REACTIVE PROCESSING OF LINEAR LOW DENSITY POLYETHYLENE MODIFIED BY CHEMICAL AND PLASMA-ASSISTED PROCESSES

Patchara Tasanatanachai

1.00

A Dissertation Submitted in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University 2008

512027

Thesis Title:	Reactive Processing of Linear Low Density Polyethylene		
	Modified by Chemical and Plasma-Assisted Processes.		
By:	Patchara Tasanatanachai		
Program:	Polymer Science		
Thesis Advisors:	Assoc. Prof. Rathanawan Magaraphan (Thai Advisor)		
	Prof. Costas Tzoganakis (Overseas Co-Advisor)		
	Prof. Jürgen Engemann (Overseas Co-Advisor)		

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Doctor of Philosophy.

Nantaya Jammet College Director

(Assoc. Prof. Nantaya Yanumet)

Thesis Committee:

Nantaya Janunet

(Assoc. Prof. Nantaya Yanumet)

C. 130- K-

(Prof. Costas Tzoganakis) linau

(Assoc. Prof. Sujitra Wongkasemjit)

R. May

(Assoc. Prof. Rathanawan Magaraphan)

(Prof. Jürgen Engemann)

Tranut Bolignes

(Assoc. Prof. Pranut Potiyaraj)

that 22 -

(Assoc. Prof. Ittipol Jangchud)

ABSTRACT

4582004063: Polymer Science

Patchara Tasanatanachai: Reactive Processing of Linear Low Density Polyethylene Modified by Chemical and Plasma-Assisted Processes. Thesis Advisors: Assoc. Prof. Rathanawan Magaraphan, Prof. Costas Tzoganakis, Prof. Jürgen Engemann 186 pp.

Keywords: Reactive processing/ Linear low density polyethylene/ Chemical peroxide modification/ Atmospheric pressure plasma/ Plasma surface treatment/ Dielectric barrier discharge

Post-reactor modifications of linear low density polyethylene (LLDPE) were done upon (*i*) multi-phases processing and (*ii*) single-phase reactive processing. To enhance the processability of LLDPE and, preferentially, prepare the new material from existing polymers, the multi-phases processing was represented by the blending of LLDPE and natural rubber (NR), with and without epoxidized natural rubber (ENR) and maleic anhydride (MA). Either good oxygen barrier films or highly oxygen permeable films were obtained by controlling the blend ingredient and processing parameters. Oxygen permeability was increased with draw ratio in the case of reactive blend film due to void expansions, but the opposite results were found for binary and ternary blend films. Therefore, changes in the properties of the products were realized even within the same manufacturing process by changing the ingredient.

For single-phase reactive processing of LLDPE, small amount of reactive ingredient, dicumyl peroxide (DCP), was first focused as the ordinary route of molecular structure modification. In this case, chemical initiator concentration as well as its addition methods had a great influence on molecular characteristics which was noticeable in the rheological characteristics such as melt flow index (MFI) and power law index as supported by statistical analysis.

As another source of induced-radicals, the novel physico-chemical technique which was the plasma surface treatment was introduced in the present dissertation.

Two plasma approaches- an <u>a</u>tmospheric <u>pressure plasma jet</u> (APPJ) and a planar <u>dielectric <u>barrier discharge</u> (DBD) were effectively utilized to provide the radicals or reactive sites on the LLDPE surface. Since both types had their own pros and cons, the DBD was, however, selected to support the practical bulk modification of LLDPE via continuous reactive processing due to the simple application of atmospheric ambient air.</u>

Pre-treatment of LLDPE pellets via plasma technique prior to the melt processing was comparable to the low-dose DCP modified LLDPE in term of rheological alteration. Furthermore, the presence of both nitrogen and mainly oxygen based functional groups inside the modified bulk LLDPE supported the superior performance of *in-situ* modification. Plasma-assisted modified LLDPE performed superior melt strength and elastic recovery while its film showed good oxygen barrier property with high tensile strength and strain. Higher storage modulus at service temperature range was another benefit of plasma-assisted continuous modification of LLDPE.

The radicals induced via DBD treatment and the functional groups formed on the surface during/after plasma exposure possibly influenced on the chemcial peroxide reaction in melt state, subsequently affected to branch characteristics. The combination of chemical and physico-chemical routes did not show synergistic effect since they performed poor melt strength and low elastic recovery with moderate tensile properties. Hence, not only the branching characteristics but also the existence of functional groups played significant roles on the product properties which were rather complicated to be recognized in the case of plasma + peroxide modification.

