CHAPTER I
BASIC DEFINITIONS AND RESULTS

In this chapter, we collect definitions and results, mainly without proofs, to be used
throughout the entire thesis. The first section deals with valuations and related con-
cepts. Details and proofs can be found in McCarthy [22], The second section deals with
continued fractions and their properties. Details and proofs can be found in Lorentzen
and Waadeland [20] for the classical case, and in Ruban [28], Schneider [30], Bundschuh
[6], Laohakosol [L3], de Weger [10], and Lianxiang [L7] for the p-adic case.

2.1 Valuation

Definition 2.1. A valuation on a field K is a real-valued function a b [a| defined on
K which satisfies the following conditions:
() VaGk, [a>0andfg=00 a=0
(i) Va,bEK, \ab\ = [a]6]
(i) Va,bGK, [atbl<|al+ 6]

There is always at least one valuation on K, namely, that given by setting [a| = 1if
a G AT{0} and |0] = 0. This valuation is called the trivial valuation onK.

Definition 2.2. A valuation I-1on Kk is called non-Archimedean if the condition (iii),
called the triangle inequality, is replaced by a stronger condition, called the strong triangle
inequality

(my VabGK, \a+b <max{fa, [0} .

Any other valuation on K is called Archimedean.

A valuated field (K, I+1)is a field K together with a prescribed valuation 1+]. If the
valuation is non-Archimedean, then K is called a non-Archimedean valuated field.
Examples 1) For Kk —Q, the ordinary absolute value I+1is an Archimedean valuation
onk.

2) For Kk = Q and p be a prime number. Each a G Q\{0} can be written uniquely in
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the form

where ,GZ,VGN, (, )=1 nGZ p\ andp\V. Define
ap=p~nand |Op =0

Then l+Ipis a non-Archimedean valuation on Q called the p-adic valuation.
3) Consider the field Fq{x) of rational fonctions over a finite field Fg of q elements. Let
f(x)/g(x) GF9(z)\{0}. Define

M =2 deg/-degSand|0joo= 0

Then Itloo is a non-Archimedean valuation on F9(x).
4) Let n{x) be an irreducible polynomial in F9fa] If f{x)/g(x) G Fg(x)\{0}, we can
write uniquely as

o(x) [ v(x)'
where (x) and v(x) are relatively prime elements of ¥ [x], neither of which is divisible

by 7r(x). Define

= gq~n and 1Ot= 0.
s(x) *

Then 1- Tt is a non-Archimedean valuation on Fg(x). We will consider mostly the case
where tt(x) —x, and write I\ instead of Il

Since a valuation gives rise to a metric on any valuated field (if, I+ 1), the usual
completion process is applicable. The valuation of K naturally extends to its completion
and is still denoted by I-1In the case of Q, with the usual absolute value, its completion
is the field R of real numbers and in the case of (Q, I11p), its completion is the p-adic
number field (Qp, I-1Ip), while in the cases of (F9(x), I-loo) and (Fg(x), |- ) the
completions are (F9((x“1)), 1-loo) and (F9((7r(x))), |- ) the fields of formal Laurent
series in 1/x and 7r(x), respectively.

Definition 2.3. 1) Let (if, I+1) be a valuated field. The set
= {lal;aGif\{0}}

is easily checked to be a subgroup of the multiplicative group of nonzero real numbers
and is called the value group of (if, I¢1).
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ii) If v is an infinite cyclic group, then (K, I¢1)is called a discrete valuated field.
iii) A local field is a complete, discrete non-Archimedean valuated field.

Iv) The set o = {a E K :[a] < 1} is a ring, called the valuation ring of (K, I-1).
V) The set p = {a E K :]a] < 1} is the unique maximal ideal of 0

vi) The field 0/p is called the residue class field of (K , I+1)

Examples 1) (Qp, I-Ip) is a local field with {0, 1, 2,..., p—1} as a set of representatives
of its residue class field.
2) (F ™ -1)), I-loo) is a local field with Fq as a set of representatives of its residue class
field.
3) (Fe((x)), I-M) is a local field with Fq as a set of representatives of its residue class
field.

