
C H A P T E R I V

E x p e r im e n t s a n d R e s u l t s

In this chapter, a set of experiments to evaluate the proposed algorithm is
described. There are four sections in this chapter. The first three sections are
experiments to compare the performance of the proposed algorithms. The other is the
study of the effect of variance of transmission rate on the proposed algorithms. These
experiments are performed on a simulated grid.

A grid simulation is implemented by using a C-based simulation language
called PARSEC [27] (Parallel Simulation Environment for Complex Systems) to
evaluate the performance of the proposed algorithms. Parallel data transfer and partial
file transfer, which are features of GridFTP [28], are also allowed in this simulation.

The grid systems simulated for the experiments in this chapter contains one
client which requests for a dataset, one co-allocator, and five servers. The client, the
co-allocator and five servers are connected via links whose available bandwidths are
random variables with normal distribution. In one environment, links between sites in
the grid have different average bandwidths. In the other environment, all links
between sites have equal average bandwidths. The average available bandwidth in
both environments is shown in Table 1. Distances between all sites are 100 km. Two
grid environments are simulated. Transmission delay, data processing delay and
distances between the client and servers are considered in the simulation. However,
the processing power and available bandwidth are unknown to the co-allocator.

The dataset used in the experiments contains five fragments. The fragment
sizes are different for each experiment, and are specified in each section. Fragments
of the dataset are replicated randomly on the servers.

30
Table 1: The average bandwidths for two grid environments

KB/sec Si ร'2 ร3 ร4 Ss
The first environment 375 500 500 175 175

The second environment 375 375 375 375 375

For each experiment, 30 requests are simulated to measure the completion
time and the average waiting time. For each request, the fragment placement is varied
so that each co-allocation strategy is not penalized by a placement which decreases its
performance.

The completion time is measured from starting the first block transmission to
the server completes the last block transmission. The average waiting time is the
average time each server spends on waiting for the last server to finish transmission.
From Figure 13, the completion time is ts, and the average waiting time is
ท

= W\ +W2 +WA + w5 where พ 1 is the waiting time at the server Si.

transmission for a server
---------------waiting time for a server

Figure 13: The calculation of completion time and waiting time

Distances between the client and servers are used to calculate router delay
time. One router causes 1 millisecond (mS) delay for a transmission. The routers are
placed on the way between the client and servers every 0.5 kilometers. Data
processing delay of 1 millisecond (mS) is taken into account for a block transmission.

31

4 .1 P e r f o rm a n c e f o r F r a g m e n ts w i t h D i f f e r e n t S izes a n d

D i f f e r e n t N u m b e r s o f R e p lic a s

The experiments in this section aim to compare the performance of the
proposed strategies in a normal situation, i.e., fragments of data are of various sizes,
and different numbers of replicas are created for different fragment. The sizes of five
fragments are 100, 200, 300, 400, and 500 MB. The number of replicas of each
fragment is random, and each replica is randomly placed on the five servers. For
available bandwidths of links in both grid environments, the coefficient of variation of
is 50%.

From both grid environments, the experiment shows that Fewest-replicas-first
algorithm yields the best average completion time as shown in Figure 14 and Figure
15. Comparing to Random algorithm, Fewest-replicas-first algorithm yields
approximately 6 % better in both environments. Comparing to Biggest-remaining-first
algorithm, Fewest-replicas-first algorithm yields better approximately 7% in the first
environment and it is not significantly better in the second environment. The Round-
robin and Random-with-weighted-probability algorithms are the worst.

From the experiment, it shows that Round-robin algorithm and Random-with-
weighted-probability algorithms perform worse than the other three. Random-with-
weighted-probability algorithm chooses a fragment based on the original fragment
size, which does not reflect the current workload of each server. This results in the
worst performance among all five algorithms. Round-robin algorithm selects each
replica, among all available locally, in turns. As a result, a fragment with more
replication is chosen more often. If a server has small fragments with more
replication, it finishes the transmission earlier and is idle while other severs continue
the transmission.