Since the plasma-DBD device developed in our laboratory was operated at atmospheric pressure using an ambient air as a process gas. It can be employed as plasma-assisted polymer blending or recycling as well. พัชรา ทัศนาธนชัย : กระบวนการขึ้นรูปพอลิเอทิลีนความหนาแน่นต่ำเชิงเส้นแบบมี ปฏิกิริยา โดยการปรับปรุงด้วยวิธีทางเคมีและด้วยการเข้าร่วมของเทคนิคพลาสมา (Reactive Processing of Linear Low Density Polyethylene Modified by Chemical and Plasma-Assisted Processes) อาจารย์ที่ปรึกษา : รองศาสตราจารย์ ดร.รัตนวรรณ มกรพันธุ์ ศาสตราจารย์ ดร. ดอสทาซ โซกานากิซ ศาสตราจารย์ ดร.เจอร์เกนน์ เอ็งแมน 186 หน้า

การคัดแปรพอลิเอทิลีนความหนาแน่นต่ำเชิงเส้นภายหลังกระบวนการผลิตจากเตา ปฏิกรณ์สามารถทำได้โดย (i) กระบวนการผลิตแบบหลายองค์ประกอบ และ (ii) กระบวนการ ้ผลิตองค์ประกอบเดียว วัตถุประสงค์ของกระบวนการผลิตหลายองค์ประกอบนั้นก็เพื่อเพิ่ม ความสามารถระหว่างกระบวนการขึ้นรูปและเพื่อผลิตวัสคุชนิคใหม่จากพอลิเมอร์ที่มีอยู่เคิม สำหรับงานวิจัยนี้ได้ทำการศึกษากระบวนการผสมพอลิเมอร์ระหว่างพอลิเอทิลีนความหนาแน่นต่ำ เชิงเส้นและยางธรรมชาติ นอกจากนี้ องค์ประกอบอื่นๆ ได้แก่ ยางธรรมชาติที่ผ่านกระบวนการ เติมหมู่อีพอกซี ถูกนำมาเติมลงในระบบการผสมแบบสามองค์ประกอบ และสารมาลิอิแอนไฮ-้ใคร์ค ถูกนำมาใช้เป็นสารร่วมปฏิกิริยาในระบบการผสมแบบมีปฏิกิริยาอีกค้วย ผลิตภัณฑ์ที่ได้จาก กระบวนการผสมหลายองค์ประกอบนั้นเป็นแผ่นฟิล์มทั้งแบบที่มีสมบัติต้านทานต่อออกซิเจนหรือ แผ่นฟิล์มแบบที่ขอมให้ออกซิเจนผ่านได้ดี ทั้งนี้ ขึ้นอยู่กับส่วนผสมและการควบคุมตัวแปรที่มีผล ต่อกระบวนการผลิต แผ่นฟิล์มที่ได้จากกระบวนการขึ้นรูปพอลิเมอร์แบบมีปฏิกิริยาจะมี ความสามารถในการขอมให้ออกซิเจนผ่านเพิ่มขึ้นเมื่ออัตราส่วนการดึงขณะขึ้นรูปแผ่นฟิล์มเพิ่มขึ้น เนื่องจากการขยายขนาดของช่องอากาศภายในเนื้อฟิล์ม และจะส่งผลตรงกันข้ามในกรณีของ แผ่นฟิล์มผสมสองและสามองค์ประกอบ จากการศึกษากระบวนการผลิตแบบหลาของค์ประกอบ ้นั้นสรุปได้ว่า แม้จะใช้กระบวนการผลิตเดียวกันแต่หากมีส่วนผสมต่างกันก็จะได้ผลิตภัณฑ์ที่มี สมบัติต่างกัน

