-e,)-1msin(5 -9,)- X vy, Yksin(9,-9 ,-a ()
Linearized those equations, we obtain:

0
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0° 0 )A + ° ( O0BAR+ cos( - )AA
0 cos( - QA0 +K0cos(A0- QAIL+1M cos( - O)Ar
- 0osin( - A+ 00 (0- DA

X oooos( e a) A - 0E[ cos( - ,-»*)Af

+ X0 a( - O»Y)A

(450)

- X[ 0 (0 0-»%)]a =0

Ocos( 0- )A +/,0cos( 0- QA -/100 (0- ,)A
+ ,00sin( - )A - Osin( 0- OQA/1- Osin( 0- ,)A
-0 Ocos( 0- »A + 0 Ocos( 0- 0)A

X (- o) A - OX[Esin( - M)A 4s)

0X o*cos(00 Q )

+ X[ 0%cos( 0- 0-«)Ja =0
fort- 12,..,m

Rewriting (4.50) and (4.51) in matrix form, we obtain
3 A AT

z
=
19 i

— @_\ - 1y ¥
" nm /\< /\3|’rn|.| 1'm+1 ”+|”
+ (452)
111 nm_LAV W_ 'IGTrnH m'm+1 _A nm
Fljsges 12 A
+

It B A

In matrix notation }4.52 IS
0= 3Ax]+ -AN+CAR +83A .+ A, (4.53)



where AKW= AGL
AK.

Note that A 3, = are block diagonal matrices, whereas c\. /3, are full matrices,

b. HVDC buses _ _
When the power export to another system so we have these following equations

Eid m, - E viv v (IlS(" - 9k - ai'k)=0
0 motainw, ) vavk YKSINn - ok - atk)=0
When the power import to out system so we have these following equations
eid ue, - E vavkkk C08(0% - sk - a 1) =0
e o, tan(,)- E Yowk¥lsin(91- 9k- atk) =0
Linearizing the first two equations, when the power exports to other system, we obtain:

KchO E E drh + E dhO kb - deﬂgl 9k0 - a k)
+Ko hi cos(0*0 —OK) —a)Ja\k

(454)
7Y HOVKOYH sin(0/0—010—a k)
- Ko E\Vkthksin(O,,o- 9k - atk)M =0
k¥
IMOtan(MALW+ £ 1Dtan(" AT/, + £ W0/, dsec2 (AP
EV #sin0%0 - o - M) ayh- VIE [dksi (£,0- 00- )}*
’%OHKoKk COS(910 -~ 940 - a tk) (4.9)

o E [V dcos(tfo- 00- a*)M =0
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Linearizing the last two equations, when the power imports from other system, we obtain:
IikhO "E <hh 4~ E hlio ~a Ich ~ 7 A Ak COS( 070k0—ark)

+KOX [ cos(00- 00- «M )M

(4.56)
- W7 [E40F 4sin(0/,0- Ok0- aM))\0k=0
ljcho taxn(0,7, ) L+ EY0n(CIAItL+EL/07] sec' GMAPh
£V &sin("0 - A0 - «*) AP*- POE [J« (00 - 000- «M)]aF
AAO "*oXhk cos(or,o0 — 0ko ~ ahk) a0 - '57)
+VE WO QA0 - 00- af)} * =0
1
Rewriting (4.54 and 4.55) and (4.56 and 4.57) in matrix form, we obtain :
A... AX C... Odmt. AR,
0= ar +
AX. C441  Cow ar.
A, .. .. AF. Fomemean Faml  ARinen
AAT +0lTTH- AF(md I:2m+d,m+d+\ F2m+d, AF.
GZm+\ AV(}'H.
G2m+d_ Ade+d_
.(4-582 | |
In matrix notation (4.58) is
0=AcAx1+C4AF, + DAAVCH FIAVh+G2AV) (4.59)

Note that /t(3, G2 are block diagonal matrices, whereas C4, £4, £2 are full matrices.
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¢. Load buses
Recall equations for load bus (3.20). (3.21 ):

n,AK)-éyytyltcos(0,-0t - alt)=0
QjK)-ZKKKkSin(0,-aj=0
Linearized those equations, we obtain:
PAK)  Xkokk ms(Olo—s p —k) AL

wZ  QH0O-0- )M

(4.60)
N KIINR~ko - 2ic) AD,

-K0oZKr k sin(0/o-0Ok)-a WA0k=0

k*

E Vo lll( y

=Koz [Y'kST(Ob”ko- d )AK

(4.61)
Z W, €08(0,0 0 —&k)
k2

+FoX [fiv « cOSED- dO- ak)M =0
ka
Rewrigwg (4.60) and (4.61) in matrix for% We obtain

Sm+ /\ Smd+\m+ AEmobit\mecf ALt

0= . -
' a C@] A “5nm o+ Monom o+ ) Mm.