32

Fragment Selection Algorithm

ธ Average Completion time □ Average \Afeiting Time

R = R ando m , R R = R ound-R obin , R W P = R andom -w ith -W eig h ted -P robab ility
B R F = B iggest-R em ain ing-F irst, FR F = F ew est-R epl icas-F irst

Figure 14: Average completion time and waiting time in grid that has different
bandwidths

1800
1600
1400
1200

1 1000
£ 800

600
400
200

0

ร Average Completion time □ Average v\feiting Time

R = R andom , R R = R ound-R obin , R W P = R andom -w ith-W eigh ted-P robab iIity
B R FH B iggest-R em aining-F irst, F R F = F ew est-R ep licas-F irst

Figure 15: Average completion time and waiting time in grid that has same bandwidth

The following is a reason why Fewest-replicas-first algorithm yields
approximately 6% better than Random algorithm. Fewest-replicas-first algorithm
sends blocks from a fragment that has fewest replicas first. At the beginning of the
transmission, fragments which have fewer replicas are sent. Later, when a server

finishes, it sends fragments with more replication. This means that there are more
servers to transfer the fragments with more replication. Many servers can send data in
parallel and the waiting time can be decreased.

For example, there are five fragments of data distributed on grid containing
four servers as shown in Figure 5. At the beginning of the transmission, all four
servers have fragments of data which are needed to be transferred to the client as
shown in Figure 16 (a), and all four servers can transfer the data in parallel. Since
Fewest-replicas-first algorithm sends the block from the fragments that have fewest
replicas first, the fragments with fewer replicas tend to be completely transferred to
the client first. Thus, the fragments with more replicas are left to be transferred in the
later phrase. For example, in Figure 16 (b) fragments F2, F3, and F5, which have one
and two replicas in the grid, are completely transferred, and fragments F I and F4,
which are replicated on four servers, are left in the last phrase. That is four servers
transfer fragments F I and F4 in the last phrase of the transmission.

33

(a) The beginning of the transmission (b) The last phrase of the transmission
Figure 16: The beginning and last phrase of the transmission when using Fewest-
replicas-first algorithm

On the contrary, if the servers send blocks from the fragments that have more
replicas first, the transmission of these fragments is finished in the earlier phase.
Later, there are fewer servers left to transfer fragments that have fewer replicas. As a

34
result, servers that do not have these replicas are idle and wait for only few servers to
complete the transmission. This causes higher completion time and waiting time for
other servers.

(a) The beginning of the transmission 03) The last phrase of the transmission
Figure 17: The beginning and last phrase of the transmission when fragments with
more replication are sent first

In the similar situation as in the previous example, at the beginning of the
transmission, all four servers have fragments of data which are needed to be
transferred to the client as shown in Figure 17 (a), and all four servers can transfer the
data in parallel. If the fragments with more replication are sent first, the fragments
with fewer replications left in the later phrase. For example, fragments F I and F 4 with
three and four replications are completely transferred earlier. Fragments F '21 F3, and
F5 are left in the last phrase with three servers to be transferred. Only three servers
transfer fragments F 21 F 3, and F 5 in the last phrase of the transmission as shown in
Figure 17 (b). One server is idle because fragments located in the server are
completely transferred. This causes the higher completion time comparing to Fewest-
replicas-first algorithm because of fewer servers in the last phrase.

Biggest-remaining-first algorithm tries to distribute the workload by sending a
fragment with bigger portion of untransmitted data first in order to make all fragments
have approximately the same amount of untransmitted data. It tries to make all

fragments finished transferring at the same time. If fragments are distributed evenly
among all servers, no server spends idle time waiting finish while others have more
data to be transmitted.

From the experiments, Biggest-remaining-first algorithm performs well in the
grid with the same bandwidth. The algorithm tries to equalize the amount of unsent
data in each fragment. Thus, the amounts of unsent data in all fragments are
approximately the same in the later phrase, and most servers are not idle at the end.
Because all links in the grid have the same bandwidth, all servers spend roughly the
same amount of time to transfer an assigned block.

