REFERENCES

- Asok Adak, Anjali Pal, and Manas Bandyopadhyay. 2005. Removal of phenol from water environment by surfactant-modified alumina through adsolubilization. <u>Colloids and Surfaces A: Physicochemical and</u> Engineering Aspects, 277(1-3), 63-68.
- Christie John Geankoplis. 2003. <u>Transport Processes and separation process</u> <u>principles (includes unit operations) fourth edition</u>. New Jersey: Pearson Education, Inc.
- D. Talbot, A. Bee, and C. Treiner. (2003). Adsolubilization of 4-nitrophenol at a kaolinite/water interface as a function of pH and surfactant surface coverage. <u>Journal of Colloid and Interfaces Science</u>, 258, 20-26
- Daisuke Tsurumi, Tomokazu Yoshimura, and Kunio Esumi. (2006). Adsolubilization of 2-naphthol into adsorbed layer of PEO-PPO-PEO triblock copolymers on hydrophilic silica. Journal of Colloid and Interfaces Science, 297, 465-469.
- Deepak Neupane and Jae-Woo Park. 2000. Partitioning of naphthalene to gemini surfactant-treated alumina. <u>Chemosphere</u>, 41, 787-790.
- EVS Environment Consultants (Canada). 1999. <u>Heavy metals and petroleum</u> <u>hydrocarbons in industrial area, main report to Pollution control</u> <u>department, Ministry of Science and Technology Thailand</u>. Bangkok: Pollution control department.
- Geir Martin Førland and Anne Marit Blokhus. (2007). Adsorption of phenol and benzyl alcohol onto surfactant modified silica. Journal of Colloid and <u>Interfaces Science</u>, 310, 431-435.
- Gerardino D'Errico, Luigi Paduano, and Ali Khan. (2004). Temperature and concentration effects on supramolecular aggregation and phase behavior for poly(propylene oxide)-b- poly(ethylene oxide)-b- poly(propylene oxide) copolymers of different composition in aqueous mixtures, 1. Journal of <u>Colloid and Interfaces Science</u>, 279, 379-390.
- Gilbert Hart. 1927. The nomenclature of silica. <u>American mineralogist</u>, 12, 383-395.

- J. Nuysink and L.K. Koopal. 1982. The effect of poluethylene oxide molecular weight on determination of its concentration in aqueous solutions. <u>Talanta</u>, 29, 495-501.
- J. Wu, J.H. Harwell, and E.A. O'Rear, Langmuir 3 (1987) 531.
- J.P. Mata, P.R. Majhi, C. Guo, H.Z. Liu, P. Bahadur. (2005). Concentration, temperature, and salt-induced micellization of a triblock copolymer Pluronic L64 in aqueous media. Journal of Colloid and Interfaces Science, 292, 548-556.
- Kell Mortensen. (2001). PEO-related block copolymer surfactants. <u>Colloids and</u> <u>Surfaces A: Physicochemical and Engineering Aspects</u>, 183-185, 277-292.
- Kenichi Nakashima and Pratap Bahadur. (2006). Aggregation of water-soluble block copolymers in aqueous solutions: Recent trends. <u>Advances in</u> <u>Colloid and Interface Science</u>, 123-126, 75-96.
- Kristiana-Lisette Gosa and Violeta Uricanu. (2002). Emulsions stabilized with PEO-PPO-PEO block copolymers and silica. <u>Colloids and Surfaces A:</u> <u>Physicochemical and Engineering Aspects</u>, 197, 257-269.
- Kunio Esumi, Masaya Goino, and Yoshifumi Koide. (1996). The effect of added salt on adsorption and adsolubilization by a gemini surfactant on silica.
 <u>Colloids and Surfaces A: Physicochemical and Engineering Aspects</u>, 118, 161-166.
- Kunio Esumi, Syuji Uda, Tsuneo Suhara, Hiroshi Fukui, and Yoshifumi Koide.
 (1997). Cationic Surfactant Adsolubilization of 2-Naphthol and Naphthalene with Titanium Dioxide Having Dodecyl Chain. Journal of Colloid and Interfaces Science, 193, 315-318.
- Kunio Esumi and Syuji Yamamoto. (1998). Adsorption of sodium dodecyl sulfate on hydrotalcite and adsolubilization of 2-naphthol. <u>Colloids and Surfaces</u> <u>A: Physicochemical and Engineering Aspects</u>, 137, 385–388.
- Kunio Esumi, Akihiro Toyoda, Masaya Goino, Tsuneo Suhara, Hiroshi Fukui, and Yoshifumi Koide. (1998). Adsorption characteristics of cationic surfactants on titanium dioxide with quaternary Ammonium groups and their adsolubilization. Journal of Colloid and Interfaces Science, 202, 377-384.