สำหรับกระบวนการขึ้นรูปองค์ประกอบเดียวนั้น ขั้นด้น ได้ทำการศึกษากระบวนการดัด แปรพอลิเมอร์ด้วยวิธีทั่วไปนั่นคือ การใช้ส่วนผสมทางเกมีซึ่งมีความว่องไวต่อการเกิดปฏิกิริยา (สำหรับงานวิจัยนี้ใช้ไดคิวมิวเปอร์อ๊อกไซก์) พบว่า ทั้งปริมาณและวิธีการเติมสารริเริ่มปฏิกิริยามี อิทธิพลเป็นอย่างมากต่อลักษณะของสายโซ่โมเลกุลที่ได้ โดยเห็นได้จากก่าทางลักษณะการไหล ทั้งนี้สามารถบ่งชี้ได้ด้วยการวิเคราะห์ทางสถิติ เทคนิคทางเคมีกายภาพซึ่งถูกนำมาใช้เป็นอีกหนึ่งแหล่งที่มาของอนุมูลอิสระสำหรับ งานวิจัยนี้คือการดัดแปรพื้นผิวด้วยเทคนิคพลาสมา พบว่าอุปกรณ์กำเนิดพลาสมาทั้งแบบลำ อนุภาคพลาสมา ณ ความดันบรรยากาศ และแบบแผ่นกั้นใดอิเล็กทริกสามารถนำมาใช้ในการสร้าง ดำแหน่งที่ว่องไวต่อการเกิดปฏิกิริยาบนพื้นผิวของเม็ดพอลิเอทิลีนความหนาแน่นด่ำเชิงเส้นได้ อย่างมีประสิทธิภาพ เนื่องจากอุปกรณ์กำเนิดพลาสมาสองชนิดนี้ต่างมีทั้งข้อดีและข้อเสีย งานวิจัย นี้จึงได้เลือกอุปกรณ์กำเนิดพลาสมาแบบแผ่นกั้นใดอิเล็กทริกมาใช้สำหรับการดัดแปรเนื้อพอลิ เมอร์ด้วยกระบวนการต่อเนื่องของกระบวนการขึ้นรูปพอลิเมอร์แบบมีปฏิกิริยา เพราะอุปกรณ์ กำเนิดพลาสมาชนิดนี้สามารถนำมาประยุกต์ใช้ได้กับอากาศ ณ ความดันบรรยากาศ

กระบวนการปรับปรุงพื้นผิวของเม็คพอลิเอทิลีนความหนาแน่นต่ำเชิงเส้นก่อนผ่านเข้าสู่ กระบวนการขึ้นรูปแบบหลอมเหลวนั้นสามารถให้ผลดีในแง่ของสมบัติการไหลเทียบได้กับการ ดัดแปรเนื้อพอลิเมอร์โดยใช้ไดคิวมิวเปร์ออกไซก์ปริมาณน้อย นอกจากนี้ หมู่ฟังก์ชันทั้งชนิดมี ออกซิเจนและชนิดมีในโตรเจนเป็นองก์ประกอบยังปรากฏในเนื้อของพอลิเมอร์ซึ่งนับเป็นอีกหนึ่ง สมบัติที่ได้จากกระบวนการดัดแปรในระบบการผลิต การเข้าร่วมของเทคนิคพลาสมาในการดัด แปรพอลิเอทิลีนความหนาแน่นต่ำเชิงเส้นทำให้ได้พอลิเมอร์ที่แสดงสมบัติเด่นทั้งในด้าน ความสามารถในการยึดดึงและการคืนตัวแบบยึดหยุ่นของพอลิเมอร์เหลว นอกจากนี้ฟิล์มที่ได้จาก พอลิเมอร์นี้มีความสามารถในการกั้นออกซิเจนได้คี มีก่าความทนแรงดึงและระยะยึดสูง และยังมี มอดูลัสแบบยึดหยุ่นสูงในช่วงอุณหภูมิการใช้งานอีกด้วย

อนุมูลอิสระที่ได้จากการปรับปรุงพื้นผิวด้วยเทคนิคพลาสมาแบบแผ่นกั้นไดอิเล็คทริค และหมู่ฟังก์ชันที่เกิดขึ้นทั้งขณะที่ผ่านพลาสมาและหลังจากกระบวนการพลาสมานั้นส่งผลต่อการ ทำปฏิกิริยาของสารเคมีเปอร์ออกไซค์ในสภาวะหลอมเหลวและเป็นผลต่อเนื่องไปถึงลักษณะของ กิ่งพอลิเมอร์ที่ได้ ทำให้การผนวกวิธีทางเคมีและวิธีทางเคมีกายภาพไม่ส่งผลดีเพิ่มต่อผลิตภัณฑ์ที่ ได้เนื่องจากความแข็งแรงดึงขณะหลอมเหลวมีค่าต่ำ และมีการคืนตัวแบบยืดหยุ่นต่ำ และนอกจาก ลักษณะของกิ่งก้านพอลิเมอร์แล้ว การมีหมู่ฟังก์ชันในเนื้อพอลิเมอร์ยังส่งผลต่อสมบัติของพอลิ เมอร์ที่ได้เป็นอย่างมากซึ่งยากที่จะแยกอิทธิพลของทั้งสองออกจากกัน

การประขุกต์ใช้อุปกรณ์กำเนิดพลาสมาแบบแผ่นกั้นใดอิเล็คทริค ณ ความดันบรรยากาศ โดยใช้อากาศเป็นก๊าซสำหรับการกำเนิดสภาวะพลาสมาสามารถนำมาปรับใช้กับกระบวนการผสม พอลิเมอร์หรือกระบวนการรีไซเกิลพลาสติกได้เป็นอย่างคือีกด้วย

· · · · ·

ACKNOWLEDGEMENTS

This work would not have been accomplished without the participation of the following individual and organizations.

