
P r o p o s e d C o - a l l o c a t i o n S t r a t e g i e s

This chapter presents grid architecture for co-allocation assumed for the study
in this thesis. It includes the responsibilities of client, server and co-allocator in the
co-allocation scheme. Then, the next section presents algorithms for fragment
selection which is an important part of the co-allocation for fragmented replicas. Five
algorithms - Random, Round-robin, Random-with-weighted-probability, Biggest-
remaining-first and Fewest-replicas-first algorithms - are studied

3 .1 G r id A r c h i t e c t u r e f o r C o - a l lo c a t io n

The architecture for co-allocation in this study is adapted from the architecture
of the dynamic co-allocation scheme as shown in Figure 1. A grid is composed of
many servers connected via network. One server is chosen as a co-allocator which
connects to a client. The client wants to download a dataset from servers. Other
servers ร 1, ร2, ร3, รท contain replicas of fragments of the dataset.

Figure 1 : Grid architecture

The dataset is composed of m non-overlapping fragm ents F I , F2, F3, and
Fm, whose sizes are denoted by \Fi\, IF2I, |Fj|, and \Fm\ respectively. All
fragments are not necessarily of the same size. Each fragment is divided into blocks
of k MB. Then, a fragment Fj is divided into พ = โI Fj\/ k I blocks. The size of all but
the last block of a fragment is k MB, and the size of the last block is |F,| mod k, where
/' = 1, 2, ร, m.

Replicas of these fragments are stored in servers. Each server can replicate any
number of fragments, and does not necessarily have replicas of every fragment.

Figure 2 shows a dataset consisting of five fragments, F/, F2, Fj, F4 and Fj.
The fragment F I is replicated to server ร1, ร2 and S3, the fragment F2 to only server S3,
the fragment F 3 to server ร2 and S3, the fragment F4 to all servers and the fragment F5

to server ร3 and S 4.

15

S i

ร 2
ร3
ร4

F f4
fl§ F Fs f4Û., F F F3 filF4 llllfff F5- '■ 1 *

F4 Fi
Fragment F1 Fragment F2 Frag Fs Frag F4 Fragment Fi
k k k k k 1 k k k k k k k โๆ k k k k k k k k k k k k k k k 1

> re p lic a

\F1\ mod k \F2\ mod k \F3\ mod k \F4\ mod k \Fs\ mod k
Figure 2: The replication of fragments among servers

3.1.1 C lie n t

When the client wants to download a dataset, it sends a request to the co
allocator. The client then waits for blocks of data from servers, which transmit blocks
according to the assignments from the co-allocator. Once the client gets a block, it
sends a message to the co-allocator to report the completion of the block transmission,
as shown in Figure 3.

16
The client:
Sent a request to download dataset
ON receive the block B from the server Sj

Send a message to the co-allocator to report the completion of transmission of block
B from the server ร,

Figure 3: Function of the client

3.1.2 Serve rs

A server waits for the assignment from the co-allocator. After the assignment
is received, the server transfers the assigned block to the client, as shown in Figure 4

Server:
ON receive the assignment to send a block B to the client

Transfer the block B to the client
Figure 4: Function of the server

3.1.3 C o -a llo c a to r

The co-allocator knows the location of all replicas. Once the co-allocator gets
the request, it uses this information to assign servers to send blocks of the replicas.

The co-allocator decides, for each server, which fragments, among all
fragments that are available in the server, should be assigned for transmission at that
time. Once the co-allocator assigns the fragment to the server, the server chooses a
block in the assigned fragment to be transferred to the client. From Figure 5, the
fragments F I and F 4 are replicated in ร';. The co-allocator can assign a block from the
replicas of either Fi or F 4 to the server ร,; according to fragment selection algorithms
described in Section 3.2. On server ร2, the fragments Fl, F 3 and F 4, are replicated. As
a result, the co-allocator assigns a block from replicas of F I, F 3 or F4.

