STUDIES ON DEGRADATION INHIBITORS FOR AMINE BASED SOLVENTS FOR CARBON DIOXIDE ABSORPTION FROM POWER PLANT FLUE GASES

Mr. Purachet Pitipuech

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University and Institut Français du Pétrole 2008

512019

Thesis Title:	Studies on Degradation Inhibitors for Amine-based Solvents
	for CO ₂ Absorption from Power Plant Flue Gases
By:	Purachet Pitipuech
Program:	Petrochemical Technology
Thesis Advisors:	Assoc. Prof. Chintana Saiwan
	Prof. Raphael Idem
	Prof. Paitoon Tontiwachwuthikul

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

Nantayo Janumet College Director

(Assoc. Prof. Nantaya Yanumet)

Thesis Committee:

Chritim Samm

(Assoc. Prof. Chintana Saiwan)

full dem

(Prof. Raphael Idem)

(Prof. Paitoon Tontiwachwuthikul)

2000

(Assist. Prof. Pomthong Malakul Na Ayudhaya)

ABSTRACT

4871021063: Petrochemical Technology Program
Purachet Pitipuech: Studies on Degradation Inhibitors for Amine
Based Solvents for CO₂ Absorption from Power Plant Flue Gases.
Thesis Advisors: Assoc. Prof. Chintana Saiwan, Prof. Paitoon
Tontiwachwuthikul, and Prof. Raphael Idem, 105 pp.
Keywords: Monoethanolamine, O₂, SO₂, CO₂, Degradation, Degradation

Inhibitors

Degradation of monoethanolamine during CO₂ absorption from power plant flue gases can cause significant problems in CO₂ capture process from flue gases. This work focused on developing degradation prevention or minimization techniques using degradation inhibitors. Various chemical additives were screened and tested as potential degradation inhibitors which are inhibitors UR-A, UR-B, UR-C and UR-D in the system of MEA-H₂O-O₂, MEA-H₂O-O₂-SO₂ and MEA-H₂O-O₂-SO₂-CO₂. HPLC-RID with nucleosil column/KH₂PO₄ mobile phase was capable of analyzing the degradation of MEA. The results showed that all of the degradation inhibitors were very effective in minimizing the rate of MEA degradation in the presence of O₂, SO₂ and CO₂ when used at their optimum concentrations. The highest reduction of MEA degradation rate was found to obtain at the optimum concentration of inhibitor UR-A, UR-B and UR-C of 0.05, 0.01 and 0.0025 kmol/m³, respectively. The highest reduction of MEA degradation rate was found to obtain at the optimum concentration of inhibitor UR-D in the presence of both O₂ and SO₂ at the optimum concentration of 0.025 kmol/m³.

บทคัดย่อ

ปุรเชษฐ์ ปิดิพืชญ์ : การศึกษาสารขับขั้งการเกิดปฏิกิริยาแยกสลายของ สารเอมีน ระหว่างการจับก๊าซคาร์บอนไดออกไซด์จากก๊าซของเสียที่ถูกสันดาบจากโรงไฟฟ้าพลังงานถ่าน หิน (Studies on Degradation Inhibitors for Amine Based Solvents for CO₂ Absorption from Power Plant Flue Gases) อาจารย์ที่ปรึกษา : รองศาสตราจารย์ คร .จินตนา สายวรรณ์ ศาสตราจารย์ คร .ไพฑูรย์ ตันติเวชวุฒิกุล และ ศาสตราจารย์ คร .ราฟาลเอล ไอเด็ม 105 หน้า