In a local field (K, [+I) with R being the set of representatives of its residue class
field, each element a £ K can be uniqquIy represented as

a = anTlh, ar AN
n=r

where an E R, r £ Z, and -TE K is called a prime element which is usually normalized
so that £T1= g-1. Thus |a| = |¥|r="q~r forany a £ K\ {0} . Sometimes, it is convenient
to use the ordinal function which is defined by ordn(a) =r, and so ordn( ) = ..
Examples 1) Every element a E Qp cag be uniquely written as the form

a =Y. anpn, ar/ o
—

wherean E {0, 1, 2,..., p—1} and so [ap = p~r. The set of a G Qp such that |cllp < 1
s denoted by Zp, that is

Zp:$] anpn VanE{0, 1, 2,..., p - 1}}
n=0
2) Every element £ € Fo(( ;-'1)) can beouniquely written as the form

£= ,ar 0
=r

where an E Fo and so [£joo = g-~r.

3) Every element £ £ F¢((®)) can be uniquely written as the form
0
£= T0-nX , ar 0
=r
where an € Fs and so [£j@= q-r.



2.2 Classical continued fractions

The expansion

bo + a
b1 + -

is called a continued fraction.
[t is more convenient to use the notation

[&0, K1, &I, Az, 62;...; an, bn-...] (21)

for the above continued fractions. The elements 01,02,0s,... are called its partial nu-
merators; bo, bi, s2,... itS partial denominators. We assume that all partial denominators
are not equal to zero.

The terminating or finite continued fraction
Pn

[bO; ag, bl; az, b2§---§ Qnp, bn] =
qn

is called the th convergent of the continued fraction (>.1).
In R, it is known that any real number can be represented as a continued fraction of
the form

[fooi 17 ~1i 1) b2500ei 1, bnste] @ [Y0; bi, b2, .. 4160 18..]

where bo € Z, 6i GN {i > 1). This is called a simple continued fraction and the bi are
called its partial quotients. Such representation is unique for real irrationals, but for real
rationals, we have the following characterization.

Theorem 2.4. Any finite simple continued fraction represents a rational number. Con-
versely, any rational number can be expressed as a finite simple continued fraction, and
in exactly two ways,

[0, 61, &J1*¢) bn] = [bo, bi, e2,..., ba-i,bn—1, 1] if bn > 2,
:[60, f0|, bn— + 1] if bn= 1.

An infinite simple continued fraction

[60, bi, 62,...]



is said to be periodic if there is an integer r such that bn = bn+T for all sufficiently large
integers . A well known theorem of Lagrange characterizing infinite, periodic, simple
continued fractions states that:

Theorem 2.5. An infinite, periodic, simple continued fraction is a quadratic irrational
number, and conversely.

2.3 Continued fractions in the field Qo

There are many kinds of p-adic continued fractions constructed by various authors.
We shall consider only two types, namely, Ruban continued fraction first developed by
Ruban [28] and Schneider continued fraction first developed by Schneider [30].

The process for the expansion of the p-adic Ruban continued fraction, denoted by
p-adic RCF, is as follows:

Since £ G Qp can be represented uniquely as

wherer GZ, ar -i0,ai G{0, 1,..., P —I}:=Fp (i > r), define

[£] .=  aipi GFp[p-1]" (0 :="2a'Pl

and we call [£] and (£) the head part and the tail part of £, respectively. The head and tail
parts of £ are uniquely determined, and so uniquely £ = [£] + (£). Let no = [£] G Fp[p-1].
Hence &0 = p~r> L

If (£) = 0, the process stops. Otherwise, write £ in the form £ = oo + £f1, where
£« = (E) with |Ei]p > 1. As above, we can uniquely write £i = [£i] + (£i). Let b\ — [£i] G
Fpb™iuo}.

If (E1) = 0, the process stops. Otherwise, write £i in the form ex = o1 + £,
where £M'x = (£i) with 2 1p > 1- As above, we can uniquely write > = [£]+ (£2)- Let
h = [f] GFptp-*UO}.

Again, if (£2) = 0, the process stops. Otherwise proceed in the same manner,

Therefore £ has a unique p-adic RCF of the form [so, o1, B2see1] where all bi G

Fpl_a]\o} (> 1)
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It is quite trivial that a finite p-adic RCF always represents a rational number. How-
ever, there exist infinitely many rational numbers with infinite periodic p-adic RCF’s.
Laohakosol [16] gave a characterization of rational numbers via p-adic RCF as follows:

Theorem 2.6. Let £ GQPY{0}. Then £ is a rational number if and only if its p-adic

RCF is either finite or periodic from a certain fraction onwards with the shape

(- Dps+p-2) (- Dpst (p- ). ]