When a client wants to download fragments of data, it sends a request to the
co-allocator. The co-allocator waits for a request sent by a client to start transmission.
When the co-allocator gets the request, it divides all fragments into small blocks and
set the state of blocks to initial. It chooses a fragment for each server and then
chooses a block from the given fragment. The co-allocator assigns the chosen block to
server ร, for transmission.

17

Figure 5: Example of fragment placement on servers

Once a server finishes transferring an assigned block, it waits for the next
block assignment from the co-allocator. When the co-allocator receives the message
from the client reporting the completion of a block transfer from the server Si, the co
allocator chooses a replica among all replicas on the server, Si, using function
choose_replica, and assigns a block of the chosen replica to the server Si, as shown in
Figure 6.

The strategies for choosing a replica of a fragment, which are studied in this
thesis, will be presented in Section 3.2.

1 8

Co-allocator:
ON receive a client’s request

Divide all fragments into blocks and set the state of all blocks to initial.
FOR each server i among all ท servers

/* Choose an appropriate fragment for server i */
Fa = choose_fragment(server i).
/* Choose a block in the replica of Fa */
B = choose_block(F0).
Assign the block B to server i.

ENDFOR

ON receive completion report of block B by the server i, from the client
Change the state of the block B to completed.
IF there is an uncompleted block available on server i

/*Choose an appropriate fragment for server 7 */
Fa = choose_fragment(server /■).
/* Choose a block in fragment Fa */
B = choose_block(Fa).
Assign the block B to server i.

ENDIF

FUNCTION choose_block(fragment F)
IF there is a block B of the fragment F in the state initial

Change the state of B to assigned.
RETURN B

ELSEIF there is a block B of the fragment F in the state assigned.
RETURN B

ENDIF
Figure 6: Function of the co-allocator

After the replica is chosen, the co-allocator chooses a block of the chosen
replica, using the function chooseblock shown in Figure 6, to be transmitted based
on the state of the blocks. A block in each replica is in one of the three possible
states - initial, assigned, and completed. In the beginning, each block is in the initial
state. The state of the block is changed to assigned when the co-allocator assigns the
block to a server, and changed to completed when the co-allocator receives a message

from the client that the block is successfully downloaded a from the server, as shown
in Figure 7.

A block is re-assigned to another server

Figure 7: State transition of a block

Function choose_block(fragment F a) selects a block of a given fragment. It
checks all blocks of the given replica. If there is a block in the initial state, the co
allocator assigns a block in the initial state first. Otherwise, the co-allocator finds the
block in the assigned state and re-assigns this block to a server. The reassignment is
useful when a block gets delay by broken or congested links. However, if the client
receives more than one copy of the same block, the co-allocator keeps the first block
and discards the rest. If there is no block in the assigned or initial state, i.e., all blocks
are in the completed state, the fragment will not be further considered for
transmission. This process is repeated until all fragments are transmitted.

For the co-allocator to assign a block to a server, it must first choose an
unfinished fragment for the transmission, shown as the function choose_fragment in
the algorithm in Figure 6. The algorithms to choose fragment are described in the next
section.

20

3 .2 C o - a l lo c a t io n w i t h F r a g m e n t S e le c t io n s

This section describes fragment selections studied in this thesis. Random and
Round-robin algorithms presented in Section 3.2.1 and 3.2.2 are used as baselines for
the comparison to Random-with-weighted-probability, Biggest-remaining-first and
Fewest-replicas-first algorithms presented in Section 3.2.3 - 3.2.5.

3.2.1 R andom A lg o r ith m

This algorithm is used as one of baseline algorithm in this study because,
using no information about grid or replicas, the assignment of fragments to servers is
chosen at random with equal probability among all fragments. For this algorithm,
when the co-allocator assigns a fragment to server ร,;, the co-allocator randomly
chooses one fragment, among all fragments have not been completely transmitted,
with uniform probability. If the server ร'; has a replica of the chosen fragment, the co
allocator assigns the server Si to transfer the chosen fragment, if not, the chosen
fragment will be considered for the next assignment so that the fragment does not lose
its chance. The co-allocator continues choosing a fragment until it gets one with a
replica located in the server. The next time the co-allocator chooses a fragment, it
picks a fragment that is previous chosen but cannot be assigned before choosing one
at random.