I would like to express my appreciation to my thesis advisors; Assoc. Prof. Rathanawan Magaraphan, Prof. Jürgen Engemann, and Prof. Costas Tzoganakis for their valuable guidance, vital assistance, and wisdom throughout my work.

Grateful acknowledgements are forwarded to the members of my dissertation committees; i.e. Assoc.Prof. Nantaya Yanumet, Assoc. Prof. Sujitra Wongkasemjit, Assoc. Prof. Pranut Potiyaraj, and Assoc. Prof. Ittipol Jangchud, for their thoughtful comments.

It is my pleasure to acknowledge the Thailand Research Fund (TRF) through the Royal Golden Jubilee Ph.D. Program (Grant No. PhD/0228/2545) for a scholarship, the Petroleum and Petrochemical College (PPC), and the Nation Excellence Center for Petroleum, Petrochemical, and Advanced Materials, Thailand for giving me the opportunity to study in the Ph.D. program.

My sincere gratitude goes out to my friends and colleagues who I share in my work and my life, making my graduate experience at the PPC. Further, I also wish to express my thanks to the staffs of the Electrical Engineering Department, -Faculty of Engineering, Chulalongkorn University for their suggestions and help.

Special thanks are forwarded to my friends and staffs at *fmt*, Universität Wuppertal, Germany, to people at University of Waterloo, Canada, and last but not least, to my family for sharing great times in my life. Without their love and support, I would not be able to succeed my Ph.D. degree.

TABLE OF CONTENTS

i
iii
v
vii
viii
xvii
xviii

CHAPTER

I

Π

. 10 t 2 **INTRODUCTION** 1 LITERATURE REVIEW 2.1 Polyethylene (PE) 4 2.1.1 Basic Structure and Properties 4 2.1.1.1 High Density Polyethylene (HDPE) 4 2.1.1.2 Low Density Polyethylene (LDPE) 5 2.1.1.3 Linear Low Density Polyethylene (LLDPE) 5 2.1.1.4 Ethylene Vinyl Ester Copolymers 5 2.1.2 PE for Breathable and Agricultural Film Applications 7 9 2.2 Reactive Processing 9 2.2.1 Post-Reactor Molecular Modification 2.2.2 Preparation of Carboxyl-Containing Polymers 10 2.2.3 Polymer Reactive Blending 10

PAGE

viii

PAGE

III

PAGE

30

2.3 Plasma Surface Treatment of Polymer: Principle and				
Applications				
2.3.1 Plasma Chemistry	11			
2.3.2 Plasma Surface Treatment Applications	13			
2.3.3 Total Radical Concentration Measurement	14			
2.3.4 Atmospheric Pressure Plasma Processing	15			
2.3.4.1 Corona Discharge	16			
2.3.4.2 Atmospheric Pressure Plasma Jet (APPJ)	16			
2.3.4.3 Dielectric Barrier Discharge (DBD)	16			
2.4 Polymer Rheology	17			
2.4.1 Small Amplitude Oscillaratory Rheometer	17			
2.4.2 High-Shear Rate using Steady State Capillary				
Rheometer	19			
EXPERIMENTAL				
3.1 Materials	23			
3.2 Methodology	25			
3.2.1 Blending of LLDPE, NR, and ENR with MA				
and the Agricultural Film Preparations	25			
3.2.2 Melt Processing (Batch Process) of Low-Dose				
Chemical Peroxide Modification	27			
3.2.3 Plasma Surface Treatment	28			
3.2.3.1 Treatment of LLDPE Pellets	28			
3.2.3.1.1 Using APPJ	28			

- 3.2.3.2 Treatment of LLDPE Films 32
- 3.2.4 Continuous Reactive Processing of LLDPE 32

3.2.3.1.2 Using DBD

.