35

4 .2 P e r f o rm a n c e f o r F r a g m e n ts w i t h D i f f e r e n t S izes a n d

S a m e N u m b e r s o f R e p lic a s

The experiments in this section are similar to those in Section 4.1, except that
each fragment has the same number of replicas in these experiments. They are
designed to study the performance of the proposed strategies with various replication
degrees. For each experiment, every fragment has the same number of replicas,
varying from 1 to 5. Each fragment is replicated to the five servers with 1 replica, 2
replicas, 3 replicas, 4 replicas and 5 replicas.

From the both grid environments, the experiment shows that the performances
of all five algorithms are not significantly different if the number of replica is 1, 4 and
5. When the number of replica is 2, comparing to Random algorithm, Biggest-size-
first algorithm yields marginally better average completion time approximately in the
first environment and approximately 20% in the second environment. When the
number of replica is 3, Biggest-size-first algorithm yields the best performance in
term of average completion time which is approximately 10% better than Random
algorithm in both grid environments as shown in Figure 18 - 19. Random, Round-
robin and Fewest-replicas-first algorithms perform worst.

Tim
e

(se
c)

Tim

e
(se

c)

36
3500
3000
2500

0 2000
1 1500

1000
500

0

ร Average Corrpletion time □ Average v\feiting Time

(a) 1 replica

i 1 1I 1—

R RR RWP BRF FRF
F ra g m e n t S e le c tio n A lg o r ith m

1800
1600
1400
1200
1000
800
600
400
200

0

F ra g m e n t S e le c t io n A lg o r ith m F ra g m e n t S e le c tio n A lg o r ith m

□ Average Completion time □ Average Waiting Time H Average Completion time □ Average Wfeiting Time

(b) 2 replicas (c) 3 replicas

1000
900
800
700
600
500
400
300
200
100

0
R RR RWP BRF FRF

1000
900
800
700

I 600I 500
I 400

300
200
100

0
R RR RWP BRF FRF

11 = 1 :
F ra g m e n t S e le c t io n A lg o r ith m F ra g m e n t S e le c t io n A lg o r ith m

H Average Completion time □ Average Whiting Time ธ Average Completion time □ Average waiting Tme

(d) 4 replicas (e) 5 replicas
R = R a n d o m , R R = R o u n d - R o b m , R W P = R a n d o m - w ith - W e ig h te d - P r o b a b i l i ty

B R F = B ig g e s t - R e m a in in g -F irs t, F R F = F e w e s t- R e p l ic a s -F ir s t

Figure 18: Average completion time in grid that has different bandwidths

Ti
m

e
(se

c)

Tim
e

(se
c)

37
1600
1400
1200

•นิ' 1000
เ - 800
P 600

400
200

0

H Average Conpletion time □ Average v\feiting Time

(a) 1 replica

11I .
1 1 1- 1 1 -1 1 ร=i

R RR RV\P BRF FRF
F ra g m e n t S e le c t io n A lg o r ith m

ธ Average Completion time □ Average Waiting Time ธ Average Completion time อ Average \Afeiting Time

(b) 2 replicas (c) 3 replicas
900
800
700
600
500
400
300
200
100

0
F ra g m e n t S e le c t io n A lg o r ith m

900
800
700
600
500

I 400
* 300

200
100

0
F ra g m e n t S e le c t io n A lg o r ith m

a Average Completion time □ Average Waiting Time H Average Completion time □ Average waiting Time

(d) 4 replicas (e) 5 replicas
R = R a n d o m , R R = R o u n d -R o b in , R W P = R a n d o m - w ith - W e ig h te d - P r o b a b i l i ty

B R F = B ig g e s t- R e m a in in g -F ir s t , F R F = F e w e s t - R e p l ic a s - F i r s t

Figure 19: Average completion time in grid that has same bandwidth

Fewest-replicas-first algorithm cannot be used in the situation when every
fragment is equally replicated. Fewest-replicas-first algorithm selects fragments
whose number of replica is fewest. In this situation, the number of replicas is the
same, and the co-allocator selects the replica randomly.