To implement Random algorithm, a linked list is used to store the chosen
fragments which cannot be assigned because its replica is not stored on the server.
Once the server ร'; requests for a fragment, the co-allocator assigns the first fragment
in the linked list which is replicated on the server ร,; and removes it from the linked
list. However, if the co-allocator cannot find a fragment located in the server, it
randomly chooses a fragment as described earlier. Every chosen fragment which
cannot be assigned is kept in the linked list for next assignments. This algorithm is
presented in Figure 8.

ห อ ส บ ุ* ก ล า ง ส ำน ้ก งาน ว ิท ย ท ร ัพ ย าก ร
ชุVกลงกรณ',ม ห าว ิท ย าล ัย

Consider an example of fragment placement on server in Figure 5. Figure 9
shows the linked list at different time. At to the linked list is empty and the co
allocator finds a fragment from the server ร]. At time 11, the co-allocator gets the
message that server ร 1 finishes transferring the assigned block. Suppose the co
allocator chooses the fragment F2 but is not in the server ร]. The co-allocator keeps
the fragment F2 in the linked list, as shown in Figure 9, and randomly re-chooses
another fragment. Suppose the fragment F 4 which is in the server ร/ is chosen. Then,
the co-allocator assigns the fragment F 4 to the server ร] to be transmitted.

21

FUNCTION choose_fragment(server j)
IF there is a fragment F a in the linked list where Fa is replicated at server i

Remove F a from the linked list
RETURN Fa

ELSE
Randomly choose a fragment Fa from all fragments which need to be

transferred with uniform probability
WHILE F a is not in server Si

Append F a to the linked list
Randomly choose a fragment F a from all fragments which need to be

transferred with uniform probability
END WHILE
RETURN F a

ENDIF
Figure 8: Random algorithm

At time บ, the co-allocator finds a fragment for the server ร2- It starts by
searching for the entries in the linked list. It finds only the fragment F2 which is not
located in the server ร2- So, the co-allocator randomly picks a fragment, say F5. But
the fragment F5 is not located in the server ร2, and the fragment F5 is added to the
linked list as shown in Figure 9. The co-allocator re-chooses a fragment, say F4. The
co-allocator assigns the fragment F4 to the server ร2.

At time บ, the co-allocator finds a fragment for the server ร/. It searches for
the entries in the linked list, and there is no fragment in the linked list which is located

in the server ร]. So, the co-allocator randomly chooses a fragment, say F2- Since the
fragment F2 is not located in the server ร'/, it is stored in the linked list as shown in
Figure 9. The co-allocator randomly re-chooses a fragment, say F]. Since the
fragment F I is in the server ร], the co-allocator assigns the fragment F] to the server
Si.

2 2

At time Î4, the co-allocator finds a fragment for the server S3. It searches in the
linked list and finds the fragment F2 which is replicated to the server S3 So, the co
allocator removes the fragment F2 from the linked list, as shown in Figure 9, and
assigns the fragment F2 to the server S 3.

Figure 9: Linked list for Random algorithm

3.2.2 R o u n d - ro b in A lg o r ith m

Like Random algorithm, Round-robin algorithm is used as a baseline for
comparing different strategies, but this algorithm focuses on fragments replicated
locally. For each server, every replica located in the server has an equal chance to be
selected.

When the co-allocator receives a message from the client that block
transmission from a server is completed, the co-allocator selects a fragment from all

fragments replicated on the server in turn. Unlike Random algorithm, Round-robin
algorithm chooses only fragments stored locally. As a result, a fragment with more
replicas has higher chance to be transmitted.