- Kunio Esumi, Koji Yoshida, Kanjiro Torigoe, and Yoshifymi Koide. (1999).
 Sorption of 2-naphthol and cupper ions by cationic surfactant-adsorbed laponite. <u>Colloids and Surfaces A: Physicochemical and Engineering Aspects</u>. 160, 247-250.
- Kunio Esumi, Hiroshi Hayashi, Yoshifymi Koide, Tsuneo Suhara, and Hiroshi
 Fukui. (1999). Adorption of metal ion and aromatic compounds by anionic
 surfactant-coated particles of titanium dioxide. <u>Colloids and Surfaces A:</u>
 <u>Physicochemical and Engineering Aspects</u>, 144, 201-206.
- Kunio Esumi, K. Sakai, and K. Torigoe. (2000). Reexamination of 2-Naphthol Adsolubilization on Alumina with Sodium Dodecyl Sulfate Adsorption. <u>Journal of Colloid and Interfaces Science</u>, 224, 198-201.
- Langmuir Irving. (1916). The constitution and fundamental properties of solids and liquids. part i. solids. J. Am. Chem., 38, 2221-95.
- Milton J. Rosen. (2004). <u>Surfactants and Interfacial Phenomena Third Edition</u>. New Jersey: John Wiley & Sons, Inc.
- Naoko Okamato, Tomokazu Yoshimura, and Kunio Esumi. (2004). Effect of pH on adsolubilization of single and binary organic solutes into a cationic hydrocarbon surfactant adsorbed layer on silica. Journal of Colloid and Interfaces Science, 275, 612-617.
- N.J. Jain, A. George, and P. Bahadur. 1999. Effect of salt on the micellization of Pluronic P65 in aqueous solution. <u>Colloids and Surfaces A:</u> <u>Physicochemical and Engineering Aspects</u>, 157, 275-283.
- P.M. Jain , J.S. Smith, and K.T. Valsaraj. 1999. Reusable adsorbents for dilute solution separation 3. Sorption dynamics of phenanthrene on surfactantmodified alumina. <u>Separation and Purification Technology</u>, 17, 21-30.
- Potjanee Asvapathanagul, Pomthong Malakul, and John H. O'Haver. (2005).
 Adsolubilization of toluene and acetophenone as a function of surfactant adsorption. Journal of Colloid and Interfaces Science, 292, 305-311.
- Pratap Bahadur. (2001). Block copolymers-Their microdomain formation (in solid state) and surfactant behaviour (in solution). <u>Current Science</u>, 80, 8.
- Qingzhong Yuan a, Preeti M. Jain b, and Kalliat T. Valsaraj. (2000). Reusable adsorbents for dilute solution separation. 4:Adsorption of 1,2

dichlorobenzene and phenanthrene on a surfactant-modified semiconductor (titania) surface. <u>Separation Purification Technology</u>, 21, 9-16.

R. K. Iler. 1979. The chemistry of silica. New York: John Wiley & Sons, Inc.

R. Nagarajan, Maureen Barry, and E. Ruckensteinf. (1985). Unusual Selectivity in Solubilization by Block Copolymer Micelles. Langmuir, 2, 210-215.