Schneider [30] constructed another type of p-adic continued fraction, denoted hence-
forth by p-adic SCF, as follows:

Let £ GQp\{0}. It can be assumed without loss of generality that [Ejp = 1 Then £
can be represented uniquely as

*=f><

where  GFp (i > 0), @” 0. Let 0= G and write £ in the form £ = o + diff, with
[Eilp = 1= \bopai =pai (aIGN). Let

| K

where ¢i GFp (i > 0), do /0. Let v = , and write £i in the form £i = o\ +d.£]xwith

Elp= 1= L.Ip 02= p-. .. GN). Continuing in the same manner, we have generally
£ = fr”+’s\n+| ( >0)

where on GFp\{0}, an+1 = ponss With [6,)p = 1 = [Enti|p. Therefore £ has a unique

p-adic SCF of the form

£= i H ersoz, foyeeean, fr,;.]

where an = pQn, an GN, bn GFp\{0}. The expansion into p-adic SCF is unique. The
following theorem contains a necessary and sufficient condition for rationality of p-adic
numbers.

Theorem 2.7. Let£ GQp\{O}. Then £ is rational if and only ifits p-adic SCF is either
finite or periodic with period length » and an =, bn = P — for all sufficiently large .
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24 Ruban continued fractions in the field Fo((z-1))

In this section, our universe is the field Fq((x“1)) of formal series over a finite field Fq.
It is well-known that elements of F. ((x-1)) are formal series (in x) uniquely written as

£=amxm+ am-iXm~l + am-2xm~2+ ...,

where the coefficients am,am-i.a m- 2.eearein¥qwitham ~ 0. Thus Fg(x), the quotient
field of Fga], is a subfield of Fg((a;-1)). A valuation K in Fg((x-1)) is defined by putting

0/=0, K=qmif £= Ghxm + am .xm~1+ am-2xm~2+ ..., am” Q,

The construction of the continued fraction for £ runs as follows:
Define £ = [f] + (), where

[£] ;= amxm +am-ixm~1+ am-2xm~2+ ... +aix + a0, (E) :=a_iol .+ a-2x~2t ...

We call [£] and (£) the head and the tail parts of £, respectively. Clearly, the head and
tail parts of £ are uniquely determined. Let .. = [c] G¥q[x], S0 that o — Id > 1,
provided [ .

If (O = », then the process stops. If (C) ., then write ¢ = Po + Cf1’ where
cr. = (O with |[Cil > 1- Next write 0 = [O] + (Cl)- Let pi = [O] GF¢[x]\Fg, so that
17 = IEil>L

If (Cl) =  then the process stops. If (Cl) ., then write 0 = pi + ¢"1) where
e1 = (E]) with [E2] > .. Let . = [@] GFs [x]\Fg, then wai- 1Q1> L

Again, if (£.) = 0, then the process stops. If (£.) / 0, then continue in the same
manner. By so doing, we obtain the unique representation

C= [PO, P|, /h, ===, Pn-y £n] = Pot MEPY | "'f?nqll-?@ ’
where pi G Fg[®]\F. (j > 1), £n GFg((@:_1)), [c,| > 1ifexists, and £n is referred to
as the th complete quotient. The Sequence {pn) is uniquely determined and the pn are

called the partial quotients Of £.
In order to establish convergence, we define two sequences (Cn), (o n) as follows:

C..—1 Co—=P0o, cavs=pns\Cntca s ( >o)
D-1:0, Do=1 . Dnv1= /M+i-Dn+ Dn. s ( >0)
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The results in the following lemma are easily verified by induction.

Lemma 2.8. Forany >0, a € Fo((x-1))\{0}, we have
) = A, A A,
i) CnDn-1-C n-xDn= (-1)n~\
iy \bn\> D,
wj [Aih=TAA e Al (> 1),
pn AI(ENn..Dn+ Dn-))
From Lemma 2.8 (i), we have

C AAl+ Cn=2
on @nasDes [AA A Al (>

and so Cn/D n is called the th convergent of the RCF of £ If (A) — 0 for some ,
then £= [A) A) AA-1]> ie the RCF of £ terminates. Otherwise, (E7) * o
for all and the RCF is infinite and this is the case of interest from now on. Since
E7L = Van\ > g, Lemma 2.8 (iii) and (iv) give

\Dn(ERIA L+ A-1)] = [A|2|A+]] > q2n+1-
Using Lemma 2.8 (v), we get the approximation
< el 20 ( =20)

which immediately implies that Cn/D n —£, and enables us to write £ = [A> A) Al A) -
where the right hand side is referred to as the RCF of £.

