REFORMING OF NATURAL GAS USING AN ALTERNATING CURRENT GLIDING ARC SYSTEM

Nongnuch Rueangjitt

A Dissertation Submitted in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University 2008

Thesis Title:	Reforming of Natural Gas Using an Alternating Current
	Gliding Arc System
By:	Nongnuch Rueangjitt
Program:	Petrochemical Technology
Thesis Advisors:	Assoc. Prof. Sumaeth Chavadej
	Assoc. Prof. Hidetoshi Sekiguchi

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Doctor of Philosophy.

Nantaya Janumet College Director

(Assoc. Prof. Nantaya Yanumet)

Thesis Committee:

_

(Prof. Somchai Osuwan)

(Assoc. Prof. Hidetoshi Sekiguchi)

Sumath Charaley

(Assoc. Prof. Sumaeth Chavadej)

T-Sheething

(Dr. Thammanoon Sreethawong)

Pichet Limsuwan

(Assoc. Prof. Pichet Limsuwan)

บทคัดย่อ

นงค์นุช เรืองจิตต์ : การเปลี่ยนรูปของก๊าชธรรมชาติโดยใช้ระบบประกายไฟฟ้าร่อน แบบกระแสสลับ (Reforming of Natural Gas Using an Alternating Current Gliding Arc System) อ. ที่ปรึกษา : รศ. คร. สุเมธ ชวเคช และ รศ. คร. ฮิเคโตชิ เซคิกุจิ 126 หน้า

ในงานวิจัยนี้ การเปลี่ยนรูปของก๊าซธรรมชาติได้ถูกดำเนินการโดยใช้ระบบประกาย ้ไฟฟ้าร่อนแบบกระแสสลับ ภายใต้สภาวะบรรยากาศ โดยได้มีการศึกษาผลกระทบต่าง ๆ ได้แก่ ้องค์ประกอบของก๊าซไฮโครคาร์บอนอื่น ๆ และก๊าซคาร์บอนไคออกไซค์ ที่มีอยู่ในก๊าซธรรมชาติ, ปัจจัยที่เกี่ยวข้องกับกระบวนการ และการเติมก๊าซออกซิเจน โคยพบว่า ก๊าซอีเทน, ก๊าซโพรเพน และก๊าซคาร์บอนไคออกไซด์ที่มีอยู่ในก๊าซธรรมชาติมีส่วนในการช่วยเพิ่มประสิทธิภาพการ เกิดปฏิกิริยาโดยรวมอย่างเค่นชัด โดยเฉพาะอย่างยิ่งก๊าซการ์บอนไดออกไซด์ซึ่งมีคุณสมบัติใน การเป็นก๊าซออกซิเคทีฟ ซึ่งแสดงผลเพิ่มอย่างชัดเงน็ต่อการเพิ่มค่าการเปลี่ยนแปลงก๊าซ ไฮโครคาร์บอนทั้งหมดในก๊าซตั้งต้น โดยลดการเกิดโค้ถ และลดพลังงานงำเพาะที่ต้องการ ผล ของการทคลองแสดงให้เห็นว่า ทั้งความต่างศักย์ไฟฟ้าและความถึ่กระแสไฟฟ้า ไม่เพียงแต่มี อิทธิพลเป็นอย่างมากต่อความเสถียรของพลาสมาเท่านั้น ยังมีผลต่อการการกระตุ้นปฏิกิริยาของ ้ก๊าซธรรมชาติที่มีองค์ประกอบก๊าซคาร์บอนไดออกไซด์สูงด้วย ยิ่งไปกว่านั้นงานวิงัยนี้ได้ทำการ ทคลองผลของก๊าซออกซิเจนที่เติมในสารตั้งต้นด้วย โดยใช้ก๊าซออกซิเจนบริสุทธิ์หรืออากาศเป็น แหล่งออกซิเงนสำหรับปฏิกิริยาออกซิเคชั่นบางส่วน โคยสปีชี่ส์ออกซิเงนหรือสารว่องไวที่ ก่อกำเนิคจากก๊าซออกซิเจนที่เติมในก๊าซธรรมชาติ มีบทบาทที่สำคัญในการช่วยลดการเกิดโค้กได้ ้เป็นอย่างมาก นอกจากนี้ยังช่วยเพิ่มค่าการเปลี่ยนแปลงของก๊าซต่าง ๆ ในสารตั้งค้น ค่าผลผลิต ของผลิตภัณฑ์และค่าการเลือกสรรในการเกิดผลิตภัณฑ์ รวมทั้งยังช่วยลดความต้องการพลังงาน ้งำเพาะของระบบอีกด้วย โดยอาก่าศได้ถูกเลือกให้เป็นแหล่งออกซิเงนที่เหมาะสมสำหรับ ปฏิกิริยาเปลี่ยนรูปก๊าซธรรมชาติกับปฏิกิริยาออกซิเคชั่นบางส่วนนี้