R. Nagarajan. (1999). Solubilization of hydrocarbons and resulting aggregate shape transitions in aqueous solutions of Pluronic® (PEO-PPO-PEO) block copolymers. Colloids and Surfaces <u>B</u>: Biointerfaces, 16, 55-72.

- Sharad Mathur and Brij Mohan Moudgil. (1997). Adsorption Mechanism(s) of Poly(Ethylene Oxide) on Oxide Surfaces. Journal of Colloid and Interfaces Science, 196, 92-98.
- Sudam K. Parida, Sukalyan Dash, Sabita Patel, and B.K. Mishra. (2006). Adsorption of organic molecules on silica surface. <u>Advances in Colloid</u> <u>and Interface Science</u>, 121, 77–110.
- Torsakul Pradubmook, John H. O'Haver, Pomthong Malakul, and Jeffrey H.
 Harwell. (2003). Effect of pH on adsolubilization of toluene and acetophenone into adsorbed surfactant on precipitated silica. <u>Colloids and</u> <u>Surfaces A: Physicochemical and Engineering Aspects</u>, 224, 93-98.
- Wataru Mizutanit and Hiroshi Tokumotot. (1997). Microphase domains of poly(styrene-blockethylene/butylene-block-styrene) triblock copolymers studied by atomic force microscopy. <u>Polymer</u>, 39, 1779-1785.
- Wikipedia, the free encyclopedia. "Atomic force microscope." 2 Feb 2008. 17 Feb 2008 <u>http://en.wikipedia.org/wiki/Atomic_force_microscope</u>
- W. Richard Bowen, Nidal Hilal, Robert W. Lovitt, and Chris J. Wright. (1999). An atomic force microscopy study of the adhesion of a silica sphere to a silica surface effects of surface cleaning. <u>Colloids and Surfaces A:</u> <u>Physicochemical and Engineering Aspects</u>, 157, 117-125.

APPENDICES

Appendix A CMC determination of surfactants

The CMC of block copolymer surfactants; Pluronics L64, Pluronics 10R5, Pluronics P123, Pluronics 25R4, Pluronics L31, and Pluronics 17R2; with the HLB values of 6-15, are shown in table A1, A2, A3, A4, A5, and A6, respectively.

Table A1 CMC determination of Pluronics L64 (PEO₁₃PPO₃₀PEO₁₃); HLB 15, triblock copolymers

Concentration (g/l)	Concentration (mM)	Surface tension (mN/m)
0	0	72.0
1	0.3448	43.9
2	0.6897	42.9
3	1.0345	42.5
4	1.3793	42.3
5	1.7241	41.7
6	2.0690	41.5
7	2.4138	41.5
8	2.7586	41.7
9	3.1034	41.6
10	3.4483	41.7
11	3.7931	41.7
12	4.1379	41.8

Table A2 CMC determination of Pluronics 10R5 (PEO₈PPO₂₃PEO₈); HLB 15,reversed-triblock copolymers

Concentration (g/l)	Concentration (mM)	Surface tension (mN/m)
0	0.0000	70.3
1	0.5128	46.6
2	1.0256	44.3
3	1.5385	43.7
4	2.0513	43.6
5	2.5641	41.8
6	3.0769	42.3
7	3.5897	41.9

8	4.1026	42.1
9	4.6154	42.4
10	5.1282	42.4
11	5.6410	42.2
12	6.1538	42.3

Table A3 CMC determination of Pluronics P123 (PEO19PPO69PEO19); HLB 8,triblock copolymers

Concentration (g/l)	Concentration (mM)	Surface tension (mN/m)
0	0.0000	71.9
1	0.1739	32.4
2	0.3478	31.5
3	0.5217	31.4
4	0.6957	31.4
5	0.8696	31.3
6	1.0435	31.5
7	1.2174	31.2
8	1,3913	31.4
9	1.5652	31.2
10	1.7391	31.2
11	1.9130	31.4
12	2.0870	31.5

Table A4CMC determination of Pluronics 25R4 (PEO19PPO33PEO19); HLB 8,reversed-triblock copolymers