As in the classical case, the following characterization of rational elements in Fq((x-1))
via their RCF is well-known, see e.g. [29].

Theorem 2.9. Let£ GFo((@-1)). Then £ is rational if and only if its continued fraction
is finite.

An infinite continued fraction of the shape [A) A) A)eedis 9id 1° be periodic if
there are positive integers k, N such that 1= A+fc forall > N and is denoted by

[A) A" A=, Ay AED IAVH]-

The following theorem is easily checked and we omit the proof.
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Theorem 2.10. Let £ G Fg((x-1)). If the continued fraction of £ is periodic, then £ is
an irrational root of a quadratic equation of the form at.+ bt+ ¢ = 0 wljere a,b,c G
Fo[ir], fI*O.

For the converse of Theorem 2.10 we have:

Theorem 2.11. Let £ GFa((x-1)). //£ is an irrational root of a quadratic equation of
the form at2+ bt+ ¢ = 0 where a,b,c GFg[x], a f.0, then the continued fraction of £ is
periodic.

25 Schneider continued fractions in the field Fg((x-1)

Since every element £ G Fg((x_1))\{0} can be uniquely written in the form

£E="22cnx~n,
0
the construction of SCF for £ runs as follows; Define bo = v cnx~n (r < 0), so that
=r
|60| > 1, prOVidEd bo "o, 0
If £ = 50, the process stops. Otherwise, write £ —bo — Y™ cnx~n where a\ > 1,
=0.1
car GFg\{o} Define .= x~ai, ex.= Y, cnxn~ai. Then [ai] = g~ai, EL'1| = 1, and

n=0l
£=hot ™ :—o Oi, £i].

Write £i = cgx~n, eg g Fg\{0}. Let b\ = eg, so that b\ GFg\{0} and |si| = L

71=0 0
If £ = &, the process stops. Otherwise, write £i —bi = Y j cg&-" where o> > 1,
=02
eg GFg\{0}. Definea2=x~a\ c2:= Y cgx”"-“2.Then M =g~a\ [f21]= 1 and
=02

£=fo+ =.N:= [AO, O|, bl] 02, £2]‘

01+ 6

Write ez = *cga; n, eqg GF¢\{0} Lets. = eg, sothat . GF¢\{0} and I&1= L
=0
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If 2 = &) the process stops. Otherwise, write co —~ = ] cn*x~n where az > 1,

eg 6 Fg\{0}.

In general if £fc = bk, the process stops. Otherwise, write Bt —bk = “" bklc "X~
where ak+i > 1, cg+. G F.\{0}. Define ak+. = aTa*H, c-.. = A QxnCetl _

Then |afeti| = g~ak+1, ICfetil = 1, and

_ O a- Ofc 1o [y 3 A . . i
£= @+ &t b ok ffol [fro; 01) fri; o2, fr2;...; ofc, bk; ofc_ti, £fcH],

where «0 & FI[x], bk GIFg{0}, at= &~afc, alc GN (fc > 1).

We call the uniquely constructed bn, an and en the th partial denominator, the 0L
partial numerators and the th complete quotient of the SCF of £, respectively.

Next we define two sequences (An), (Bn).

A—l — 1 Ag=bo, Aj)x= fmti-An+ OTLHAYH (> 0)
B—1=10, Bqg=1 Bnjr\=bn+\Bn+a -l <4 { "0,

The results in the following lemma are easily verified by induction.

Lemma 2.12. Forany >0, a GFg((x_.))\{0}, we have

(I) Mt anet® ~ | = [60; 01 fri; «2, &;---; an, fiq 0+ al,
()AnBn-I-AniiBn= (-1)"-1a:82 0 ( > 1),
fm] = |fm| = [E7= 4, |0,] = <ran ( > i),
(lV) |£ -l + 071')'!8 _11-= |£Z|:!!5711: 1,
(y)(_— = 'I)ﬂoioz"'o + , > 1X
(é 1 +0 -0 D)

From Lemma 2.12 (i), we have

An hnAn=2 'f'an:Tn—z . . .
Bn bnBn— + axB - [£>q “, f”' 02y bz, 5 O, ] (ra> l)’
and so An/Bn is called the 4n convergent of SCF. If the SCF of £ is finite, i.e. en = bn
for some , then the SCF of £ terminates and is equal to [so; Oi, e1; 02, b2\... ; 071, &
Assume that cn/ bn for all . By Lemma 2.12 (iii), (iv), (v), we have

A} )

Bn = g_(ai+ Q"™ Han+i) _ Q (I’] ! 00)



14

S0 An/B n converges to £ enabling US to write £ = [& Oi, &; o:, «2;...], and the
right-nand expression is referred to as the SCF of £.