การแขกสลาขของ สาร โมโนเอทานอลามีนซึ่งเป็นสารในตระกูลเอมีนในระหว่างการจับ ้ก๊าซคาร์บอนไดออกไซค์จากก๊าซของเสียที่ถกสันคาบจากโรงไฟฟ้าพลังงานถ่านหินนั้นเป็น สาเหตุที่ส่งผลให้เกิดปัญหาอย่างมากในระหว่างการคักจับก๊าซคาร์บอนไคออกไซค์ออกจากก๊าซ ของเสีย งานวิจัยนี้จึงได้ศึกษาวิธีป้องกันปฏิกิริยาการแยกสลายของ สาร โม โนเอทานอลามีนโคย ใช้สารยับยั้ง ซึ่งงานวิจัยนี้ได้ศึกษาสารยับยั้งทั้งหมด 4 สารดังนี้ สารยับยั้ง UR-A (Inhibitor UR-A) สารยับยั้ง UR-B (Inhibitor UR-B) สารยับยั้ง UR-C (Inhibitor UR-C) และ สารยับยั้ง UR-D (Inhibitor UR-D) ในระบบที่มี MEA-H,O-O, MEA-H,O-O,-SO, และ MEA-H,O-O,-SO,-CO, ้อีกทั้งขังวิเคราะห์หาอัตราการเกิดปฏิกิริยาแยกสลายของโมโนเอทานอลามีนโคยใช้เครื่องมือ ้วิเคราะห์ชั้นสูง HPLC-RID ร่วมกับคอลัมนิวคลีโอซิล (Nucleosil) โคยมีเฟสเคลื่อนที่ KH,PO4ผล การทดลองบ่งชี้ว่าสารยับยั้งทั้งหมดที่ใช้ในการศึกษานั้นสามารถลดอัตราการเกิดปฏิกิริยา แขกสลาขของสาร โมโนเอทานอลามีนในระบบที่มีก๊าซ ออกซิเงน ซัลเฟอร์ไดออกไซค์และ คาร์บอนไดออกไซค์ได้ โดยสารขับยั้ง UR-A UR-Bและ UR-C สามารถลดอัตราการเกิดปฏิกิริยา แขกสลายของสาร โม โนเอทานอลามีน เมื่อใช้ที่ความเข้มข้นที่ 0.05 0.01และ 0.0025 kmol/m³ ตามลำคับ อีกทั้งสารขับขั้ง UR-D สามารถลดอัตราการเกิดปฏิกิริยาแยกสลายของสารโมโนเอทา ้นอลามีน ในระบบที่มีก๊าซ ออกซิเงนและ ซัลเฟอร์ไคออกไซด์ เมื่อใช้ที่ความเข้มข้นที่ 0.025 kmol/m³

ACKNOWLEDGEMENTS

This thesis could not have been completed without all invaluable helps of the following individuals and organizations.

First of all, I would like to thank my supervisor, Associate Prof. Chintana Saiwan for her invaluable guidance, suggestions, understanding, and constant encouragement throughout the course of the research.

I would like to express my sincere gratitude to Prof. Patioon Tontiwachwuthikul, my supervisor at the University of Regina, Canada for allowing me to have the great opportunity to carry out all my research at the International Test Centre for CO_2 Capture (ITC), University of Regina, Regina, Saskatchewan, Canada. I am also thankful for his advices, encouragement and full financial support through his grants during my twenty four months research work there.

Also my supervisor, Prof. Raphael Idem is greatly appreciated for supervising my research from the beginning to the end. His positive attitude significantly contributed to inspiring and maintaining my enthusiasm in the field. Without him, this thesis could not have been possible.

I would like to express my enormous thank to my father, Mr.Susawad Pitipuech, my mother, Mrs.Somrudee Lee-laprasert, my sister and my brother, and my best friend, Ms.Nattawan Kladkaew for their love and support, and helping me through the difficult time, their motivation and understanding played the greatest role in my success.

My gratefulness is conveyed to the ITC technician, Ms.Robyn Fahlman, Engineering workshop, Mr.Harald Berwald and Mr.Harlen Berwald and my coworker, Mr.Teeradet Supap. My thankfulness is also offered to my colleagues in Regina, Chisuta Soomlek, Sirirat Kerdsawad, Yaowalak Tongprasart, and Sakarin Khaisri for their valuable comments and helping me through the difficult times during twenty four months of my stay there.

I would like to express my special thanks to Assistant Prof. Pomthong Malakul Na Ayudhya for serving on my thesis committee. Their sincere suggestions are definitely imperative for accomplishing my thesis.