Concentration (g/l)	Concentration (mM)	Surface tension (mN/m)
0	0.0000	72.0
0.5	0.1389	42.1
1	0.2778	41.7
1.5	0.4167	41.4
2	0.5556	41.2
2.5	0.6944	41.1
3	0.8333	41.1
3.5	0.9722	41.0
4	1.1111	40.9
4.5	1.2500	41.1
5	1.3889	41.0
6	1.6667	40.9
7	1.9444	40.9

8	2.2222	41.0
9	2.5000	41.1
10	2.7778	41.1
11	3.0556	41.0
12	3.3333	41.0

Table A5 CMC determination of Pluronics L31; HLB 6.8 (PEO1PPO17PEO1);triblock copolymers

Concentration (g/l)	Concentration (mM)	Surface tension (mN/m)
0	0.0000	71.9
0.1	0.0909	64.4
0.2	0.1818	58.2
0.3	0.2727	54.7
0.4	0.3636	50.4
0.5	0.4545	47.8
0.6	0.5455	46.3
0.7	0.6364	46.1
0.8	0.7273	45.9
0.9	0.8182	45.9
1	0.9091	45.7
2	1.8182	45.5
3	2.7273	45.4
4	3,6364	45.2
5	4.5455	45.2
6	5.4545	44.8
7	6.3636	44.7
8	7.2727	44.5
9	8.1818	44.6
10	9.0909	44.1
11	10.0000	43.9
12	10.9091	43.8

TableA6	CMC	determination	of	Pluronics	17R2	$(PEO_{15}PPO_{10}PEO_{15});$	HLB	6,
reversed-tri	iblock c	opolymers						

Concentration (g/l)	Concentration (mM)	Surface tension (mN/m)
0	0.0000	72.0
0.1	0.0465	62.7
0.2	0.0930	54.3
0.3	0.1395	47.8

0.4	0.1860	45.5
0.5	0.2326	44.3
0.6	0.2791	43.6
0.7	0.3256	43.2
0.8	0.3721	43.1
0.9	0.4186	43.0
1	0.4651	43.0
2	0.9302	42.9
3	1.3953	42.7
4	1.8605	42.6
5	2.3256	42.4
6	2.7907	42.5
7	3.2558	42.3
8	3.7209	42.3
9	4.1860	42.1
10	4.6512	42.0
11	5.1163	41.9
12	5.5814	41.8

Appendix B Adsorption of surfactants onto silica

The adsorption isotherms of block copolymer surfactants; Pluronics L64, Pluronics 10R5, Pluronics P123, Pluronics 25R4, Pluronics L31, and Pluronics 17R2; with the HLB values of 6-15 onto silica at 29°C, are shown in table B1, B2, B3, B4, B5, and B6, respectively.

Weight of silica = 0.15 g Volume of copolymer surfactant solution = 15 ml

Table B1 The adsorption isotherm of Pluronics L64 (PEO₁₃PPO₃₀PEO₁₃); HLB 15, triblock copolymers; onto silica

In conce	Initial Equilbrium concentration		Amount of surfactant adsorbed	
g/l	mM	g/l	mM	(mmol/g of silica)
0	0.0000	0.1178	0.0406	-0.0041
1	0.3448	0.4296	0.1481	0.0197
2	0.6897	0.9511	0.3280	0.0362
3	1.0345	1.7486	0.6030	0.0432
4	1.3793	2.1997	0.7585	0.0621
5	1.7241	3.0417	1.0489	0.0675
6	2.0690	3.5517	1.2247	0.0844
7	2.4138	4.5158	1.5572	0.0857
8	2.7586	5.0690	1.7479	0.1011
9	3.1034	6.1422	2.1180	0.0985
10	3.4483	7.5718	2.6110	0.0837