Observe from above that [ro;0i 62;... ;an, b =An/Bn (> 1), S0 another way
of representing a continued fraction is based on the following matrix representation, see
e.g. van der Poorten [26],

10 0. 10 0 di L 0  Bn B

Any 2x2 matrix VZ over the field F9((&_1)) is said to have an admissible

decomposition If it can be written as

VA ; o CI?“ O 0 dfi 1 0

- RN Py = N

where the Oj's and v are of the form mentioned in the construction of SCF. Such
Oj's and bi's are referred to as admissible partial numerators and denominators, reSpec-
tively.

The following lemma summarizes their major identities, the proof of which is easily
done by induction.

PI‘OpOSitiOﬂ 2.13. With the above notation, we have

ho 1 1 0 bi 1 1 0 hn 1 1 M
0 al 1 0 On 1 Bn
oo 1l i 1 "= of w . 4 By
) iz = o i _Fo].a 1 of @ o=.
O & o[ ol B
(i) = o] 0 . < o] e o || O
41 B 1 1 4] |HOT Bn
Bn-1 L= | = = Bn. . 1 Bn-1

Theorem 2.14. vet £ EFQ((X-1)). Then £ is rational if and only if its SCF is finite,
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Definition 2.15. An infinite SCF of the shape [€0; :,&;a2,b2\1.4 is said to be periodic
if there is a positive integer r such that am = (Im+r and bm — brn+r for all sufficiently
large integer m and such SCF is denoted by

¢ = [rojatibite-vjam—1)ybm—;am, bm\... ; ma7-, bm-1—i].

If the integers m and r are the least among all possible such values, then we call
[co;a1,6X;... &) its preperiod of length m, and [am bm]... ;am+7-1, bm+7-1] its
period of length r.

The following theorem is easily checked and we omit the proof.

Theorem 2.16. If the SCF of £ GFg((x-1)) is periodic, then £ is a root of a quadratic
equation of the form at> + bt+ ¢ = 0 where a,b,c GFq[x],a/0 .

Whether the converse of Theorem 2.16 holds generally is still not known, we first
give examples of quadratic irrationals with periodic SCF's.
Example Let the SCF of £ Fo((x-1)) be of the form

[60; 0,1, bl\ UZ, b2\]

where ai = x~a6 and let the sequence of positive integers (-i) be defined by -+ =
€1, 727« = €1yt 7l = @% - al be ——h(-1)itlai (i> 1). Assume i>0 (i > 1).
If £ is an irrational root of a quadratic equation of the form at2 + bt + ¢ = o where
a,b,ces F¢[x], a/ 0, then its SCF is periodic.

Since £ = [s0; x~ai, e1; X~a2, s2; 111 then inverting the x~av , we see that

£=[60; 1, hxal; OT(“2-ai)1 &; aT03, 63;...]
= [so; 1, sixai;l, b2xa2-ai; 2-(«s-(«s-2i))? 63.

S0 bW+ b2+ " hiX +
which is just the RCF £ and so must be periodic, see e.g. Mkaouar [23], say

£= [so,bix1LL .., bix'l, bi+ixM+1, hi+2x"+2,. .. bi+rX+r],

Inverting this continued fraction, we get
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£ = [&0;z~1,&i152- /| T2, oo &T3;... ;1N IR NI ;o ot

= [o30 o1 sl l~r2 62802 6 £13;0 0s&Th; L o | sI+IETIHL; L. 5o biv rafNH]

= [60;CL\, 6L;... ;Uj+r, 6747 0747.4 1, @AFAL; 0| 142, 6747-42; - . - lait 20> 6+ 2r],
where

1 1 1

]
aitr+l — x T+ i+l aitrt2 — 2704147425000 i42r — xTitl_ 1+7 47

which is a periodic SCF.