TABLE OF CONTENTS

PAGE
i
iii
iv
v
vi
ix
xii

CHAPTER

PAGE

I	INTRODUCTION	1
II	LITERATURE REVIEW	4
	2.1 Carbon Dioxide Capture Process	4
	2.2 Amine and Their Reaction with CO ₂	8
	2.3 Amine Degradation and Types	11
	2.4 Effect of Other Components of Flue Gas on Amine	
	Degradation	12
	2.5 Oxygen Induced Degradation of Alkanolamines	13
	2.6 Sulfur Induced Degradation of Alkanolamines	22
III	EXPERIMENTAL	24
	3.1 Equipment and Chemicals	24
	3.2 Experimental Procedures	26
	3.2.1 Typical Experimental Run	27
	3.2.1.1 Degradation System without Inhibitor	27
	3.2.1.2 Degradation System with Inhibitors	29

vi

CHAPTER		PAGE
	3.2.1.3 Degradation System with Blended Inhibitors:	
	UR-A with UR-B and UR-A with UR-C in	
	MEA-H ₂ O-O ₂ -SO ₂ Degradation Systems	31
	3.3 Analysis of Degradation Products using a High Performance	
	Liquid Chromatographic Technique (HPLC)	34
	3.3.1 Preparation of HPLC Mobile Phase	34
	3.3.2 Preparation of Collected Samples	34
	3.3.3 HPLC Operating Conditions	34
	3.4 Degadation Analysis	35
	3.4.1 Determination of MEA Concentration	35
IV	RESULTS AND DISCUSSION	37
4 - 1	4.1 Criteria of Screening Degradation Inhibitors	37
	4.2 Visual Observation of Degraded Samples	38
	4.3 The Performance of Inhibitor UR-A	39
	4.3.1 Determination of Optimum Concentration of	
	Inhibitor UR-A in MEA-H ₂ O-O ₂ Degradation System	40
	4.3.2 Inhibition Performance of Optimum Concentration of	
	UR-A as a Function of SO ₂ Concentration in	
	MEA-H ₂ O-O ₂ -UR-A Degradation System	43
	4.4 The Performance of Inhibitor UR-B	46
	4.4.1 Determination of Optimum Concentration of	
	Inhibitor UR-B in MEA-H ₂ O-O ₂ -SO ₂	
	Degradation System	46
	4.4.2 Inhibition Performance of Optimum Concentration	
	of UR-B as a Function of SO ₂ Concentration in	
	MEA-H ₂ O-O ₂ -UR-B Degradation System	49
	4.5 The Performance of Inhibitor UR-C	51
	4.5.1 Determination of Optimum Concentration of	
	Inhibitor UR-C in MEA-H ₂ O-O ₂ -SO ₂	

-9

CHAPTER		PAGE
	Degradation System	52
	4.5.2 Inhibition Performance of Optimum Concentration	on
	of UR-C as a Function of SO ₂ Concentration in	
	MEA-H ₂ O-O ₂ -UR-C Degradation System	55
	4.6 The Performance of Inhibitor UR-D	57
	4.6.1 Determination of Optimum Concentration of	
	Inhibitor UR-D in MEA-H ₂ O-O ₂ -SO ₂	
	Degradation System	57
	4.7 The Performance of Blended Inhibitors;	
	UR-A blended with UR-B and UR-A blended with UF	R-C 60
	4.8 The Performance of Degradation Inhibitors in CO ₂ Loa	ding 63
	14	
V	CONCLUSIONS AND RECOMMENDATIONS	68
	5.1 Conclusions	68
	5.2 Recommendations	69
	REFERENCES	71
	APPENDICES	75
	Appendix A Concentration-Degradation Rate Time	
	Data of Oxidative Degradation Inhibitors	
	for MEA Experiments	75
	Appendix B Summary Operating Conditions and	
	Degradation Rates of Oxidative Degradation	n
	Inhibitors for MEA Experiments	97
	Appendix C The sample plot of HPLC technique	102
CURR	UCULUM VITAE	105