—< M
Im+il+lm+(I+\ F3m+J+I. Ayhm+J+1

+

1
1
FSn,m+(J+\ 1F3‘ ‘H &> ...E

.(4-622 . .
In matrix notation (4.62) is
0=C5AL, +/5AL +F AVh (4.63)

where €5, D5, F5are full matrices.
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4,35 Eliminations of Non State and Non Ingu
Rewriting e(1. (4.28). (4.33). (441). (4.49). (4.53
foIIomeXse s of equations

1= Ay + Alec.All4 Al

Variables
(4.59), and (4.63), we have the

t
)
(4.64)
0=pyon +E£2A/1+ C2AE (4.65)
ay —If(|AX(4DIAVE4  Auc (4.66)
0=4 2Ax +£2AE +CAE, (4.67)
0=4, 3, +£;A, +CJAE, +/ 3AE +£1AEa (4.68)
0= ABAX( +CAAE + ZUaE +£TAVh+ GTAE] (4.69)
0=Qae,+de + a3 (4.70)
where X =[x .. X
X,=[S, LEUEWEMY R

B

To get the A which is matrix A of the system including complex power system,

we need to eliminate the non-state variable and non-input variable such that the
linearization is respect to state and input variable. It means we need to eliminate
[, V1 Ve, Wh, VL from those equations such that the linearized model is just

respect to state and ini)ut variables as in eq. (4.3). _
Firstly, we will eliminate /,from eqgs. (4.64) and (4.68) using eq. (4.65). Thus,

I"".I-T’-'llll-i-;l-)i
Equation (4.71) substitute in (4.64) we get:
=(AKL- £,£2'%,QAx1 +(C2- £,£2'¢c 2)AE + £ JAwX (4.72)
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Let assign £ 1= (Avl- ££2"/"2) and £2=(C, - ££2"c 2) thus (4.72) is now
expressed as A", = £ IAx1+K2AV] + £ JAt/] (4.13)
Equation (4.65) substitute in (4.68) we get:

0=("3- B22 ALDAM+(C, - £X2'c2AL +£3AL +£1AL, (4.74)

Let assign K1=(Aw- £,£2''12) and £4=(C, - £,£2"c2) thus (4.74) is now

expressed as 0= KIAx1+ £ 4AE1+ £3AL. +£1AL, (4.75)
Secondly we have to eliminate L. From (4.67) we get .
AL( =-G,"['t2Axt -G, ‘£>2AL (4.76)

Substitute in (4.69) we get:

0=(AG-G & ,'AQ)Ax¢+ C4AL +(E>4- GL5,"D>)AL +£2AL, (4.77)

Let assign £5 =(Ac3- G2G*|Ac2) and £6=(E>4- G "i 'DM thus (4.77) is now
expressed as 0= .5 Ax. + C4AL, +£6AL +£2AL, (4.78)

Until this step, we already eliminate 2 e(‘uations, which are equation (4.65) and
(4.67). It means we still have five equations. Recall those equations:
1 AXM=£ Bxg+£ 2AVg + £ 1AW]

2. At =/111Axt + AL, +EcAuc

3 0=£3AX1+£4AL, + D2AVL1+EIAL,
4, 0=£5Av'+CAAL+£6AL+E£2AL,
5. 0=CsAvVg+E£9AL. +£3AL,

Arrange those equations in matrix form:

A* 0 £2 0 0o A £, 0"
Ac 0 0 A o A 0 ¢ An
0:£30*4AAAL+00A (479
0 0 A Q *s£2A 0 0™
0 0 0 A A £ 00
In Ar)w(wore co;npala %‘ormA Wwe can write (4.79) as:
All X
0 Mo OALY Al (4.80)
AL,
where AL, = AL

AL
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X D, Ft
c4 F2
. D oF
The system asys matrix is obtained as. Ax = A yMAX + EAu (4.81)
where Ags=M1
%Sﬁas, \E/ve got already matrices asys and Bsys. For matrices csvs and psys We can get

also. In this case we want to observe  and (0in the generator and also observe 11 in the
HVDC link. The output equation for generator side is :
A,

A1
- 00088 2
AEf)
Avnl
. .AV . .
For the m-machine system, equation (4.82) can be expressed in matrix form as
Ag, =CAx* _ (4.83)
where cg is diagonal matrix.
The output equation for HVDC side is
Algen
Ay\], -1 o o Aah (484)

AYh



For the  -machine system, equation (4.84) can be expressed in matrix form as
Ayl=c At (4.85)
where Ccis diagonal matrix.

We can put equation (4.84) and (4.85) together

Ayl ~Cf 0%At]
Ai, 0 ¢ A (4:86)
The system Cwwmatrix is obtained as:
Ay = C(r(At (4.87)
_ At,
where Ay N
c, 0
.

This completes the calculation to get linearized state space model of power
systems with HVDC links. After that, we will develop the program based on this
calculation which will be discussed in Chapter 5.
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