
ELECTRONIC STRUCTURE CALCULATION
CHAPTER II

Q uantum  m echanical m ethods can be divided into tw o categories: ab initio and 
sem iem pirical m ethods. Ab initio m ethods include H artree-F ock (HF), configuration 
interaction (C l) and also  density  functional theory (D FT). T he discipline o f  ab initio 
quantum  chem istry  aim s at studying system s at m olecular level. H ow ever, a draw back 
is that ab initio calculations are extrem ely dem anding in com puter resources, 
especially  for large system s. Sem iem pirical m ethods (e.g., A M I, PM 3 and N N D O ) lie 
betw een ab initio and m olecular m echanics (M M ) m ethods. T hese calculations are 
com putationally  fast because m any o f  the difficult integrals are neglected.

2.1 The Hartree-Fock Theory
The w ave function  'F  is postulated to illustrate the state o f  a  system  in quantum  

m echanics and is a function o f  3N coordinates o f  all particles. System s o f  e lectrons can 
be described by their w ave functions w hich are the so lu tions o f  the Schrôdinger 
equation. The non-relativ istic tim e-independent Schrôdinger equation has a general 
form o f

w here E  is the energy o f  the system  and H  is the H am iltonian. T he physical m eaning 

o f  T7, given by M ax B om , is that | 'P (r) |2flfr- is the probability  o f  finding the particle in 

volum e dr and then  J|vF ( r) |V r  = 1, w here r is the position vector o f  the particle.

EN = EV, (2. 1)

The H am iltonian operator for system s o f  ท electrons and K  nuclei is

(2. 2)
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w here A and  B designate nuclei, and i and j  electrons. MA is the m ass, and ZA is the 
atom ic num ber o f  nucleus A. the v f  and operators involve d ifferentiation  with

respect to the coordinates o f  the z'th electron and Ath nucleus. rA is the distance 

betw een the /th electron and nucleus A and r 11 is the distance betw een the z'th andy'th 

electrons, the distance betw een nucleus A and B represents by RAB. T he H am iltonian 
operator in Equation 2.2 contains the kinetic energy o f  the e lectrons f e and o f  the

nuclei f  11, the C oulom b repulsions am ong all the m olecule 's electrons Vee, the 

C oulom b attractions am ong the electrons and all o f  the m olecule 's nuclei Ve 11, and the 

C oulom b repulsions Vm am ong all o f  the nuclei. The w ave function and energy are 
determ ined by solving the Schrôdinger equation.

2.2 The Born-Oppenheimer Approximation
The B orn-O ppenheim er approxim ation (BO) is m ade w hen trying to solve 

S chrodinger’s equation  (Equation 2.1) for m ore com plex  system s than one or two 
electrons. S ince nuclei are m uch heavier than electrons, they m ove m uch slow er. To a 
good approxim ation, the electrons can adjust them selves alm ost sim ultaneously to 
changes in the position o f  the nuclei («.,). So, we consider e lectrons in a m olecule to be 
m oving in the field o f  fixed nuclei. The electronic w ave functions thus depend only on 
the positions but not on the m om enta o f  nuclei. Therefore, the m otion o f  electrons can 
be decoupled from  the m otion o f  the nuclei

y  ({ท }; {RA }) = Yeleciin }; {RA }) Vnucl({RA }) - (2. 3)

In the BO  approxim ation, the kinetic energy o f  the nuclei can be neglected and the 
repulsion betw een the nuclei can be considered to be constant. T he electronic wave 
function y/elec, w hich describes the motion o f  electrons and depends param etrically  on 
the coordinates o f  the nuclei, is the solution to a Schrôdinger equation involving the 
electronic H am iltonian,

HelecWelec ~  ReleAZelec • (2 . 4)



Therefore, only the f  1., v„1 and Vcc terms remain in the electronic Hamiltonian operator 

H e1ec 1 describing the motion of ท electrons in the field of nuclei, i.e.,

(2.5)

From now on the electronic problem of Equation 2.4 will be the only focus and 
therefore electronic Hamiltonian H  and the electronic wave functions y  will be 
written without subscript labels.

The wave functions \g can be solved exactly only for one electron systems, e.g., 
hydrogen and H2+. Such a many-electron wave function is termed a Hartree product. 
The electron-one is described by the spin orbital (f>\ and then electron-two being 
described by the orbital <t>2 , etc. In the Hartree Approximation the «-electron wave 
function ¥ ^  is written as a product of one-electron wave functions (j)i,

Using the Hartree product, the energy, E, is just the sum of the orbital energies e,.

Hartree product wave functions suffer from several major flaws that serve to make 
them physically unrealistic. Hartree products take no account of the indistinguish 
ability of electrons.