viii

LIST OF TABLES

TABLE

2.1	Typical composition of coal-fired power plant flue gases	
	after SO ₂ scrubbing	11
4.1	Possible degradation inhibitors for minimizing the MEA	
	degradation rate	38
4.2	Summary of the performance of degradation inhibitors	66
Al	Run number 1: 7 kmol/m ³ MEA, 100% O ₂ , and 120°C	75
A2	Run number 2: 7 kmol/m ³ MEA, 100% O ₂ , 0.1 kmol/m ³	
	inhibitor UR-A, and 120°C	75
A3	Run number 3: 5 kmol/m ³ MEA, 6% O_2 , and 120°C	76
A4	Run number 4: 5 kmol/m ³ MEA, 6% O_2 , 0.3 kmol/m ³	
	inhibitor UR-A, and 120°C	7 6
A5	Run number 5: 5 kmol/m ³ MEA, 6% O ₂ , 0.1 kmol/m ³	
	inhibitor UR-A, and 120°C	77
A6	Run number 6: 5 kmol/m ³ MEA, 6% O ₂ , 0.05 kmol/m ³	
	inhibitor UR-A, and 120°C	77
A7	Run number 7: 5 kmol/m ³ MEA, 6% O_2 , 6 ppm SO ₂ , and	
	120°C	78
A8	Run number 8: 5 kmol/m ³ MEA, 6% O ₂ , 6 ppm SO ₂ , 0.05	
	kmol/m ³ inhibitor UR-A, and 120°C	78
A 9	Run number 9: 5 kmol/m ³ MEA, 6% O_2 , 196 ppm SO ₂ ,	
	0.05 kmol/m ³ inhibitor UR-A, and 120°C	7 9
A10	Run number 10: 5 kmol/m ³ MEA, 6% O ₂ , 196 ppm SO ₂ ,	
	0.05 kmol/m ³ inhibitor UR-A, and 120°C	7 9
A11	Run number 11: 5 kmol/m ³ MEA, 6% O ₂ , 196 ppm SO ₂ ,	
	0.33 CO_2 loading, and 120°C	80
A12	Run number 12: 5 kmol/m ³ MEA, 6% O_2 , 196 ppm SO ₂ ,	
	0.33 CO_2 loading, 0.05 kmol/m^3 inhibitor UR-A, and 120°C	81

TABLE

PAGE

A13	Run number 13: 5 kmol/m ³ MEA, 6% O ₂ , 0.1 kmol/m ³	
	inhibitor UR-B, and 120°C	82
A14	Run number 14: 5 kmol/m ³ MEA, 6% O ₂ , 0.01 kmol/m ³	
	inhibitor UR-B, and 120°C	82
A15	Run number 15: 5 kmol/m ³ MEA, 6% O ₂ , 6 ppm SO ₂ , 0.3	
	kmol/m ³ inhibitor UR-B, and 120°C	83
A16	Run number 16: 5 kmol/m ³ MEA, 6% O ₂ , 6 ppm SO ₂ , 0.1	
	kmol/m ³ inhibitor UR-B, and 120°C	84
A17	Run number 17: 5 kmol/m ³ MEA, 6% O ₂ , 6 ppm SO ₂ ,	
	0.06 kmol/m ³ inhibitor UR-B, and 120°C	85
A18	Run number 18: 5 kmol/m ³ MEA, 6% O ₂ , 6 ppm SO ₂ ,	
	0.03 kmol/m ³ inhibitor UR-B, and 120°C	85
A19	Run number 19: 5 kmol/m ³ MEA, 6% O ₂ , 6 ppm SO ₂ ,	
	0.01 kmol/m ³ inhibitor UR-B, and 120°C	85
A20	Run number 20: 5 kmol/m ³ MEA, 6% O ₂ , 6 ppm SO ₂ ,	
	0.005 kmol/m ³ inhibitor UR-B, and 120°C	86
A21	Run number 21: 5 kmol/m ³ MEA, 6% O ₂ , 196 ppm SO ₂ ,	
	0.01 kmol/m ³ inhibitor UR-B, and 120°C	87
A22	Run number 22: 5 kmol/m ³ MEA, 6% O ₂ , 196 ppm SO ₂ ,	
	0.33 CO_2 loading, 0.01 kmol/m ³ inhibitor UR-B, and	
	120°C	87
A23	Run number 23: 5 kmol/m ³ MEA, 6% O ₂ , 0.0025 kmol/m ³	
	inhibitor UR-C, and 120°C	88
A24	Run number 24: 5 kmol/m ³ MEA, 6% O ₂ , 6 ppm SO ₂ , 0.1	
	kmol/m ³ inhibitor UR-C, and 120°C	89
A25	Run number 25: 5 kmol/m ³ MEA, 6% O ₂ , 6 ppm SO ₂ ,	
	0.005 kmol/m ³ inhibitor UR-C, and 120°C	89
A26	Run number 26: 5 kmol/m ³ MEA, 6% O ₂ , 6 ppm SO ₂ ,	
	0.0025 kmol/m ³ inhibitor UR-C, and 120°C	90