PA	GE
----	----

3.2.5 Plasma-Assisted Continuous Reactive Processing	
of LLDPE	33
3.3 Characterizations	34
3.3.1 Total Radical Concentration Measurement	34
3.3.2 Fourier Transform-Infrared (FT-IR) Spectroscopy	35
3.3.3 UV-Visible Light Spectroscopy	35
3.3.4 X-Ray Photoemission Spectroscopy (XPS)	35
3.3.5 Polarizing Optical Microscopy (POM)	36
3.3.6 Scanning Electron Microscopy (SEM)	36
3.3.7 Atomic Force Microscopy (AFM)	37
3.3.8 Contact Angle Measurement	37
3.3.9 Differential Scanning Calorimetry (DSC)	37
3.3.10 Dynamic Mechanical Analysis (DMA)	38
3.3.11 Rheological Test	
3.3.11.1 Oscillatory Rheometer	38
3.3.11.2 Capillary Rheometer	39
3.3.12 Melt Flow Index (MFI) Measurement	39
3.3.13 Gas Permeability Test	40
3.3.14 Density Measurement	40
3.3.15 Tensile Test	40

IV BREATHABLE FILM FROM REACTIVE PROCESSING OF LLDPE/NR BLENDS WITH ENR AND MALEIC ANHYDRIDE

4.1	Abstract	41
4.2	Introduction	42
4.3	Materials and Method	43
	4.3.1 Materials	43

CHAPTER

.....

	4.3.2 Blends Preparation	44
	4.3.3 Twin-Screw Extrusion	44
	4.3.4 Chill-Roll Cast Film Processing	45
	4.3.5 FT-IR Spectroscopy	45
	4.3.6 Scanning Electron Microscopy (SEM) and	
	Polarizing Optical Microscopy (POM)	45
	4.3.7 Density Measurement	45
	4.3.8 Gas Permeability Test	46
	4.3.9 UV-Visible Light Spectroscopy	46
	4.4 Results and Discussion	46
÷	4.4.1 Appearance of Film Products	47
	4.4.2 Throughput Rate	49
	4.4.3 Morphological Examination	53
	4.4.4 Gas Permeability	54
	4.4.5 UV-Visible Light Spectroscopy	55
	4.5 Conclusions	58
	4.6 Acknowledgements	59
	4.7 References	59
V	RHEOLOGICAL MODIFICATION OF LLDPE	
	THROUGH REACTIVE PROCESSING WITH	
	PEROXIDE	
	5.1 Abstract	61
	5.2 Introduction	62
	5.3 Experimental	64
	5.3.1 Materials	64
	5.3.2 Preparation of Peroxide-Modified LLDPE	64

CHAPTER

.

	5.3.3 Characterizations	65
	5.3.3.1 Melt Flow Index Measurement	65
	5.3.3.2 Rheological Study	65
	5.3.3.3 Extrudate Swell Measurement	66
	5.4 Results and Discussion	66
	5.5 Conclusions	74
	5.6 Acknowledgements	74
	5.7 References	75
·	2	

VI THE EFFECTS OF PROCESSING PARAMETERS ON RHEOLOGICAL PROPERTIES OF LOW-DOSE PEROXIDE MODIFIED LLDPE

6.1 Abstract	77
6.2 Introduction	78
6.3 Experimental	79
6.3.1 Materials	79
6.3.2 Procedure	79
6.3.2.1 Statistical Experimental Design	79
6.3.2.2 Preparation of Peroxide-Modified LLDPE	81
6.3.2.3 Torque Measurement	81
6.3.2.4 Characterizations	81
6.4 Results and Discussion	82
6.5 Conclusions	92
6.6 Acknowledgements	93
6.7 References	93

. .

PAGE

VII	ATMOSPHERIC PRESSURE PLASMA DEVICE AS AN				
	EFFECTIVE TOOL FOR SURFACE MODIFICATION				
	7.1 Abstract	95			
	7.2 Introduction	96			
	Part I – Atmospheric Pressure Plasma Jet (APPJ)	99			
	7.3 Experimental	99			
	7.3.1 Materials	99			
	7.3.2 Atmospheric Pressure Plasma Jet (APPJ)	99			
	7.3.2.1 Nitrogen Plasma Jet Observations	99			
	7.3.2.2 Nitrogen APPJ Treatment of LLDPE Pellet	s 100			
	7.4 Results and Discussion	101			
	7.4.1 Jet Observations	101			
	7.4.2 Effect of External Plasma Process Parameters on				
	the Total Radical Concentration Generated on				
	Treated LLDPE Surfaces	102			
	7.4.3 The Effect of Latency Time in Ambient Air	106			
	Part II – Dielectric Barrier Discharge (DBD)				
	7.3 Experimental				
	7.3.1 Materials	106			
	7.3.2 DBD Plasma Device	106			
	7.3.2.1 DBD Characteristics and Electronic Plasma	1			
	Diagnosis	106			
	7.3.2.2 Air-DBD Treatment of LLDPE Pellets	108			
	7.4 Results and Discussion	109			
	7.4.1 Electronic Plasma Diagnosis	109			
	7.4.2 Effect of Applied Voltage on the Total Radical				
	Concentration on the Treat LLDPE Pellet Surface				
	with Very Short Treating and Aging Periods	110			
	7.5 Conclusions	112			

