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ABSTRACT

4892006063:  Polymer Science Program
Panya Wongpanit: Development of Silk Fibroin-Based Biomaterials
for Tissue Engineering Applications
Thesis Advisors: Assoc. Prof. Ratana Rujiravanit and Prof. Yasuhiko
Tabata 165 pp.
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The present dissertation was proposed two possible approaches to develop
silk fibroin-based biomaterials in the context of tissue engineering, ie. (i)
enhancement of the biological and physical functions of silk fibroin by
blénding/incorporating chitin derivatives, and (if) the use of silk fibroin & a carrier
matrix to delivery the bioactive agents. In case of (i), biodegradation of silk fibroin
was greatly improved by blending with carboxymethyl chitin (CM-chitin). The
biodegradability of the blends increased with increasing the CM-chitin contents. The
incorporating chitin whiskers into the silk fibroin matrix not only promoted the
dimensional stahility but also enhanced in its mechanical properties. For (i), the
stucy was conducted both in vitro and in vivo Using dyes and basic fibroblast growth
factor (bFGF) as low- and high-molecular weight mocel drugs, respectively. The
results indicate that the silk fibroin proteins were amphiphilic-charged materials
depending on the existing pH. The strong interaction was observed, when the charge
of model drugs and silk fibroin were opposite. The in vivo Study demonstrated that
the use of silk fibroin scaffolds as the carrier matrix enabled to control in vivo release
of bFGF in the sustainable fashion.



(Development of Silk Fibroin-based Biomaterials for Tissue
Engineering Applications) .
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