Initial concentration		Equil	brium tration	Amount of surfactant adsorbed
g/l	mM	g/l	mM	(mmol/g of silica)
0	0.0000	0.0523	0.0268	-0.0027
0.2	0.1026	0.1794	0.0920	0.0011
0.4	0.2051	0.0882	0.0452	0.0160
0.6	0.3077	0.2900	0.1487	0.0159
0.8	0.4103	0.2063	0.1058	0.0304
1	0.5128	0.4933	0.2530	0.0260
2	1.0256	0.6756	0.3465	0.0679
3	1.5385	1.4619	0.7497	0.0789
4	2.0513	1.7414	0.8930	0.1158
5	2.5641	2.4290	1.2456	0.1318
6	3.0769	3.3109	1.6979	0.1379
7	3.5897	3.8251	1.9616	0.1628
8	4.1026	4.8954	2.5104	0.1592
9	4.6154	6.0613	3.1084	0.1507
10	5.1282	7.2167	3.7009	0.1427

Table B2 The adsorption isotherm of Pluronics 10R5 (PEO₈PPO₂₃PEO₈); HLB 15,reversed-triblock copolymers; onto silica

Table B3 The adsorption isotherm of Pluronics P123 (PEO19PPO69PEO19); HLB 8,triblock copolymers; onto silica

Initial Eq concentration con		Equil concen	brium tration	Amount of surfactant adsorbed
g/l	mM	g/l	mM	(mmol/g of silica)
0	0.0000	0.1043	0.0181	-0.0018
1	0.1739	0.3065	0.0533	0.0121

2	0.3478	0.6284	0.1093	0.0239
3	0.5217	0.7739	0.1346	0.0387
4	0.6957	0.8659	0.1506	0.0545
5	0.8696	1.4598	0.2539	0.0616
6	1.0435	1.3927	0.2422	0.0801
7	1.2174	1.8659	0.3245	0.0893
8	1.3913	2.5000	0.4348	0.0957
9	1.5652	3.4732	0.6040	0.0961
10	1.7391	4.4406	0.7723	0.0967

Table B4 The adsorption isotherm of Pluronics 25R4 (PEO19PPO33PEO19); HLB 8,reversed-triblock copolymers; onto silica

In	itial	Equilbrium concentration		Amount of surfactant
concei	atration			adsorbed
g/l	mM	g/l	mM	(mmol/g of silica)
0	0.0000	0.1676	0.0465	-0.0047
1	0.2778	0.5544	0.1540	0.0124
2	0.5556	0.7629	0.2119	0.0344
3	0.8333	1.4528	0.4035	0.0430
4	1.1111	2.0000	0.5556	0.0556
5	1.3889	2.4528	0.6813	0.0708
6	1.6667	3.1373	0.8715	0.0795
7	1.9444	4.1765	1.1601	0.0784
8	2.2222	5.4474	1.5132	0.0709
9	2.5000	6.5811	1.8281	0.0672
10	2.7778	7.4973	2.0826	0.0695

Ir conce	nitial ntration	Equilbrium concentration		Amount of surfactant adsorbed
g/l	mM	g/l	mM	(mmol/g of silica)
0	0.0000	0.1873	0.1703	-0.0170
1	0.9091	0.9656	0.8779	0.0031
2	1.8182	2.0326	1.8479	-0.0030
3	2.7273	3.0876	2.8069	-0.0080
4	3.6364	4.0876	3.7160	-0.0080
5	4.5455	5.0859	4.6236	-0.0078
6	5.4545	5.9261	5.3874	0.0067
7	6.3636	7.0481	6.4074	-0.0044
8	7.2727	8.0258	7.2962	-0.0023
9	8.1818	9.0464	8.2240	-0.0042
10	9.0909	9.9828	9.0753	0.0016

Table B5 The adsorption isotherm of Pluronics L31; HLB 6.8 ($PEO_1PPO_{17}PEO_1$);triblock copolymers; onto silica

Table B6 The adsorption isotherm of Pluronics 17R2 (PEO₁₅PPO₁₀PEO₁₅); HLB 6, reversed-triblock copolymers; onto silica