แนวคิดใหม่ในการนำเทคโนโลยีของประกายไฟฟ้าร่อนอุณหภูมิต่ำร่วมกับเครื่อง ปฏิกรณ์ขนาดจิ๋ว มีข้อคือยู่หลายประการด้วยกัน เช่น ปฏิกิริยาเกิดได้ที่อุณหภูมิต่ำ เครื่องปฏิกรณ์ มีการถ่ายเทและการกระจายความร้อนที่ดี และเวลาในการเกิดปฏิกิริยาสั้น เป็นต้น ดังนั้นงานวิจัย นี้จึงได้นำแนวคิดนี้มาประยุกต์ใช้กับเครื่องปฏิกรณ์ประกายไฟฟ้าร่อน ซึ่งเครื่องปฏิกรณ์ประกาย ไฟฟ้าร่อนขนาดจิ๋วได้ถูกออกแบบเป็นครั้งแรกเพื่อใช้ศึกษาปฏิกิริยาเปลี่ยนรูปก๊าซธรรมชาติแทน เครื่องปฏิกรณ์ประกายไฟฟ้าร่อนแบบดั้งเดิม โดยในการศึกษาเบื้องต้นนี้ ก๊าซมีเทนซึ่งเป็น องค์ประกอบหลักของก็าซธรรมชาติได้ถูกใช้แทนก๊าซธรรมชาติ ทั้งนี้เพื่อลดความซับซ้อนของ สารตั้งต้น ปฏิกิริยาเปลี่ยนรูปก๊าซมีเทนนี้ได้ถูกดำเนินการทดลองในเครื่องปฏิกรณ์ประกายไฟฟ้า ร่อนขนาดจิ๋ว ทั้งในกรณีมีและไม่มีตัวเร่งปฏิกิริยา โดยในระบบที่ใช้ประกายไฟฟ้าร่อนอย่างเดียว นั้น ปัจจัยต่าง ๆ ของกระบวนการมีผลกระทบต่อการเปลี่ยนแปลงก๊าซมีเทนและการเลือกสรรการ เกิดผลิตภัณฑ์ ส่วนในระบบที่ใช้ประกายไฟฟ้าร่อนกับตัวเร่งปฏิกิริยาพบว่า การกระจายตัวของ อุณหภูมิภายในเครื่องปฏิกรณ์ประกายไฟฟ้าร่อนขนาดจิ๋วมีบทบาทเป็นอย่างมากในการปรับปรุง ประสิทธิภาพโดยรวมของปฏิกิริยา

ABSTRACT

4791003063: Petrochemical Technology Nongnuch Rueangjitt: Reforming of Natural Gas Using an Alternating Current Gliding Arc System. Thesis Advisors: Assoc. Prof. Sumaeth Chavadej and Assoc. Prof. Hidetoshi Sekiguchi 126 pp.
Keywords: Plasma/ Gliding arc discharge/ Applied voltage/ Input frequency/

Natural gas/ Methane reforming / CO₂ reforming of methane/ Partial oxidation/ Plasma-catalytic reaction/ Microreactor/ Ni catalyst

In this work, the reforming of simulated natural gas was conducted under the alternating current gliding arc system at ambient conditions. The effects of all gaseous hydrocarbons and CO_2 present in the natural gas, process parameters, and O_2 added were investigated. The presence of other gas components (C2H6, C3H8 and CO₂) in natural gas was found to contribute prominently to the synergistic effects on the overall plasma reaction performance. Especially, CO₂, an oxidative gas, exhibited pronounced effects by enhancing the conversions of all hydrocarbons in the feed, by reducing coke formation, and by lowering specific energy consumption. The results showed that not only did the effects of applied voltage and input frequency strongly influence the stability of the gliding arc discharge, they affect the chemical activation of simulated CO₂-containing natural gas reforming as well. Furthermore, the effect of added oxygen in the feed was tested with using pure oxygen or air as an oxygen source for partial oxidation. The oxygen species derived from the addition of oxygen to the simulated natural gas play an active role in significantly minimizing carbon formation; moreover, they provided improvement in the reactant conversions, product yields, and product selectivities, as well as the decrease in specific energy consumption. Air was best suited for use as the oxygen source in the combined CO₂containing natural gas reforming and partial oxidation.