х

TABLE

PAGE

A27	Run number 27: 5 kmol/m ³ MEA, 6% O ₂ , 6 ppm SO ₂ ,	
	0.00125 kmol/m ³ inhibitor UR-C, and 120°C	91
A28	Run number 28: 5 kmol/m ³ MEA, 6% O ₂ , 196 ppm SO ₂ ,	
	0.0025 kmol/m ³ inhibitor UR-C, and 120°C	91
A29	Run number 29: 5 kmol/m ³ MEA, 6% O ₂ , 196 ppm SO ₂ ,	
	0.33 CO ₂ loading, 0.0025 kmol/ m^3 inhibitor UR-C, and	
	120°C	92
A30	Run number 30: 5 kmol/m ³ MEA, 6% O ₂ , 6 ppm SO ₂ , 1	
	kmol/m ³ inhibitor UR-D, and 120°C	93
A31	Run number 31: 5 kmol/m ³ MEA, 6% O ₂ , 6 ppm SO ₂ , 0.5	
	kmol/m ³ inhibitor UR-D, and 120°C	93
A32	Run number 32: 5 kmol/m ³ MEA, 6% O ₂ , 6 ppm SO ₂ ,	
	0.025 kmol/m ³ inhibitor UR-D, and 120°C	94
A33	Run number 33: 5 kmol/m ³ MEA, 6% O ₂ , 196 ppm SO ₂ ,	
	0.05 kmol/m ³ inhibitor UR-A blend with 0.01 kmol/m ³	
	inhibitor UR-B, and 120°C	95
A34	Run number 34: 5 kmol/m ³ MEA, 6% O ₂ , 196 ppm SO ₂ ,	
	0.05 kmol/m ³ inhibitor UR-A blend with 0.0025 kmol/m ³	
	inhibitor UR-C, and 120°C	95
Bl	Operating conditions and degradation rates of oxidative	
	degradation of MEA with inhibitor UR-A	97
B2	Operating conditions and degradation rates of oxidative	
	degradation of MEA with inhibitor UR-B	98
B3	Operating conditions and degradation rates of oxidative	
	degradation of MEA with inhibitor UR-C	99
B4	Operating conditions and degradation rates of oxidative	
	degradation of MEA with inhibitor UR-D	100
B5	Operating conditions and degradation rates of oxidative	
	degradation of MEA with blended inhibitors	101

xi

LIST OF FIGURES

FIGURE

1.1 Direct contributions due to anthropogenic emissions from 1 pre-industrial times to date 2 1.2 World Energy Supply 2002 6 2.1 Simplified alkanolamine-based CO₂ capture process 2.2 Chemical structures of conventional alkanolamines used in 9 gas sweetening 2.3 One of the first mechanisms of oxidation degradation of MEA attributed to Jefferson Chemicals 14 Mechanism of the oxidative degradation of MEA 15 2.4 Mechanism of MEA oxidation 20 2.5 3.1 Schematic of inhibitors for MEA oxidative degradation experiments: Experimental set-up and analysis 33 4.1 Appearance of the MEA samples after being contacted with 100% O₂ at various times (5 kmol/m³ MEA, 100% 38 O_2 , and $120^{\circ}C$). 4.2 Appearance of the MEA samples with inhibitor after being contacted with 6% O₂ at various times (5 kmol/m³ MEA, 6% O₂, with inhibitor UR-B, and 120°C). 39 4.3 Effects of concentration of inhibitor UR-A on MEA-H₂O-O₂ degradation system (5 kmol/m³ MEA, 6% O₂, and 120°C). 40 The performance of inhibitor UR-A on MEA-H₂O-O₂ 4.4 degradation system (5 kmol/m³ MEA, 6% O₂, and 120°C). 41 4.5 Negative effect of excess inhibitor UR-A on MEA-H₂O- O_2 degradation system (7 \mbox{kmol}/\mbox{m}^3 MEA, 100% $O_2,$ and 120°C) 42