Initial concentration		Equil concer	brium Itration	Amount of surfactant adsorbed
g/l	mM	g/l	mM	(mmol/g of silica)
0	0.0000	0.0856	0.0398	-0.0040
1	0.4651	1.0417	0.4845	-0.0019
2	0.9302	2.1829	1.0153	-0.0085
3	1.3953	3.2569	1.5149	-0.0120
4	1.8605	4.1690	1.9391	-0.0079
5	2.3256	4.9745	2.3137	0.0012

6	2.7907	6.0926	2.8338	-0.0043
7	3.2558	7.2593	3.3764	-0.0121
8	3.7209	8.3449	3.8814	-0.0160
9	4.1860	8.9907	4.1817	0.0004
10	4.6512	9.9468	4.6264	0.0025

Appendix C Adsolubilization of organics

The adsolubilization of phenol in the adsorbed layer of block copolymer surfactants; Pluronics L64, Pluronics 10R5, Pluronics P123, and Pluronics 25R4 at 29°C, are shown in table C1, C2, C3, and C4, respectively.

Weight of silica = 0.2 g Volume of phenol- surfactant solution = 20 ml Aqueous solubility limit of phenol = 71.3207 mM

Table C1 The adsolubilization of phenol in an adsorbed layer of silica modified with Pluronics L64 ($PEO_{13}PPO_{30}PEO_{13}$); HLB 15, triblock copolymers

Initial Concentration	Equilibrium concentration	Adsolubilized amount
(mM)	(mM)	(mmol/g ofsilica)
0.0000	0.0000	0.0000
6.9145	3.6301	0.3284
13.8290	8.0450	0.5784
20.7435	13.7414	0.7002
27.6580	20.0616	0.7596
34.5725	22.7629	1.1810
41.4870	29.5169	1.1970
48.4015	35.6077	1.2794
55.3160	43.6976	1.1618
62.2305	48.7588	1.3472
69.1450	57.1238	1.2021

Initial Concentration	Equilibrium concentration	Adsolubilized amount
(mM)	(mM)	(mmol/g ofsilica)
0.0000	0.0000	0.0000
6.8086	5.9132	0.0895
13.6172	11.9606	0.1657
20.4258	16.3754	0.4050
27.2344	23.3340	0.3900
34.0431	27.4076	0.6635
40.8517	34.4546	0.6397
47.6603	40.9575	0.6703
54.4689	48.3490	0.6120
61.2775	55.8122	0.5465
68.0861	61.9116	0.6175

Table C2 The adsolubilization of phenol in an adsorbed layer of silica modified withPluronics 10R5 (PEO₈PPO₂₃PEO₈); HLB 15, reversed-triblock copolymers

Table C3 The adsolubilization of phenol in an adsorbed layer of silica modified with Pluronics P123 (PEO₁₉PPO₆₉PEO₁₉); HLB 8, triblock copolymers

Initial Concentration	Equilibrium concentration	Adsolubilized amount
(mM)	(mM)	(mmol/g ofsilica)
0.0000	0.0000	0.0000
6.9815	3.6258	0.3356
13.9631	8.9397	0.5023
20.9446	15.3647	0.5580
27.9262	22.1191	0.5807
34.9077	28.6889	0.6219
41.8892	36.2145	0.5675
48.8708	43.0654	0.5805

55.8523	50.2209	0.5631
62.8339	57.0740	0.5760
69.8154	64.1790	0.5636

Table C4 The adsolubilization of phenol in an adsorbed layer of silica modified withPluronics 25R4 (PEO19PPO33PEO19); HLB 8, reversed-triblock copolymers

Initial Concentration	Equilibrium concentration	Adsolubilized amount
(mM)	(mM)	(mmol/g ofsilica)
0.0000	0.0000	0.0000
6.9696	4.4600	0.2510
13.9392	9.1990	0.4740
20.9087	15.7095	0.5199
27.8783	22.2796	0.5599
34.8479	28.1600	0.6688
41.8175	36.0128	0.5805
48.7871	42.0243	0.6763
55.7566	49.2960	0.6461
62.7262	56.8510	0.5875
69.6958	63.3217	0.6374

The adsolubilization of 2-naphthol in the adsorbed layer of block copolymer surfactants; Pluronics L64, Pluronics 10R5, Pluronics P123, and Pluronics 25R4 at 29°C, are shown in table C5, C5, C7, and C8, respectively.