The innovative concept of integrating non-thermal plasma and microreactor technology offers several advantages, e.g. low reaction temperature, good heat

transfer and heat distribution, and short reaction time. Based on this concept, the gliding arc microreactor was first designed to investigate the reforming reaction of natural gas instead of using the conventional gliding arc reactor. For this preliminarily study, methane, a major constituent of natural gas, was used instead of the simulated natural gas in order to reduce the complexity of feed composition. The reforming of methane was conducted under the gliding arc microreactor, with and without catalyst. In the sole plasma system, all operational parameters affected both methane conversion and product selectivities. In the plasma and catalytic system, the temperature distribution within the plasma microreactor has a significant role in improving the reaction performance.

ACKNOWLEDGEMENTS

This work cannot be successful without the participation of the following individuals and organizations.

First of all, I would like to express my sincere gratitude to my thesis advisors, Assoc. Prof. Sumaeth Chavadej and Assoc. Prof. Hidetoshi Sekiguchi, for all of their direction, valuable guidance and assistance throughout my research. Assoc. Prof. Sumaeth Chavadej has encouraged my interest in plasma research. With his considerable enthusiasm and support, this work was finally completed. Assoc. Prof. Hidetoshi Sekiguchi has made me to learn more about the technical knowledge of plasma devices while I was conducting my work at Tokyo Institute of Technology (TIT) and he always taught me to realize the originality of research. I was indebted unforgettably to him for giving me a great opportunity to visit his plasma lab at TIT.

I would also like to specially thank Dr. Thammanoon Sreethawong, for all helpfulness, fruitful suggestions, and discussions. I would like to express my deep gratitude to Mr. Robert Wright for his valuable advices in writing papers and thesis. Moreover, I would like to express my deepest thank to Ms. Kanittha Hiriwiriyakul, a kind-hearted staff of Chiang Mai University, who always support me to arrange all official documents with unconditional assistance.

I would like to gratefully acknowledge the Department of Industrial Chemistry, Faculty of Science, Chiangmai University through the Commission on Higher Education under the Ministry of Education, Thailand in granting the scholarship of Master-Doctoral study to me.

It is a pleasure to acknowledge the Petroleum and Petrochemical College, Chulalongkorn University, the Department of Chemical Engineering, Tokyo Institute of Technology, the National Research Council of Thailand (NRCT), the National Center of Excellence for Petroleum, Petrochemicals, and Advanced Materials, and the Research Unit of Petrochemical and Environmental Catalysis under the Ratchadapisek Somphot Endowment Fund, Chulalongkorn University, Thailand, for providing research facilities. I would like to give special thanks to Prof. Somehai Osuwan and Assoc. Prof. Pichet Limsuwan for their kindness being as a chairman and a thesis committee, respectively, and giving me the valuable comments and recommendations.

I also especially extend many thanks to Jung san, Tatsuro (my tutor), Sho, and everyone in Prof. Sekiguchi's plasma group as well as Thai friends for their kindness and help during my stay in Tokyo. At PPC, I would like to sincerely thank C.P.O. Poon Arjpru, Mr. Sanit Prinakorn, Mr. Chaturong Tiamsiri, and Mr. Udom Pordee for helping to make all electrical and mechanical pieceworks.

Last but not least, the great thankfulness is forwarded to my parents, my elder sister, and Ms. Supaporn Suparpwiboon for their encouragement, strong belief, and understanding in me.

TABLE OF CONTENTS

•

4

Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	v
Acknowledgements	vii
Table of Contents	xi
List of Tables	xiii
List of Figures	xx

CHAPTER

I	INTRODUCTION		1
	1.1 General Introduction		1
	1.2 Objectives	÷.	2
	1.3 Scope of Work	, ĭ	2

II LITERATURE REVIEW

2.1 The Origins, Compositions and Properties of	
Natural Gas	4
2.2 End Uses of Natural Gas	5
2.3 The Nature of Plasma	6
2.4 Plasma Generation	7
2.5 Types of Non-Thermal Plasma	8
2.5.1 Radio Frequency Discharge	8
2.5.2 Microwave Discharge	9
2.5.3 Glow Discharge	10
2.5.4 Corona Discharge	11
2.5.5 Dielectric Barrier Discharge	11
2.6 Gliding Arc Discharge	12
2.6.1 General Features of the Gliding Arc	12
2.6.2 Physical Phenomena of Gliding Arc	13