Introducing the Pauli Exclusion Principle, the wave function of electrons must be 
antisymmetric with respect to the interchange of any two electrons. One general way to 
ensure that this happens is to write the wave function as a Slater determinant of spin 
orbitals, < f> , ( X j ) ,

v "  (x{, x 2,...xn) = (x  ■1พ 2 (x  2)..4>1, (xn) (2. 6)

E  = e l+ e2 + ...+ e„ (2. 7)
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y / ( x u x 2 ,.. .x n ) =  -j==1
y[n\

<!>\{x \ )  <̂ (*l) — <Pn(X \ )
<t>\i.x7) <h(x2) — <t>ทc*i) (2. 8)

M * h )  ^ 2 ( * ท )  ■ ■ - <เ>ท( x ท )

The factor J /เ-^  is normalization constant. The antisymmetric property of a Slater 

determinant is I...^1' ...<f)j ..'ร = - | . . . fa ..} } .

2.3 The Hartree-Fock Equations
The Hartree-Fock method is based on the variational theorem in quantum 

mechanics. Hartree-Fock considers a single determinant formed from electrons’s 
orbitals as a possible approximation to the ground state of the «-electron system 
described by an electronic Hamiltonian//. According to the variation principle, the 
best orbitals are those which minimize the electronic energy E, which is defined by

here h is a core-Hamiltonian for an electron, describing its kinetic energy and 
potential energy in the field of the nuclei and Jab and Kab are the Coulombic energy and 
exchange energy, respectively.

For a given single determinant Iพ ) - t he energy is a
function of the orbitals {fa}. We need to minimize E  with respect to the orbitals, 
subject to the constraints that the orbitals remain orthonormal,

0M,(1) = {<t>a\fa) = Sab. (2 . 10)
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Using the variational principle, the best orbitals that minimize E  are obtained from the 
Hartree-Fock equation written as

[ h ( \ )  + Y J j b( V - T J K h(')]<t>a(V = e a<t>a(V- (2. 11)b*a b*a

The Coulomb operator, corresponding to the classical electrostatic interaction, is 
defined by

l O M M )  = [ \ d x ^ b( 7 ) r ^ h( 2 ) \ a( \ ) (2. 12)

and the exchange term is defined by

K b( \ f t a( \ )  = I \ d x ^ b( 2 ) r ^ a( 2 ) \ , b( \ ) (2. 13)

So the Hartree-Fock equation (Equation 2.11) can be, then, re-written as

= (2- 14)

The Fock operator,/- , is an effective one-electron operator, describing the kinetic 
energy of an electron, the attraction of all the nuclei and the repulsion induced from the 
mean field of all the other electrons,

F ( \ )  = h ( \ )  + J j J b( \ ) - k h( \ ) .  (2.15)

Since the Fock operator has a functional dependence, through the Coulomb and 
exchange operators, on the solution of { < t> i }  of the pseudo-eigenvalue equation, thus the 
Hartree-Fock equations are really nonlinear equations and will need to be solved by 
iterative procedures.
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Introducing the MO-LCAO approach, a spatial Molecular Orbital (MO) is 
expanded as a linear combination of Atomic Orbitals (AO).

ûi ~  viXV (2. 16)
V

In Equation 2.16, the unknown HF orbitals (J)i are written as a linear expansion in M 
known basis function X v -  If the set of X v  is complete, it would be an exact expansion. 
Inserting this linear combination into the Fock equation, we obtain

"ICyiXv ~ พ;iA (2. 17)

Multiplying from the left by a specific basis function and integrating yields the 
R oothaan-H all equations which can be written as

X cw \ dra ^ ) F ^ ) X v ^ )  = ^ X cw l drlZ*f,Q )Zv(l) (2. 18)

The Roothaan equations can be written in a short form of

/ = 1 ,2 , 3 . ..AT (2.19)

Two matrices are defined here as the overlap matrix ร and the Fock matrix F,

= \d ra* f l ( \ ) F x v (l) = ( x M\F \Z v )  (2. 20)

— f driZ /jZ v  \x v )  • (2.21)

If a system is closed-shell and ท electrons, the sum over N occupied spin 
orbitals includes an equal sum over those with the a  spin function and those with the p

H N/i %spin function, i.e ., ร -»  ร - เ - ร ่,the Fock operator, then, has a form of
b  b ( a )  b ( f i )

หอสบุดกลาง ล่านักงานวิทขทรัพขากร 
ชุVกลหารฌ',มหาวิทยาลัย
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F ( l )  =  M l )  +  f j 2 J a ( l ) - ^ ( l ) .  ( 2 . 2 2 )

The Fock matrix, F, is the matrix representation of the Fock operator in the basis { x j j ,  
i.e.,

F,v = jd rtim i)z A )  + X  J*,*;<l)[2i.(l) -  *.(1)]*,(1)