Example. Another class of quadratic irrationals with periodic SCF’s is provided by the
following observation: if £ € F.((a;_1)) satisfies .. + «£+ ¢ = 0, where a, + GF.\{0},
and ¢ = ci_a, d GFg\{0}, then

and so its SCF s periodic of the form

—b b —b
— gy, —
a (] a

Our analysis of periodic SCF’s follows the ideas given in van der Poorten [26]. If£
IS quadratic, and £ its conjugate, its discriminant is defined as disc £= (E—£")2

Theorem 2.17. Let£ GFg((a;_1)) have periodic SCF. 1f\disc £1> 1 then its preperiod

is of length at most 2.

Proof. Since £ has periodic SCF, then by Theorem 2.16 it is quadratic over Fq(x). As-
sume that kisc £| > 1 Write £ = [[0;ai,e1;... ;a,,£4] where £6 = [;n;anti, s,t;...] =
bn +  r2asea { > 1 NOw £, 1S quadratic, and so conjugating, we get £ = b +

oN+I/En+i” where * denotes conjugation.
We now show that for all h GN {0}, if [£]j| < 1, then

IEn+d < .- )
Clearly, this holds for n = 0. Assume that [E[j+j i <1, j = 1 2,..., n. Consider
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N ICHL. - <10 = 11 =, because (exen U< .,

be- IC+J = \an+h\ = g~an+h < 1,
Next, we show that if (EL1> 1, then

hiSC g <1, (23)

If [E11> 1, then
ir-4ol = fe{<|oil =1 “,

Then
hiSC g1 = g2 = |(£' bO) 3 (£'- bO)Iz < maX{|£ S 8q2,|£l - 8q2} = q-2ai <.,

Prom (2.2), (2.3) and the hypothesis, we deduce that [E*/1| < 1for integersn >0, > 1
Let (o] Oi, &; ... ;am-i, bm-i] be the preperiod of £ of minimal length m with period
of length r. Foreachn = 0,1,2,..., we have
Emtrtfi - Emth) et = om-fi am-fr.
Thus
K.1-C-.:-’S‘m:-s"W:Wr-I-CH-I- (24)
Ifm > 1, then (24) is the construction of SCF of -am/4 which is unique. Thus
bm— = mr_, and £m_. = £m+7- 1. Consider

gniri_"‘m.z =4, =Smer. = Tr, Uhpar
If > 3, then ew . —bm— = I8M= = 1 —I"mtr— = [Em+r—. —bom+ 1= 3 By the
uniqueness of expansion of £(1L 1, am i = amtr- 1, contradicting the minimality of m.
Hence m < 2 [

Prom the proof of Theorem 2.17 we have the following proposition.

Proposition 2.18. Let £ GFo((&"1)) have periodic SCF. 1f [E1L< 1, where 1 is the

quadratic conjugate of£1, then its preperiod is of length at most 2.
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Proposition 2.19. Let £ ¢ Fo((X-1)) be quadratic irrational with |E| = 1 satisfying
Ac.tBf+ C: 0 and \A\ < \B\. If£ has periodic SCF, then its preperiod is of length
at most 2.

proof. Forall > ., we can write
f._fnAn—+ anAn=2
fnn—1‘T'the -2
Substituting to the quadratic equation A.. + 5& + C = 0. Then
0= A(EnAn_J+ 2£nalAT iA, 2+ anA2 2)
'pB{f>nAn—\B n"i + CnanAn_iBn_2+ fndnBn—iAn—2+ arAn—2Bn—2)
+C(En-Src.. + .£na,,.B,, 1A, . +arB2_2).
Thus
0=£2AAn_1+8A -18n 1+ CH2 1)
BEn(dnAn 18 n—A + anBn—iAn 2 +.anAAn_iA. . + 2anC B 1—Bi—)
tA.A2 .+ Baran- B2+ ca2B2 2

We obtain
e I— Aa?AZ 1 + Sa?A_l s + Ca.’? £21 Aa_?
eir = 11 1!= AA2+ BAgBgt Ce - ab2+Bbo + C
Aa? Aa? Aa? |
A(E-f). t (E-f) +C  opfwa - Bal
By Proposition 2.18, SCF of £ has its preperiod of length at most 2, I