III

IV

REFORMING OF CO₂-CONTAINING NATURAL		
GAS USING AN AC GLIDING ARC SYSTEM:		
EFFECT OF GAS COMPONENTS IN		
NATURAL GAS	16	
3.1 Abstract	16	
3.2 Introduction	17	
3.3 Experimental	19	
3.3.1 AC Gliding Arc Discharge System	19	
3.3.2 Feed Gas Systems and Procedure	21	
3.3.3 Reaction Performance Evaluation	22	
3.4 Results and Discussion	23	
3.4.1 Pure Methane Feed System	23	
3.4.2 CH ₄ /He Feed System	26	
3.4.3 $CH_4/C_2H_6/He$ Feed System	. 29	
3.4.4 $CH_4/C_2H_6/C_3H_8/He$ Feed System	31	
3.4.5 $CH_4/C_2H_6/C_3H_8/CO_2$ Feed System	34	
3.4.6 Comparative Results of Different Feed		
Compositions	35	
3.5 Conclusions	39	
3.6 Acknowledgements	40	
3.7 References	40	
REFORMING OF CO₂-CONTAINING NATURAL		
GAS USING AN AC GLIDING ARC SYSTEM:		
EFFECTS OF OPERATIONAL PARAMETERS		
AND OXYGEN ADDITION IN FEED	43	

AND OAT GEN ADDITION IN FEED	45
4.1 Abstract	43
4.2 Introduction	44
4.3 Experimental	45

PAGE

•

CHAPTER

.

PAGE

.

	4.3.1 Reactant Gases	45
	4.3.2 AC Gliding Arc Discharge System	46
	4.3.3 Reaction Performance Assessment	48
4.4	Results and Discussion	49
	4.4.1 Effect of Applied Voltage	53
	4.4.2 Effect of Input Frequency	57
	4.4.3 Effect of Oxygen Addition	61
4.5	Conclusions	68
4.6	Acknowledgements	69
4.7	References	69

V NON-OXIDATIVE METHANE REFORMING IN	
AN AC GLIDING ARC MICROREACTOR:	
EFFECTS OF OPERATIONAL PARAMETERS	
AND THE PRESENCE OF CATALYST	72
5.1 Abstract	72
5.2 Introduction	73
5.3 Experimental	74
5.3.1 Gliding Are Microreactor System	74
5.3.2 Catalyst Preparation and Characterizations	77
5.3.3 Reaction Performance Assessment	78
5.4 Results and Discussion	78
5.4.1 Catalyst Characterization Results	78
5.4.2 Effect of Input Power	80
5.4.3 Effect of Electrode Gap Distance	83
5.4.4 Effect of Reactor Width	85
5.4.5 Effect of the Presence of Catalyst	87
5.4.6 Effect of Catalyst Surface Temperature	92

VI

5.5 Proposed Chemical Reaction Pathways for		
the Non-	Oxidative Methane Reforming in	
the Abse	ence and Presence of Catalyst	95
5.5.1 Sc	ole Plasma System	95
5.5.2 C	ombined Plasma and Catalyst System	96
5.6 Conclusi	ons	97
5.7 Acknow	ledgements	98
5.8 Reference	ces	98
CONCLUSI	ONS AND RECOMMENDATIONS	100
6.1 Conclusi	ons	100
6.2 Recomm	lendations	101
REFERENCES		103
APPENDIC	ES	105
Appendix A	Reforming of CO2-Containing Natural Gas	
	Using an AC Gliding Arc System: Effect	
	of Coa Components in Natural Coa	
	or Gas Components in Natural Gas	105
Appendix B	Reforming of CO ₂ -Containing Natural Gas	105
Appendix B	Reforming of CO ₂ -Containing Natural Gas Using an AC Gliding Arc System: Effects	105
Appendix B	Reforming of CO ₂ -Containing Natural Gas Using an AC Gliding Arc System: Effects of Operational Parameters and Oxygen	105
Appendix B	Reforming of CO ₂ -Containing Natural Gas Using an AC Gliding Arc System: Effects of Operational Parameters and Oxygen Addition in Feed	105
Appendix B Appendix C	Reforming of CO ₂ -Containing Natural Gas Using an AC Gliding Arc System: Effects of Operational Parameters and Oxygen Addition in Feed Non-Oxidative Methane Reforming in	105
Appendix B Appendix C	Reforming of CO ₂ -Containing Natural Gas Using an AC Gliding Arc System: Effects of Operational Parameters and Oxygen Addition in Feed Non-Oxidative Methane Reforming in an AC Gliding Arc Microreactor: Effects	105
Appendix B Appendix C	Reforming of CO ₂ -Containing Natural Gas Using an AC Gliding Arc System: Effects of Operational Parameters and Oxygen Addition in Feed Non-Oxidative Methane Reforming in an AC Gliding Arc Microreactor: Effects of Operational Parameters and the	105