Weight of silica = 0.2 g Volume of 2-naphthol- surfactant solution = 20 ml Aqueous solubility limit of 2-naphthol = 5.1165 mM

Table C5 The adsolubilization of 2-naphthol in an adsorbed layer of silica modified with Pluronics L64 ($PEO_{13}PPO_{30}PEO_{13}$); HLB 15, triblock copolymers

Initial Concentration	Equilibrium concentration	Adsolubilized amount
(mM)	(mM)	(mmol/g ofsilica)
0.0000	0.0000	0.0000
0.2838	0.2789	0.0005
0.5675	0.5176	0.0050
0.8513	0.5525	0.0299
1.1351	0.8645	0.0271
1.4188	0.8591	0.0560
1.7026	1.1146	0.0588
1.9864	1.1346	0.0852
2.2701	1.2471	0.1023
2.5539	1.4485	0.1105
2.8377	1.7158	0.1122
3.1214	1.7213	0.1400
3.4052	1.7789	0.1626
3.6890	2.1064	0.1583
3.9727	2.2154	0.1757
4.2565	2.5142	0.1742

Initial Concentration (mM)	Equilibrium concentration	Adsolubilized amount (mmol/g ofsilica)
	(mM)	
0.0000	0.0000	0.0000
0.2027	0.1649	0.0038
0.4054	0.2967	0.0109
0.6081	0.4830	0.0125
0.8108	0.6083	0.0203
1.0135	0.6824	0.0331
1.2162	0.9476	0.0269
1.4189	1.0504	0.0368
1.6216	1.2169	0.0405
1.8243	1.3636	0.0461
2.0270	1.5380	0.0489
2.2297	1.6423	0.0587
2.4324	1.8413	0.0591
2.6351	1.9985	0.0637
2.8378	2.2154	0.0622
3.0405	2.4212	0.0619

Table C6 The adsolubilization of 2-naphthol in an adsorbed layer of silica modifiedwith Pluronics 10R5 (PEO₈PPO₂₃PEO₈); HLB 15, reversed-triblock copolymers

Table C7 The adsolubilization of 2-naphthol in an adsorbed layer of silica modified with Pluronics P123 (PEO₁₉PPO₆₉PEO₁₉); HLB 8, triblock copolymers

Initial Concentration (mM)	Equilibrium concentration	Adsolubilized amount (mmol/g ofsilica)
	(mM)	
0.0000	0.0000	0.0000
0.2023	0.0641	0.0138
0.4045	0.1356	0.0269

0.6068	0.2015	0.0405
0.8090	0.3965	0.0412
1.0113	0.5026	0.0509
1.2135	0.6536	0.0560
1.4158	0.8547	0.0561
1.6180	1.0321	0.0586
1.8203	1.2687	0.0552
2.0225	1.4808	0.0542

Table C8 The adsolubilization of 2-naphthol in an adsorbed layer of silica modifiedwith Pluronics 25R4 (PEO19PPO33PEO19); HLB 8, reversed-triblock copolymers

Initial Concentration (mM)	Equilibrium concentration	Adsolubilized amount (mmol/g ofsilica)
	(mM)	
0.0000	0.0000	0.0000
0.2458	0.1512	0.0095
0.4917	0.3116	0.0180
0.7375	0.4505	0.0287
0.9833	0.6943	0.0289
1.2292	0.7240	0.0505
1.4750	0.8771	0.0598
1.7208	1.0263	0.0695
1.9666	1.2180	0.0749
2.2125	1.4461	0.0766
2.4583	1.6746	0.0784

The adsolubilization of naphthalene in the adsorbed layer of block copolymer surfactants; Pluronics L64, Pluronics 10R5, Pluronics P123, and Pluronics 25R4 at 29°C, are shown in table C9, C10, C11, and C12, respectively.