Theorem 2.20. vet £€ F9((a;“1)).
(% II'£ has a periodic SCF of the form [eo; 1,&i;... ;ar_i, eI’_i; ar,br + 80], then £ 1S
quadratic and Ar = —££'Sl’_i, Br — A1 —(£+ ()Br-i, where £' IS the quadratic

conjugate of £. Moreover, we have the admissible decomposition

-££'J3r | Ar i o 1 o s br
Ar.. —(£+£,‘)BI’-X Sr-l 10 O T - 135 OE

- = 3

()1t E IS quadratic and there exists r > 1 such that Ar = —Ef'i?l’_l, Br = Al’_i —
(£+ £,)5J_1, where £ 15 t/ie quadratic conjugate of ¢s then £ OF £ as periodic SCF
of the form [eo;ai, &i:... ;ar_i, eI'_i; ar, br + tI)]-
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proof, (i) Assume that £ has a periodic SCF of the form
£E=[Go®)fnin; . or;alor + oq = [& 00 21s... ;a7 bH;al,br+ b0+ (E )],
Then in the matrix representation form

ho 1 1 0 h 1 1 0 K+bo+(£—b0) 1

1 0 o dl 1 0 o ar 1 0

~ | oo br + bo + (E—bo) 1

13y Jgy Lo ' ’
Ny J/\Iy_/\ br 2 N br 1 1o
3By J Lo /P

Ar+A7_i£ A .

Br+f£7-1£ ...
8.

O 1y = B0 O ar o + o+ (0] = £
and so

£ 7-1£2 _(Ar 1 _£Z)£_A7 = 0.
Soar= —£E£'E7-1, £7= A, . —{E£+£")ET-!. Assume that £ is quadratic and there exists
r> lsuch that ar = —££'£7-1, £7= Ar 1 —(£+ £')£7-1, where £ is the quadratic
conjugate of £. Then we have the admissible decomposition
££'E7-] A sl v 0wk
A]—l_(£+£')£7-! £7'| 1 0 | 0 ar o
(i) Let £ = [8yai,b\-...;ar I,«r i;a7,or + &} By the same reasoning as above,

eroc.—(E+E)E+EE) = 0. Then £ is a quadratic root of the t2 —(E + £)f + ££' =
and so £ =£ (or £'). I

Corollary 2.21. Let £ GFg((@-1)). /I£ /las aperiodic SCF of the form
[&Ia\i &;l";a7_i,br-i;al’,5r + bo], where br = 6r + bo, then we have the admissible
decomposition

—££'£7'| Ar-1 — =~ br 1 - or 1

AT-1 - (£+ ENEr—1 £y —1 Ny By-—T 1 0 1 0
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Theorem 2.22. vLet £ GF¢((X-1)) have a periodic SCF of the form
[&I&X,b\;... ;ar_i,br- yar,brt 80], with £ being its quadratic conjugate. Ifi f + br
GFg\{O}, then £-F£"+ br = bo and a\,b\,... ,ar-i,br-i,ar are palindrome.

proof. Assume that £+ £ + br GFg\{0}. By Theorem 2.20, we have the admissible
decomposition

|3 - &1 &1 o
A--1 —(E+ C)Br-l Br-1 10 al 0 ar o
Multiplying both sides of the equation on the right by the matrix . y , We have
Ar-Ifé + O -ft'Sr-1 A-I
A . Br—1
T 27 bi 1 1| +(E+ 0 1
|E°H -Vl IH‘D@, OH ar 0
Then

ri(C c) cc—Ali =[;al, bi;... ;a7 1,br- 1;a7,br + (E+ c0]- (2-5)
The left hand side of (2.5) is

E+E£'-NTTi= £E4£8+177 =M+ +&rar&r-i;-ai,&0],  (2-0)

noting that

A7 _[&1 arl 61_11 “.;aa\y 8dl

Since £+ £+ br GF¢\ {0}, then by the uniqueness of SCF and (2.5) and (2.6), we get
f+f'+br = bo, a\ = ar, bi = br-a,...,ar = a\, E+E,+sl = bo L& a\,b\,..., ar- 1,61, ar
are palindrome. I

Proposition 2.23. Let £ GFo((&_1)) be a quadratic irrational with kisc £ > 1 and
bo 0 and whose defining equation is Ato + Bt + C: 0, where A B ,C GFQ[%], A™o,
II£ has aperiodic SCF of preperiod length 1, then [EE'| < M0ks and £+ £ < |0k
Moreover, If oo\ > 1, then [EE'| = 16d2-
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proof. Assume that £ has its preperiod of length L Write
£= [Bgaiibiine)ar b = [iolai;fi;... ;ar,or + (E—frO)]e
Then in the matrix representation form
fo . Lo bi 1 Lo or + (E—fry) 1

1 0 0 a| 1 0 o ar 1 0
-1
Ar_, br 1 br l 0
Br Br.. 1 o0 10 a-bho 1

ar+ArI(E—8&) ar
Br+ fr i(E —bo) B

Borrli"'pff(/ﬁ_— M = [frolai fril.. ;ar i,or i:ar,or+no+ (£- o] = £,

and so
Bie.+ (Br—boB,—»—Ar—)E —Ar+boar— = 0.