For the replication shown in Figure 10, the server Si has replicas of the
fragments F 1 and F 4. When the co-allocator assigns fragments to the server 1ร,/, the
fragments F i and F 4 are assigned in turn. If the whole fragment is completely
transferred to the client, it will no longer be considered for assignment. For example,
if the fragment F i is completely downloaded to the client, the co-allocator always
selects the fragment F 4 for the server Si.

Similarly, in the server ร2, the fragments F 1, F 3 and F 4 are replicated in server
ร2. The co-allocator selects the fragment F i first and then F 3 and F 4, i.e., the fragments
F], F 3 and F 4 are assigned in turn.

23

ร,
ร2
ร3
ร4

Figure 10: Fragments to be assigned at time t for Round-robin algorithm

Figure 10 shows the fragment assigned to each server at different point of
time. Suppose the co-allocator finds a fragment to be assigned to the servers. At บ, the
co-allocator assigns the fragment Fi for the server S/. At บ to บ, the co-allocator
assigns the fragments F 1 to both the servers ร2 and ร3, and F 4 to the server ร4. At บ,
the co-allocator gets the message that the server Si finishes transferring the assigned
block; it assigns the fragment fU because its last assignment is the fragment F 1. So, at
บ, when the server ร! requests the next block, the co-allocator assigns the fragment
Fi.

The server ร4 has two fragments, the fragments F 4 and F 5. When the server ร4

is assigned a block, it gets blocks from the fragments F 4 and F5 in turn as shown in บ,
บ, tj3 and บ9.

24

As described earlier, Random algorithm selects each fragment with uniform
probability. Like Random algorithm, Random-with-weighted-probability algorithm
selects fragment randomly, but the probability for choosing each fragment is weighted
by its size.

For each server, the co-allocator chooses a fragment, among all replicas stored
at the server, at random with the probability proportional to the size of fragment
replicated on that server. That is, a bigger fragment is chosen more often than a
smaller fragment. When a fragment replicated on the server is completely transferred,
the probability is changed because a completed fragment is no longer considered.

For example, fragments F], F2, F3, F4 and Fj are distributed on a grid. The
ratio of |F/|: IW2 Iะ |Fj|: |FV|: \Fs\ is 6 : 8 : 4: 5: 10. So, the co-allocator assigns blocks
from the fragment F 5 more often than that from the fragment F2 and blocks from the
fragment F2 more often than that from the fragment F I and the block from the
fragment Fi more often than that from the fragment F4 and the block from the
fragment F4 more often than that from the fragment F3. If a server has replicas of all
these five fragments, the probabilities to choose the fragments F 1, F2, F3, F4 and F5

a rey § ’ 33 ’ 33 ’ 33 an^ 3§ ’ resPectively-

If another server has replicas of the fragments F I and F4, the probabilities of
F I and F 4 to be chosen are yy and yy, respectively.

Random-with-weighted-probability algorithm uses the original fragment size
to determine the fragment selection. This information is static and can be defined
before data transmission. To select the fragment based on the original fragment size
might not reflect the real-time situation because the fragment size has been changed
all the time during the transmission.

3.2.3 R andom -w ith-w eighted-probability A lgorithm

25

As described in the previous section, the probability of choosing each
fragment is static and does not reflect the actual workload. On the other hand,
Biggest-remaining-first algorithm uses the size of remaining replica as the factor to
choose a fragment. This helps the system adjust to select fragment. The bigger
fragment takes longer to transfer comparing to a smaller one. Later, this might cause
that the server transfers only the bigger fragment while the small one is completed and
other servers must wait for this server. To balance the bigger and smaller fragment
transmission, the co-allocator should select the fragment that has the bigger size to be
sent first.

For this strategy, the co-allocator chooses a fragment, among all replicas
stored at the server, by considering the size of the remaining fragment. A fragment
which has the biggest amount of unsent data is sent first. Thus, the size of unsent data
needs to be updated when a block of the fragment is completely transferred to the
client. When the co-allocator finds a fragment to assign to a server, the co-allocator
compares the remaining size of each fragment and chooses the fragment that has the
biggest amount of remaining data. If there are more than one replica has the same
amount of remaining data which is the biggest, the co-allocator randomly selects from
one of those fragments.