xii

4.6	The inhibition performance of inhibitor UR-A on MEA	
	degradation as a function of SO ₂ concentration in the	
	MEA-H ₂ O-O ₂ -SO ₂ -UR-A degradation system (5 kmol/m ³	
	MEA, 6% O ₂ , 0,6,196 ppm SO ₂ , and 120°C).	45
4.7	The performance of inhibitor UR-A in the MEA-H ₂ O-O ₂ -	
	SO ₂ degradation system (5 kmol/m ³ MEA, 6% O ₂ , 0,	
	6,196 ppm SO ₂ , and 120°C).	46
4.8	Effects of concentration of inhibitor UR-B on MEA-H ₂ O-	
	O ₂ -SO ₂ degradation system (5 kmol/m ³ MEA, 6% O ₂ , 6	
	ppm SO ₂ , and 120°C).	47
4.9	The performance of inhibitor UR-B on MEA-H ₂ O-O ₂ -SO ₂	15
	degradation system (5 kmol/m ³ MEA, 6% O ₂ , 6 ppm SO ₂ ,	4
	and 120°C).	48
4.10	The inhibition performance of inhibitor UR-B on MEA	
	degradation as a function of SO ₂ concentration in the	
	MEA-H ₂ O-O ₂ -SO ₂ -UR-B degradation system (5 kmol/m ³)	
	MEA, 6% O ₂ , 0, 6,196 ppm SO ₂ , and 120°C).	50
4.11	The performance of inhibitor UR-B in the MEA- $\dot{H_2}O-O_2$ -	
	SO ₂ degradation system (5 kmol/m ³ MEA, 6% O ₂ , 0,	
	6,196 ppm SO ₂ , and 120°C).	51
4.12	Effects of concentration of inhibitor UR-C on MEA-H ₂ O-	
	O ₂ -SO ₂ degradation system (5 kmol/m ³ MEA, 6% O ₂ , 6	
	ppm SO ₂ , and 120° C).	54
4.13	The performance of inhibitor UR-C on MEA-H ₂ O-O ₂ -SO ₂	
	degradation system (5 kmol/m ³ MEA, 6% O ₂ , 6 ppm SO ₂ ,	
	and 120°C).	54

xiii

i Seria de

4.14	The inhibition performance of inhibitor UR-C on MEA	
	degradation as a function of SO ₂ concentration in the MEA-	
	H ₂ O-O ₂ -SO ₂ -UR-C degradation system (5 kmol/m ³ MEA,	
	6% O ₂ , 0,6,196 ppm SO ₂ , and 120°C).	56
4.15	The performance of inhibitor UR-C in the MEA-H ₂ O-O ₂ -	
	SO ₂ degradation system (5 kmol/m ³ MEA, 6% O ₂ , 0, 6,196	
	ppm SO ₂ , and 120°C).	57
4.16	Effects of concentration of inhibitor UR-D on MEA-H ₂ O-	
	O ₂ -SO ₂ degradation system (5 kmol/m ³ MEA, 6% O ₂ , 6	
	ppm SO ₂ , and 120° C).	59
4.17	The performance of inhibitor UR-D on MEA-H ₂ O-O ₂ -SO ₂	
	degradation system (5 kmol/m ³ MEA, 6% O ₂ , 6 ppm SO ₂ ,	4.9
	and 120°C).	60
4.18	Effects of blended inhibitors on MEA-H ₂ O-O ₂ -SO ₂	
	degradation system (5 kmol/m ³ MEA, 6% O ₂ , 196 ppm SO ₂ ,	
	and 120°C).	62
4.19	The performance of blended inhibitors on MEA-H ₂ O-O ₂ -S	
	degradation system (5 kmol/m ³ MEA, 6% O ₂ , 196 ppm SC	
	and 120°C).	63
4.20	Effects of CO ₂ loading and degradation inhibitors on MEA-	
	H ₂ O-O ₂ -SO ₂ degradation system (5 kmol/m ³ MEA, 6% O ₂ ,	
	196 ppm SO ₂ , and 120°C).	65
4.21	The performance of degradation inhibitors on MEA-H ₂ O-	
	O ₂ -CO ₂ -SO ₂ degradation system (5 kmol/m ³ MEA, 6% O ₂ ,	
	196 ppm SO ₂ , and 120°C).	66
Cl	MEA calibration curve	102
C2	MEA concentration-time plot	102
C3	MEA degradation rate-time plot	103
C4	Schematic of the degradation analysis	104