= / / ; r + X 2 H ^ ) - H ^ )  (2.23)

where a core-Hamiltonian matrix is involving the one-electron operator describing the 
kinetic energy and the nuclear attraction of an electron. By including the LCAO, then

= H I T  + X  X c^ cl  [ 2 ( H  ฟ ) — <//cr|Av)]

= K T  + X  ̂  [ < ^  K M  (a*7 1A v>] (2. 24)

P „ = 2Z v l  (2.25)

p is the density matrix. The Roothaan equations are nonlinear and can be written in a 
matrix form of

FC = s e e  (2. 26)

where c is an M x M  square matrix of the expansion coefficients Cvi, and e is a diagonal
matrix of the orbital energies £/. The procedure used to solve for the MO coefficients 
C o ,  is called the Self-Consistent-Field (SCF) method which is presented in Figure 2.1. 
By making an initial guess at the spin orbitals, one can calculate the average field seen 
by each electron and then solve the eigenvalue equation for a new set o f spin orbitals.
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Using these new spin orbitals, one can obtain new fields and repeat the procedure until 
self-consistency is reached.

The SCF procedure can be, then, summarized as follow:

1. Specify a molecule and a basis set { x y }.
2. Calculate all required integrals (■ ร'̂  1,, H c°„e and (/i/l|vcr)).
3. Orthogonolize the overlap matrix ร.
4. Obtain a guess at the density matrix p.
5. Calculate the Fock matrix and p, and two electron integrals (/zl|vcr) .

6. Diagonalize the Fock matrix to obtain c  and e.
7. Form a new density matrix p from c .
8. Determine whether the procedure has converged. If not, return to step (5) with 

a new p.

If the procedure has converged, use the resultant solution to calculate expectation 
values.

By repeating the calculation for different nuclear coordinates the potential 
energy surface for nuclear motion can be explored. The equilibrium geometry of ล 
molecule can be determined by finding a set of nuclei’s positions which minimize the 
total energy
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Store to disk /memory

New Density 
Matrix p

Figure 2.1 A self-consistent field procedure used to solve the wave functions of the 
Schrôdinger equation.
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2.4 Semiempirical
Semiempirical methods are simplified versions o f Hartree-Fock theory using 

empirical corrections in order to improve performance. Within this construction, 
certain pieces of information, such as two electron integrals, are approximated or 
completely omitted. In order to correct for the errors introduced by omitting part of the 
calculation, the method is parameterized, by curve fitting in a few parameters or 
numbers, in order to give the best possible agreement with experimental data.

The most frequently used methods are MNDO, AMI, and PM3. They are all 
based on the N eg lec t o f  D ifferen tia l D iatom ic O verlap (ND D O ) [63] integral 
approximation, while older methods use simpler integral schemes such as CNDO and 
INDO. A number of additional approximations are made to speed up calculations and a 
number of parameterized corrections are made in order to correct for the approximate 
quantum mechanical model. How the parameterization is performed to characterize the 
particular semiempirical method. For the MNDO, AMI, and PM3 the parameterization 
is performed such that the calculated energies are expressed as heats of formations 
instead o f total energies.

The approximation in NDDO is only neglect differential overlap between atomic 
orbitals on different atoms. So, all of the two-electron integrals o f the form (po\vA) 
where p  and V are on the same atom and A and a  are also the same atom are  

retained. The Fock matrix elements become

XonA a on A
H Z  +  I  I  p p iia

+ Z Z  Y . p> A p cT,f d )B*A X on B a on B

(2.27)

rcore
“V

+1 Z°lZ(^'vA)
Pxa { p a  / ฬ )  -  -  pfjr (per /  A v )

; p  and V  both on A (2.28)
B*A X on B a on B

F, v = K r: z  ; p  on A and V on B
*๗ X on B o on B

(2.29)
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AMI, or Austin Model 1, is based on the NDDO integral approximation. It is a 
generalization of the modified neglect of differential diatomic overlap approximation. 
AMI was developed by Michael Dewar and co-workers [64] and published in 1985. 
AMI is an attempt to improve the MNDO model by reducing the repulsion of atoms at 
close separation distances. The atomic core-atomic core terms in the MNDO equations 
were modified through the addition of off-center attractive and repulsive Gaussian 
functions.

The advantage o f semiempirical calculations is that they are much faster than the 
ab initio calculations.

The disadvantage of semiempirical calculations is that the results can be 
inconsistent. If the molecule being computed is similar to molecules in the data base 
used to parameterize the method, then the results may be very good. If the molecule 
being computed is significantly different from anything in the parameterization set, the 
answers may be very poor.

Semiempirical calculations have been very successful in the description of 
organic chemistry, where there are only a few elements used extensively and the 
molecules are of moderate size. However, semiempirical methods have been devised 
specifically for the description of inorganic chemistry as well.
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