CURRICULUM VITAE

125

PAGE

LIST OF TABLES

TABL	JE	PAGE
	CHAPTER I	
1.1	Typical compositions of natural gas in Thailand	3
	CHAPTER III	
3.1	Gas compositions and feed molar ratios of the studied feed	
	systems	22
	CHAPTER V	
5.1	Experimental conditions used in this study	77
	and the second sec	
	APPENDICES	
Al	Effect of feed flow rate on CH ₄ conversion and product	
	yields of pure methane feed system at an applied voltage of	
	15.5 kV, a frequency of 200 Hz and an electrode gap	
	distance of 6 mm	105
A2	Effect of feed flow rate on concentrations of outlet gas of	
	pure methane feed system at an applied voltage of 15.5 kV, a	
	frequency of 200 Hz and an electrode gap distance of 6 mm	105
A3	Effect of feed flow rate on product selectivities of pure	
	methane feed system at an applied voltage of 15.5 kV, a	
	frequency of 200 Hz and an electrode gap distance of 6 mm	106
A4	Effect of feed flow rate on CH ₄ conversion and product	
	yields of methane/helium feed system at an applied voltage	
	of 15.5 kV, a frequency of 200 Hz and an electrode gap	
	distance of 6 mm	106

.

PAGE

A5	Effect of feed flow rate on concentrations of outlet gas of	
	methane/helium feed system at an applied voltage of 15.5	
	kV, a frequency of 200 Hz and an electrode gap distance of	
	6 mm	107
A6	Effect of feed flow rate on product selectivities of	
	methane/helium feed system at an applied voltage of 15.5	
	kV, a frequency of 200 Hz and an electrode gap distance of	
	6 mm	107
A7	Effect of feed flow rate on reactant conversions and product	
	yields of methane/ethane/helium feed system at an applied	
	voltage of 15.5 kV, a frequency of 200 Hz and an electrode	
	gap distance of 6 mm	108
A8	Effect of feed flow rate on concentrations of outlet gas of	
	methane/ethane/helium feed system at an applied voltage of	
	15.5 kV, a frequency of 200 Hz and an electrode gap	
	distance of 6 mm	108
A9	Effect of feed flow rate on product selectivities of	
	methane/ethane/helium feed system at an applied voltage of	
	15.5 kV, a frequency of 200 Hz and an electrode gap	
	distance of 6 mm	109
A10	Effect of feed flow rate on reactant conversions and product	
	yields of methane/ethane/propane/helium feed system at an	
	applied voltage of 15.5 kV, a frequency of 200 Hz and an	
	electrode gap distance of 6 mm	109
All	Effect of feed flow rate on concentrations of outlet gas of	
	methane/ethane/propane/helium feed system at an applied	
	voltage of 15.5 kV, a frequency of 200 Hz and an electrode	
	gap distance of 6 mm	110

A12	Effect of feed flow rate on product selectivities of	
	methane/ethane/propane/helium feed system at an applied	
	voltage of 15.5 kV, a frequency of 200 Hz and an electrode	
	gap distance of 6 mm	110
A13	Effect of feed flow rate on reactant conversions and product	
	yields of methane/ethane/propane/carbon dioxide feed	
	system at an applied voltage of 15.5 kV, a frequency of 300	
	Hz and an electrode gap distance of 6 mm	111
A14	Effect of feed flow rate on concentrations of outlet gas of	
	methane/ethane/propane/carbon dioxide feed system at an	
	applied voltage of 15.5 kV, a frequency of 300 Hz and an	
	electrode gap distance of 6 mm	111
A15	Effect of feed flow rate on product selectivities of	
	methane/ethane/propane/carbon dioxide feed system at an	
	applied voltage of 15.5 kV, a frequency of 300 Hz and an	
	electrode gap distance of 6 mm	112
B1	Effect of applied voltage on reactant conversions and	
	product yields of the simulated CO2-containing natural gas	
	reforming at a feed flow rate of 125 cm ³ /min, a frequency of	
	300 Hz and an electrode gap distance of 6 mm	113
B2	Effect of applied voltage on concentrations of outlet gas of	
	the simulated CO ₂ -containing natural gas reforming at a feed	
	flow rate of 125 cm ³ /min, a frequency of 300 Hz and an	
	electrode gap distance of 6 mm	113
B3	Effect of applied voltage on product selectivities and product	
	molar ratios of the simulated CO ₂ -containing natural gas	
	reforming at a feed flow rate of 125 cm ³ /min, a frequency of	
	300 Hz and an electrode gap distance of 6 mm	114

.