CHAPTER					PAGE
	7.6 Acknowledgements				113
	7.7 References			113	
VIII	SURFACE MODIFICATION OF POLYETHYLENE				
	DISCHARGE 8.1 Abstract				
	8.2 Introduction				116
	8.3	Exper	nental		117
		8.3.1	Aaterials		117
		8.3.2	Plasma Surface Mod	ification	117
		8.3.3	Surface Analysis		118
			3.3.3.1 Total Generation	ated Radical Concentration	
			Measuremen	ıt	118
			3.3.3.2 X-Ray Photo	pemission Spectroscopy (XPS)	118
			3.3.3 Fourier Tran	sform-Infrared Spectroscopy	
			(FT-IR)		119
			3.3.3.4 Contact Ang	le Measurement	119
			3.3.5 Scanning El	ectron Microscopy (SEM)	119
			3.3.3.6 Scanning Pr	obe Microscopy (SPM) or	
			Atomic Force	e Microscopy (AFM)	119
	8.4	Resul	and discussion		120
		8.4.1	Effect of External Pl	asma Process Parameters	
			on Total Radical Con	ncentration Generated on the	
			Freated LLDPE Sur	face	120
		8.4.2	XPS Analysis		121
		8.4.3	T-IR Analysis		124
		8.4.4	Contact Angle Meas	urement	127
		8.4.5	canning Electron M	licrographs	127

 8.7 References

	8.4.6 Scanning Probe Micrographs	128
8.5	Conclusions	131
8.6	Acknowledgements	131

IX PLASMA-ASSISTED CONTINUOUS MODIFICATION		ſ
	OF POLYETHYLENE	÷

9.1	Abstra	act	•	133
9.2	Introd	uction		134
9.3	Exper	imental	•	135
	9.3.1	Materials		135
	9.3.2	Plasma Device and In-line Reactive Processing	÷	135
	9.3.3	Fourier Transform-Infrared Spectroscopy (FTIR)		136
	9.3.4	MFI and Rheological Measurement	•	136
	9.3.5	Tensile Test	·	137
	9.3.6	Density Measurement	•	137
	9.3.7	Gas Permeability Testing		137
	9.3.8	Dynamic Mechanical Analysis (DMA)		138
	9.3.9	Differential Scanning Calorimetry (DSC)		138
9.4	Result	ts and Discussion		139
	9.4.1	Infrared Absorption Analysis		139
	9.4.2	Rheological Analysis		141
	9.4.3	Tensile Property		148
	9.4.4	Differential Scanning Calorimetry (DSC) Analysis	3	152
	9.4.5	Density		154
	9.4.6	Gas Permeability		155
	9.4.7	Dynamic Mechanical Analysis (DMA)		157

PAGE

131

CHA	PTER	

	9.5 Conclusions	159
	9.6 Acknowledgements	160
	9.7 References	160
X	CONCLUSIONS AND RECOMMENDATIONS	
	10.1 Conclusions	163
	10.1.1 Reactive Blending of LLDPE/NR System	
	with ENR and Maleic Anhydride	163
	10.1.2 Rheological Modification of LLDPE through	
	Reactive Processing with Peroxide	163
•	10.1.3 The Effects of Processing Parameters on	
	Rheological Properties of Low-Dose Peroxide	
	Modified LLDPE	164
	10.1.4 Atmospheric Pressure Plasma Device as an	
	Effective Tool for Surface Modification	164
25	10.1.5 Surface Modification of Polyethylene using	
	Atmospheric Air Dielectric Barrier Discharge	165
	10.1.6 Plasma-Assisted Continuous Modification of	
	Polyethylene	166
	10.2 Recommendations	166
APPENDIC	ES	167
REFERENC	CES	179

CURRICULUM VITAE	185

.