Weight of silica = 0.2 g Volume of naphthalene- surfactant solution = 20 ml Aqueous solubility limit of naphthalene = 0.234 mM

Table C9 The adsolubilization of naphthalene in an adsorbed layer of silica modified with Pluronics L64 ($PEO_{13}PPO_{30}PEO_{13}$); HLB 15, triblock copolymers

Initial Concentration (mM)	Equilibrium concentration	Adsolubilized amount
	(mM)	(mmol/g ofsilica)
0.0000	0.0000	0.0000
0.0229	0.0070	0.0016
0.0457	0.0102	0.0036
0.0686	0.0262	0.0042
0.0915	0.0247	0.0067
0.1144	0.0329	0.0081
0.1372	0.0469	0.0090
0.1601	0.0512	0.0109
0.1830	0.0517	0.0131
0.2058	0.0644	0.0141
0.2287	0.0809	0.0148

Table C10 The adsolubilization of naphthalene in an adsorbed layer of silica modifiedwith Pluronics 10R5 ($PEO_8PPO_{23}PEO_8$); HLB 15, reversed-triblock copolymers

Initial Concentration	Equilibrium concentration	Adsolubilized amount
(mM)	(mM)	(mmol/g ofsilica)
0.0000	0.0000	0.0000
0.0201	0.0129	0.0007
0.0402	0.0165	0.0024
0.0602	0.0332	0.0027
0.0803	0.0361	0.0044
0.1004	0.0443	0.0056
0.1205	0.0497	0.0071
0.1406	0.0604	0.0080
0.1606	0.0774	0.0083
0.1807	0.1032	0.0078
0.2008	0.1128	0.0088

Table C11 The adsolubilization of naphthalene in an adsorbed layer of silica modifiedwith Pluronics P123 (PEO19PPO69PEO19); HLB 8, triblock copolymers

Initial Concentration (mM)	Equilibrium concentration	Adsolubilized amount (mmol/g ofsilica)
	(mM)	
0.0000	0.0000	0.0000
0.0227	0.0086	0.0014
0.0454	0.0155	0.0030
0.0681	0.0215	0.0047
0.0908	0.0337	0.0057
0.1135	0.0527	0.0061
0.1362	0.0747	0.0061
0.1589	0.0926	0.0066

0.1816	0.1151	0.0066
0.2043	0.1416	0.0063
0.2270	0.1586	0.0068

Table C12 The adsolubilization of naphthalene in an adsorbed layer of silica modifiedwith Pluronics 25R4 (PEO19PPO33PEO19); HLB 8, reversed-triblock copolymers

Initial Concentration (mM)	Equilibrium concentration	ration Adsolubilized amount (mmol/g ofsilica)
	(mM)	
0.0000	0.0000	0.0000
0.0223	0.0105	0.0012
0.0446	0.0162	0.0028
0.0670	0.0391	0.0028
0.0893	0.0484	0.0041
0.1116	0.0616	0.0050
0.1339	0.0830	0.0051
0.1562	0.1003	0.0056
0.1786	0.1265	0.0052
0.2009	0.1424	0.0058
0.2232	0.1725	0.0051

CURRICULUM VITAE

Name: Ms. Pathamaporn Wattanaphan

Date of Birth: November 24, 1983

Nationality: Thai

University Education:

2002-2006 Bachelor Degree of Chemical Engineering, Faculty of Engineering, Mahidol University, Nahornprathom, Thailand

Presentations:

P. Wattanaphan, P. Malakul, J.H. O'Haver, M. Nithitanakul. (2007, December 21) Removal of Aromatic Organic Compounds by Silica modified with EO/PO-based Block Copolymers. Poster presented at <u>2007 INTERNATIONAL CONFERENCE</u> <u>ON ENGINEERING RESEARCH</u>, HoChiMinh City, Vietnam.