Clearly, -Br_i 0. Hence

TR ST

and
{+{4= |E~t1 1~ Ar-lI<W -
I

Lemma 2.24. Let ££ Fy((@;-1)) be a quadratic irrational with kisc £1> 1 and bo 0.
Assume £ has a periodic SCF.

(i) 1f£ has its preperiod of length 1 with period length r, then |ar| = |(£' —hbo) |

() If £ has its preperiod of length 2 with period length r, then |ar+i| = |£'1l

Proof, (1) Since
E=mot -, Ei=prt g, o0, b—T & £1= fr+ @

we have

£ =bo+ IP f[=bi+ e 1= br -1+g,§r-°r+%,..-
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By the proof of Theorem 2.17, kisc fl > 1 Ifil < 1= [fJ < 1( > 2). Then the
SCF for —ai/f. is of the form

Nz K - fl 11616 C = (|f1)>
=wrOn ] = Prlarinr—, ¢ wherefr i ( 1);
= [or;ar,6r_i;ar_i, £ -]

= [6r;ctr,br-_1;ar—1,br—2;¢e1;020\;fli5 f]
= \pr)ardbr—; Of= br=2i 11 & 1 VI
Since _
orj= "8 Loogey
We have .
=t =600l = IK6)-

(1) Write f = [0;ai,&i;0. & ;---;a4,s1]. By (i), [ar+i] = {0 —&)l = £l 11206 wit <
I

Lemma 2.25. et f € Fg((X_1)) be a quadratic irrational with bisc f1> Land bo ™ 0
and whose defining equation is At2+ Bt + C: 0, where A B ,C E Fg[x], A N0, Then
10 l—nawnane)a + B\

proof. Write f = vo + di/fi. Then
0O=niz+si+C=AN0+" 8 (bo + A3 + C
Thus fl is a quadratic irrational satisfying
(Abo t Bbo + C)f. + (2 ai&< + <I-B)fi + (2 = 0.

Since kisc fl > 1, Ifil < 1, so that

+
1= 101 = IQHCl = Ab];)(z'EOBAbO -lEi

Hence
Aal Aal

Ifil = 1GCI = Abo + Bbo TCL  2b0A *+ B



23

Proposition 2.26. et £+ F¢((2;-1)) be a quadratic irrational with kisc £ > 1 and
>0 /Oand whose defining equation is At2+ Bt + C = O, where A B ,C £ Fgfar], A 0.
If £ has a periodic SCF of preperiod length 2, then |££'| < male&gl, |& s | |}

Proof. Assume £ has its preperiod length 2. Let £ = [8a-L & ad” ;1. ;arti, or |if
Then £ —[8aai, o2, &;eo;ar+i, sr+i + (], where 0= ai(f —8 . —& We have

~—

- | 1 0 AL+ ATO At

~

Br+1 Br 0 1 Br/1+Br0 Br

Thus A.. + Ar0 = £(Br i+ sr9). Substituting 0 = ai(fE —0,_. —bi to the above
equation, we have

(Br+—biBr)7 + (Brai—B r+ibo-\-Brbfivi —A rjt1¥ jAY&i)E+(je I-ieo —Arai  Areiz0) —0.
Then

~ Artieo —Aral —Arbibf) )

[forei —nv /0, then |Sr+ —b\B 1= Isrv o —bV)Br +ar+idr_ i = 1o —vyBr1=1
and |Ar | .0 —Arai —A rb\bo\ = \bo(br+i —bi)Ar + boar+\Ar —L—Arai| = Lo1¢
Substituting it to (2.7),

_ AN Aray Arbibo) _ b0B
L1= \Brs\  b\Brl = [80- < max <\t A
If iU 61 —0, then — — AR
We have
, \A ail
Iar+|| = |£I| = |2M + B|¢
Then

11 p&04+ Bl
iy P Blemacppon ).

Substituting it to ( 2.7),

A rb\bo so(br-li  bo)Ar + frovHa 2 AfQil

L1= Ar+|

A+ O_ariHAr <maxH o |t
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