Figure 11 shows the fragment selection using Biggest-remaining-first
algorithm. When fragments are shown in dash line, it means that the fragments are not
replicated on the server. At time to, the co-allocator gets the message that the server Si
finishes transferring the assigned block and finds a fragment to assign to the server Si.
The co-allocator checks the remaining fragment size of the fragments Fi and F4 which
are replicated on the server Si as shown in Figure 11. Because the fragment F I has
bigger remaining amount of data, the co-allocator assigns the fragment F] to the
server Si. Once the client gets the block of the fragment F 1, the remaining size of the
fragment Fi is updated.

3.2.4 B iggest-rem aining-fîrst A lgorithm

At time 11 , the co-allocator finds a fragment for the server ร3. It checks the
remaining amount of unsent data of the fragments F 1, F 3 and F 4 which are replicated
on the server ร2. The fragments F] and F3 have the same biggest remaining amount of
unsent data among three fragments, so the co-allocator selects randomly from these
fragments and the fragment F 1 is selected. Suppose the block transmission of the
fragment F] is done between time ti and Î2, so the size of remaining data of the
fragment F] is updated.

At time Î2, the co-allocator finds a fragment for the server ร3. It selects the
fragment F j because it has the biggest amount of remaining data. The block
transmission of the fragment F5 is completed before time t3, so the size of remaining
data of the fragment F 5 is updated.

Similarly, at time t3, the co-allocator selects the fragment F3, and the fragment
size of remaining data of the fragment F3 is updated before time Î4-

At time 13, the size of remaining data of the fragment F3 still remains because
it is not yet completed transmission. However, this is not considered because the
fragment F 5 is not replicated to the server Si. The remaining fragment size of the
fragment F 3 is updated before time t6 when the block is completed transmission.

26

Figure 11 : Remaining size of fragments for Biggest-remaining-first algorithm

27

A fragment that has been replicated to fewer servers has less chance to be
selected and a fragment that has more replicas can be transmitted to the client in the
short time. If we use Random algorithm or Round-robin algorithm, each fragment has
equal chance to be selected; the fragment that has fewer replicas might be transmitted
after other fragments are completely transferred to the client. This causes other
servers wait for this server. To solve this problem, this algorithm considers a number
of replicas as a major factor to select the fragment for servers.

For this algorithm, the co-allocator chooses a fragment, among all replicas
stored at the server, that has fewest replicas first. If one fragment is replicated to
fewer servers than other fragments, the fragment should be transferred first. Once a
fragment is completely transferred, the co-allocator no longer considers that fragment
and chooses another fragment in the server that has next fewest replicas. If there is
more than one fragment that has the same number of fewest replicas, the co-allocator
will randomly pick from those.

Figure 12 shows the number of replica of each fragment. At the time to, the
server ร] has replicas of the fragments F 1 and F 4. The fragment F 1 has three replicas,
and the fragment F4 has four replicas. So, the co-allocator selects the fragment Fj to
be assigned to the server ร].

At the time ti, the co-allocator finds a fragment to be assigned to the server ร2.
It checks for number of replica of the fragments F I F2 and F4 as shown in Figure 12.
So, the co-allocator selects the fragment F3 for the server ร2-

At the time t2, the co-allocator finds a fragment to be assigned to the server ร31

There are five fragments replicated to the server ร31 but the fragment F3 is completely
transferred to the client. So, the co-allocator considers only other four fragments and
it selects fragment ^because it has fewest replicas.

3.2.5 Few est-replicas-first A lgorithm

Nu
mb

er
of

rep
lica

28

Figure 12: Number of replica at time t for Fewest-replicas-first algorithm

In the next chapter, a group of experiments is described to evaluate the
performance of our proposed algorithms shown above.

	Chapter III Proposed Co-allocation Strategie
	3.1 Grid Architecture for Co-allocation
	3.2 Co-allocation with Fragment Selections