LIST OF TABLES

5

.

•

.

TABI	BLE PAGE		
	CHAPTER III		
3.1	Materials used in this contribution	23	
3.2	Blend formulae and melt blending step in batch mixer	26	
	CHAPTER IV		
4.1	Average thickness of the film products	48	
4.2	Average density of the film products	49	
4.3	Average throughput rate determined at the processing time		
	coming out of twin-screw extruder	50	
	CHAPTER VI		
6.1	Two level parameters for 2 ³ factorial experimental design	80	
6.2	2 ³ Factorial experimental level (variables in coded unit level)		
	with 4 centre points	80	
6.3	Average melt flow index (MFI) of peroxide modified		
	LLDPE	82	
6.4	Estimated effect percentage of variables on the MFI values	83	
6.5	Analysis of variance for MFI prediction	83	
6.6	Regression coefficients for the response surface model of the		
	MFI	84	
6.7	Consistency index (K) and power law index (n) Values for		
	Miii	86	
6.8	Regression coefficients for the response surface model of the		
	consistency index (K)	87	
6.9	Regression coefficients for the response surface model of the		
	power law index (n)	88	

LIST OF FIGURES

FIGURE		PAGE
	CHAPTER I	
1.1	Step work throughout the contribution	3
	CHAPTER II	
2.1	General principle of plasma surface modification	14
2.2	Schematic of a capillary rheometer	20
	CHAPTER III	
3.1	Glass tube reactor geometry for APPJ treatment of polymer	
	pellets	29.
3.2	Diagram of high voltage power supply unit for DBD	30
3.3	Electrode arrangement of DBD for pellet treatment	31
3.4	The setup of continuous plasma-assisted modification of	
	polymer	34
	CHAPTER IV	
4.1	POM micrographs of the reactive blend before and after	
	stretching	48
4.2	Possible reaction of LLDPE-g-MA and ENR to obtain H_2O	
	as a by product	51
4.3	Cross-sectional SEM micrographs of the LMEN non-	
	extracted extrudate with 90 min ⁻¹ twin-screw speed	51
4.4	FT-IR spectra of LLDPE film, LLDPE-g-MA, and LMEN	52
4.5	SEM micrographs of toluene extracted blends produced by	
	twin-screw speed of 90 min ⁻¹	54
4.6	Oxygen permeability of pure LLDPE, binary, tertiary, and	
	reactive blend films	55
4.7	UV-visible light absorbance of the film products	58

PAGE

xix

CHAPTER V

5.1	MFI performed at 190°C using 2.16 kg according to ASTM	
	D1238	67
5.2	Dependence of MFI on peroxide quantity at various process	
	conditions	68
5.3	Flow curve of LLDPE modified with 0.1 phr DCP processed	
	at 200°C and 70 min ⁻¹ with various peroxide addition	
	methods	69
5.4	Elongational behaviour of LLDPE modified with 0.1 phr	
	DCP processed at 200°C and 70 min ⁻¹ with various peroxide	
	addition methods	70
5.5	Dependence of real shear viscosity on real shear rate:	
	comparison of mixing rotor speed	71
5.6	Dependence of real shear viscosity on real shear rate:	
	comparison of process temperature	72
5.7	Percentage change in extrudate swell vs. apparent shear rate	73
	CHAPTER VI	
6.1	Response surface for the melt flow index (MFI): for Miii	85
6.2	Response surface for the consistency index (K) at processing	
	temperature of 200°C	87
6.3	Response surface for the power law index (n) at processing	
	temperature of 200°C	88
6.4	Final torque of batch mixing of DCP modified LLDPE:	
	comparison in the addition method of peroxide	89
6.5	Complex shear viscosity of LLDPE modified by shearing	
	force with and without DCP loaded	90

91

92

xx

CHAPTER VI

6.6	Storage modulus of LLDPE modified by shearing force with
	and without DCP loaded
6.7	Crossover modulus of (A) based LLDPE without
	modification and (B) LLDPE modified with 0.1 phr DCP
	using 70 min ⁻¹ at 70°C
	CHAPTER VII
7.1	Breakdown voltage for plane parallel electrodes at 20°C as a

function of pressure and gap distance for air as a process gas (pd)98 7.2. Dependence of the plasma-jet length on various N_2 flow rates for both process and feed gases at various applied voltages 101 7.3 Dependence of the total radical concentration on the applied voltage amplitude at 1:1 ratio of process and feed gas flow 103 rates 7.4 Dependence of the total radical concentration on the feed gas 104 flow rate 7.5 Total radical concentration vs. process gas flow-rate 105 7.6 DBD treatment chamber geometry for LLDPE treatment 107