PAGE

B4	Effect of applied voltage on specific energy consumption	
	and current of the simulated CO ₂ -containing natural gas	
	reforming at a feed flow rate of 125 cm ³ /min, a frequency of	
	300 Hz and an electrode gap distance of 6 mm	114
B5	Effect of input frequency on reactant conversions and	
	product yields of the simulated CO2-containing natural gas	
	reforming at a feed flow rate of 125 cm ³ /min, an applied	
	voltage of 17.5 kV and an electrode gap distance of 6 mm	115
B6	Effect of input frequency on concentrations of outlet gas of	
	the simulated CO ₂ -containing natural gas reforming at a	
	feed flow rate of 125 cm ³ /min, an applied voltage of 17.5 kV \sim	
	and an electrode gap distance of 6 mm	115
B7	Effect of input frequency on product selectivities and	
	product molar ratios, of the simulated CO ₂ -containing	
	natural gas reforming at a feed flow rate of 125 cm ³ /min, an	
	applied voltage of 17.5 kV and an electrode gap distance of	
	6 mm	116
B8	Effect of input frequency on specific energy consumption	
- and 4	and current of the simulated CO ₂ -containing natural gas	
	reforming at a feed flow rate of 125 cm ³ /min, an applied	
	voltage of 17.5 kV and an electrode gap distance of 6 mm	116
B9	Effect of HCs/O ₂ feed molar ratio on reactant conversions	
	and product yields of the simulated CO ₂ -containing natural	
	gas reforming using feeds with pure oxygen added, and feed	
	in the absence of oxygen at a feed flow rate of 125 cm ³ /min,	
	an applied voltage of 17.5 kV, frequency of 300 Hz and an	
	electrode gap distance of 6 mm	117

.

B10	Effect of HCs/O ₂ feed molar ratio on reactant conversions	
	and product yields of the simulated CO ₂ -containing natural	
	gas reforming using feeds with air added, and feed in the	
	absence of oxygen at a feed flow rate of 125 cm ³ /min, an	
	applied voltage of 17.5 kV, frequency of 300 Hz and an	
	electrode gap distance of 6 mm	117
B11	Effect of HCs/O2 feed molar ratio on product selectivities	
	and product molar ratio of the simulated CO ₂ -containing	
	natural gas reforming using feeds with pure oxygen added,	
	and feed in the absence of oxygen at a feed flow rate of 125	
	cm ³ /min, an applied voltage of 17.5 kV, frequency of 300	1
	Hz and an electrode gap distance of 6 mm	118
B12	Effect of HCs/O ₂ feed molar ratio on product selectivities	
	and product molar ratio of the simulated CO ₂ -containing	
	natural gas reforming using feeds with air added, and feed in	
	the absence of oxygen at a feed flow rate of 125 cm ³ /min, an	
	applied voltage of 17.5 kV, frequency of 300 Hz and an	
	electrode gap distance of 6 mm	118
B13	Effect of HCs/O ₂ feed molar ratio on energy consumption of	
	the simulated CO ₂ -containing natural gas reforming using	
	feeds with pure oxygen added, and feed in the absence of	
	oxygen at a feed flow rate of 125 cm ³ /min, an applied	
	voltage of 17.5 kV, frequency of 300 Hz and an electrode	
	gap distance of 6 mm	119

xviii

TABLE

PAGE

Cl	Effect of input power on methane conversion and product	
	yields of the non-oxidative methane reforming at a feed	
	flow rate of 200 cm ³ /min, an electrode gap distance of 4 mm	
	and a reactor width of 1.25 mm	120
C2	Effect of input power on product selectivities of the non-	
	oxidative methane reforming at a feed flow rate of 200	
	cm ³ /min, an electrode gap distance of 4 mm and a reactor	
	width of 1.25 mm	120
C3	Effect of electrode gap distance on methane conversion and	
	product yields of the non-oxidative methane reforming at a	
	feed flow rate of 200 cm ³ /min, an input power of 6 W and a	
	reactor width of 1.25 mm	121
C4	Effect of electrode gap distance on product selectivities of	
	the non-oxidative methane reforming at a feed flow rate of	
	200 cm ³ /min, an input power of 6 W and a reactor width of	
	1.25 mm	121
C5	Effect of reactor width on methane conversion and product	
	yields of the non-oxidative methane reforming at a feed	
	flow rate of 200 cm ³ /min, an input power of 6 W and a	
	electrode gap distance of 4 mm	122
C6	Effect of reactor width on product selectivities of the non-	
	oxidative methane reforming at a feed flow rate of 200	
	cm ³ /min, an input power of 6 W and a electrode gap distance	
	of 4 mm	122

PAGE

and a second

C7	Effect of the presence of catalyst on methane conversion of	
	the combined catalytic-plasma non-oxidative methane	
	reforming at an electrode gap distance of 4 mm and an input	
	power of 6 W	123
C8	Effect of the presence of catalyst on product selectivities of	
	the combined catalytic-plasma non-oxidative methane	
	reforming at an electrode gap distance of 4 mm and an input	
	power of 6 W	124