7.7	Characteristic waveform of the DBD applied voltage and	
	total current	110
7.8	Micro-arcs observed as glow-like discharge	107
7.9	Dependence of generated radical concentration on plasma	
	treatment time with various applied voltages at 0.2 s of DBD	
	treatment time and 0.2 s of latency time in ambient air	111

CHAPTER VIII

8.1	Effect of plasma treatment time of 8.3 kV applied voltage on	
	surface radicals with various aging time in ambient air	120
8.2	Dependence of generated radical on plasma treatment time	
	with 8.3 and 9.0 kV applied voltage at 5 s of aging time in	
	ambient air	121
8.3	XP-spectra of virgin LLDPE and LLDPE treated with 8.3	
	kV for 15 s	122
8.4	Deconvolution of XPS core level C1s and O1s spectra	123
8.5	O/C ratio of plasma treated LLDPE surface with various	
	voltages applied to DBD	124
8.6	Infrared absorbance spectra (transmission mode) of pristine	
	LLDPE, and 8.3 kV plasma treated LLDPE with various	
	treatment time	125
8.7	HATR-FTIR spectra of virgin LLDPE and plasma treated	
	LLDPE surface: the observation range of 1500-1800 cm ⁻¹	126
8.8	HATR-FTIR spectra of virgin LLDPE and plasma treated	
	LLDPE surface: the observation range of 3000-3600 cm ⁻¹	126
8 .9	Contact angle as a function of plasma treatment time with	
	8.3 and 9.0 kV applied voltage	127
8.10	Scanning electron micrographs of LLDPE surface	128
8.11	Scanning probe micrographs as obtained by 8.3 kV plasma	
	treatment voltage (scanning area: 5 μm x 5 μm)	129
8.12	Scanning probe micrographs as obtained by different kV	
	plasma treatment voltages and treatment times (scanning	
	area: 5 μm x 5 μm)	130

FIGURE

2

•

 $(\mathbf{x}_{i}, \mathbf{v})$

•

.....

CHAPTER IX

9.1	FT-IR spectra of pristine LLDPE, shear modified, chemical	
	peroxide modified, plasma modified, and plasma+peroxide	
	modified LLDPE in the range of 400 - 4000 cm ⁻¹	139
9.2	FT-IR spectra of pristine LLDPE, shear modified, chemical	
	peroxide modified, plasma modified, and plasma+peroxide	
	modified LLDPE in the range of 1650-1850 cm ⁻¹ and 3300-	
	3500 cm ⁻¹	140
9.3	MFI of LLDPE modified with various methods as a function	
	of chemical peroxide content	141
9.4	Arrhenius plot of bulk modified LLDPE	144
9.5	Elongational viscosity of virgin LLDPE and LLDPE	
	extrudate modified with various methods. Condition for	
	capillary rheometer: 40/1 L/D ratio of round flat-entrance die	
	at 190°C	145
9.6	Melt stress of LLDPE modified with various methods.	
	(Measurements were done using die of 5/1 L/D ratio at	
	different temperature, 190, 200, and 210°C.)	147
9.7	Extrudate swell ratio vs. real shear rate coming out of 40/1	
	L/D raio at 190°C	148
9.8	Tensile yield strength of bulk modified LLDPE measured	
	according to ASTM D822 with the strain rate of 500	
	mm/min	149
9.9	Young's modulus of bulk modified LLDPE	150
9.10	Percentage of strain at ultimate tensile stress of bulk	
	modified LLDPE	151

FIGURE

PAGE

CHAPTER IX

9.11	Characteristic tensile diagrams of bulk modified LLDPE	152
9.12	Density of LLDPE bulk modified with various methods.	
	Measurements were done at 27°C.	154
9.13	Oxygen permeability through undrawn films of LLDPE bulk	
	modified with chemical peroxide or 8.3 kV plasma +	
	peroxide modification	156
9.14	Storage modulus of virgin LLDPE, peroxide modified	
	LLDPE, and plasma modified LLDPE	158
9.15	Loss modulus of virgin LLDPE, peroxide modified LLDPE,	
	and plasma modified LLDPE	158
9.16	Tan δ of virgin LLDPE, peroxide modified LLDPE, and	
	plasma modified LLDPE	159