LIST OF FIGURES

FIGURE

1000

CHAPTER II

2.1	Schematic of a simple discharge device	8
2.2	Common radio frequency discharge configurations	9
2.3	General schematic of microwave discharge in a wave guide	10
2.4	General schematic of glow discharge	10
2.5	General schematic of corona discharge	11
2.6	Common dielectric barrier discharge configurations	12
2.7	General schematic of gliding arc discharge	13
2.8	Phase of gliding arc phenomena: (A) reagent gas break	
	down; (B) equilibrium heating phase; (C) non-equilibrium	
	reaction phase	14

CHAPTER III

3.1	Configuration of a gliding arc plasma reactor	19
3.2	Experimental set-up of the gliding arc plasma system	20
3.3	Effect of feed flow rate on (a) CH ₄ conversion and product	
	yields, (b) concentrations of outlet gas, and (c) product	
	selectivities of pure methane feed system (applied voltage,	
	15.5 kV; frequency, 200 Hz; and electrode gap distance, 6	
	mm)	24
3.4	Effect of feed flow rate on (a) CH ₄ conversion and product	
	yields, (b) concentrations of outlet gas, and (c) product	
	selectivities of methane/helium feed system (applied voltage,	
	15.5 kV; frequency, 200 Hz; and electrode gap distance, 6	
	mm)	27

- 3.5 Effect of feed flow rate on (a) reactant conversions and product yields, (b) concentrations of outlet gas, and (c) product selectivities of methane/ethane/helium feed system (applied voltage, 15.5 kV; frequency, 200 Hz; and electrode gap distance, 6 mm)
- 3.6 Effect of feed flow rate on (a) reactant conversions and product yields, (b) concentrations of outlet gas, and (c) product selectivities of methane/ethane/propane/helium feed system (applied voltage, 15.5 kV; frequency, 200 Hz; and electrode gap distance, 6 mm)
- 3.7 Effect of feed flow rate on (a) reactant conversions and product yields, (b) concentrations of outlet gas, and (c) product selectivities of methane/ethane/propane/carbon dioxide feed system (applied voltage, 15.5 kV; frequency, 300 Hz; and electrode gap distance, 6 mm)
 - 3.8 Comparison of CH₄ conversion in the different feed
 compositions (applied voltage, 15.5 kV; frequency, 200 Hz; and electrode gap distance, 6 mm)
 - 3.9 Comparison of (a) C₂ and (b) H₂ yields in the different feed compositions (applied voltage, 15.5 kV; frequency, 200 Hz; and electrode gap distance, 6 mm)
- 3.10 Comparison of specific energy consumption in the different feed compositions (solid line: energy consumption per reactant molecule converted; dotted line: energy consumption per hydrogen molecule produced) (applied voltage, 15.5 kV; frequency, 200 Hz; and electrode gap distance, 6 mm)

PAGE

30

32

CHAPTER IV

FIGURE

- 4.1 Experimental set-up of the gliding arc plasma system
- 4.2 Effect of applied voltage on (a) reactant conversions and product yields, (b) concentrations of outlet gas, (c) product selectivities and product molar ratios, and (d) specific energy consumption and current of the simulated CO₂-containing natural gas reforming (feed flow rate, 125 cm³/min; frequency, 300 Hz; and, electrode gap distance, 6 mm) (E_{H2}: energy per H₂ molecule produced; E_C: energy per reactant molecule converted)
- 4.3 Effect of input frequency on (a) reactant conversions and product yields, (b) concentrations of outlet gas, (c) product selectivities and product molar ratios, and (d) specific energy consumption and current of the simulated CO₂-containing natural gas reforming (feed flow rate, 125 cm³/min; applied voltage, 17.5 kV; and, electrode gap distance, 6 mm) (E_{H2}: energy per H₂ molecule produced; E_C: energy per reactant molecule converted)
- 4.4 Effect of HCs/O₂ feed molar ratio on reactant conversions of the simulated CO₂-containing natural gas reforming using feeds with pure oxygen (solid lines) and air (dotted lines) added, and feed in the absence of oxygen (feed flow rate, 125 cm³/min; applied voltage, 17.5 kV; frequency, 300 Hz; and, electrode gap distance, 6 mm)

47

54

59

FIGURE

- 4.5 Effect of HCs/O₂ feed molar ratio on product yields of the simulated CO₂-containing natural gas reforming using feeds with pure oxygen (solid lines) and air (dotted lines) added, and feed in the absence of oxygen (feed flow rate, 125 cm³/min; applied voltage, 17.5 kV; frequency, 300 Hz; and, electrode gap distance, 6 mm)
- 4.6 Effect of HCs/O₂ feed molar ratio on product selectivities of the simulated CO₂-containing natural gas reforming using feeds with pure oxygen (solid lines) and air (dotted lines) added, and feed in the absence of oxygen (feed flow rate, 125 cm³/min; applied voltage, 17.5 kV; frequency, 300 Hz; and, electrode gap distance, 6 mm)
- 4.7 Effect of HCs/O₂ feed molar ratio on product molar ratios of the simulated CO₂-containing natural gas reforming using feeds with pure oxygen (solid lines) and air (dotted lines) added, and feed in the absence of oxygen (feed flow rate, 125 cm³/min; applied voltage, 17.5 kV; frequency, 300 Hz; and, electrode gap distance, 6 mm)
- 4.8 Effect of HCs/O₂ feed molar ratio on energy consumption of the simulated CO₂-containing natural gas reforming using feeds with pure oxygen (solid lines) and air (dotted lines) added, and feed in the absence of oxygen (feed flow rate, 125 cm³/min; applied voltage, 17.5 kV; frequency, 300 Hz; and, electrode gap distance, 6 mm) (E_{H2}: energy per H₂ molecule produced; E_C: energy per reactant molecule converted)

63

CHAPTER V

FIGURE

distance, 4 mm)

5.1	Configuration of a gliding arc discharge microreactor (a) in
	the absence of catalyst and (b) in the presence of catalyst
5.2	Experimental set-up of the gliding arc plasma system
5.3	XRD patterns of (a) unloaded catalyst plate (silica-alumina
	support), (b) calcined NiO-loaded catalyst plate, (c) reduced
	Ni-loaded catalyst plate, (d) spent Ni-loaded catalyst plate
5.4	Typical SEM micrograph and EDX area mappings of the Ni-
	loaded catalyst plate
5.5	Effect of input power on (a) methane conversion and product
	yields, and (b) product selectivities of the non-oxidative
	methane reforming (CH ₄ in feed, 5%; feed flow rate, 200
a i	cm ³ /min; electrode gap distance, 4 mm; and, reactor width,
	1.25 mm)
5.6	Effect of electrode gap distance on (a) methane conversion
	and product yields, and (b) product selectivities of the non-
	oxidative methane reforming (CH4 in feed, 5%; feed flow
	rate, 200 cm ³ /min; input power, 6 W; and, reactor width,
	1.25 mm)
5.7	Effect of reactor width on (a) methane conversion and
	product yields, and (b) product selectivities of the non-
	oxidative methane reforming (CH4 in feed, 5%; feed flow
	rate, 200 cm ³ /min; input power, 6 W; and, electrode gap

PAGE

75

76

79

80

82

86

FIGURE

- 5.8 Effect of the presence of catalyst on methane conversion of the combined catalytic-plasma non-oxidative methane reforming (solid symbol: catalyst distance of 0.2 mm, open symbol: catalyst distance of 0.5 mm) (CH₄ in feed, 5%; electrode gap distance, 4 mm; and input power, 6 W)
- 5.9 Effect of the presence of catalyst on (a) H₂ yield and (b) C₂ yield of the combined catalytic-plasma non-oxidative methane reforming (solid symbol: catalyst distance of 0.2 mm, open symbol: catalyst distance of 0.5 mm) (CH₄ in feed, 5%; electrode gap distance, 4 mm; and input power, 6 W)
- 5.10 Effect of the presence of catalyst on selectivities for (a) H₂,
 (b) C₂H₂, (c) C₂H₄, (d) C₂H₆, (e) C₄H₆ (1,3-butadiene), and
 (f) C of the combined catalytic-plasma non-oxidative methane reforming (solid line: catalyst distance of 0.2 mm, dotted line: catalyst distance of 0.5 mm, ▲ and △: plasma alone, and O: plasma+unloaded catalyst, ◆ and ◇: plasma+Ni-loaded catalyst) (CH₄ in feed, 5%; electrode gap distance, 4 mm; and input power, 5 W)
- 5.11 Effect of catalyst surface temperature on (a) methane conversion (b) H₂ yield, (c) C₂ yield (d) H₂ selectivity, and (e) selectivities for B C₂H₂, Ø C₂H₄, D C₂H₆, B 1,3-C₄H₆, C C₃H₈+C₄H₁₀, and B C of the combined catalytic-plasma non-oxidative methane reforming (CH₄ in feed, 5%; feed flow rate, 100 cm³/min; input power, 6 W; electrode gap distance, 4 mm; and, catalyst distance, 0.2 mm)

PAGE

88

91