From this experiment, the average completion time is reduced when the
number of replicas is increased in both grid environments. This means that grid has
more replicas of fragment to transfer for each server. For example, when a few
fragments are replicated on a server, the server is idle when these fragments are
completely transferred to the client and other servers still have more fragments of data
to be transferred. If the number of replicas is increased, the server can help the other
transfer remaining fragments. So, the completion time is reduced.

When each server has one replica, the co-allocator has no choice to select the
fragment, so the fragment located in the server is selected. This causes the same
performance of all algorithms in both grid environments. When each server has five
replicas, this can be considered that all servers have one complete data. The co
allocator can select any fragment at any server, so the average completion time of all
algorithms is significantly different.

From this experiment, Biggest-remaining-first algorithm performs well for
different fragment size. Biggest-remaining-first algorithm tries to enhance the
collaboration of all servers at all time, so it sends a block from the biggest fragment
first because it takes longer to complete the transmission. Another reason is that the
algorithm tries to equalize the size of each fragment in all phrases. So, all fragments
have approximately same size in all phrases. This means that all servers can help
transfer fragments of data for all phrases.

For example, there are five fragments of data distributed on grid containing
four servers as shown in Figure 5. At the beginning of the transmission, all four
servers have fragments of data to be transferred to the client in parallel as shown in
Figure 20 (a). If the fragments with biggest remaining fragment are sent first, the

38

fragment size will be roughly equal in the later phrase. So, all four servers help
transfer five fragments of data in parallel as shown in Figure 20 (b).

39

(a) The beginning of the transmission (b) The last phrase of the transmission
Figure 20: The beginning and last phrase of the transmission when using Biggest-
remaining-first algorithm

On the other hand, if smallest remaining fragments are sent first, it takes short
time to complete the transmission of these fragments. If a server has small fragments,
the transmission of these fragments is finished first. Then the server is idle while the
servers that have biggest unsent data left continue fragment transmission.

(a) The beginning of the transmission (b) The last phrase of the transmission
Figure 21: The beginning and last phrase of the transmission when not using Biggest-
remaining-first algorithm

For example, shown in Figure 21 if fragments Fi and F 4 are first completely
transferred to the client, one server is idle. Only three servers left to transfer fragments
F2, F3, and F5. The waiting time of one server is high, and the average completion is
also high.

40

4 .3 P e r fo rm a n c e f o r F r a g m e n ts w i t h S a m e S izes a n d

D i f f e r e n t N u m b e r s o f R e p lic a s

The experiments in this section are similar to those in Section 4.1, except that
each fragment has the same size in these experiments. They are designed to study the
performance of the proposed strategies with various fragment sizes.

Fragment Selection Algorithm

ฒ A v e ra g e C om p le tio n t im e □ A v e ra g e V \M in g T im e

R = R andom , R R = R ound-R obin , R W P = R andom -w ith -W eig h ted -P robab ility
B R F = B ig gest-R em ain ing -F irst, F R F = F ew est-R ep licas-F irst

Figure 22: Average completion in grid that has different bandwidths

From the experiment on both grid environments, Fewest-replicas-first
algorithm yields the best average completion time as shown in Figure 22-22. Fewest-
replicas-first algorithm performs better than Random algorithm approximately 5% in
the first environment and 8% in the second environment. Comparing to Biggest-
remaining-first algorithm, Fewest-replicas-first algorithm yields marginally better

41
average completion time in both grid environments. The Round robin algorithm and
Random-with-weighted-probability algorithm perform worst.

Fragment Selection A lgorithm

ธ A v e ra g e C om p le tio n t im e □ A v e ra g e W a it in g T im e

R = R andom , R R = R ound-R obin , R W P = R andom -w ith -W eig h ted -P robab ility
B R F = B ig gest-R em ain ing -F irst, F R F = F ew est-R ep licas-F irst

Figure 23: Average completion time in grid that has same bandwidth

The reason contributing to the performance of the experiment is the same as
shown in Section 4.1 - 4.2.

4 .4 T h e E f f e c t o f V a r ia n c e o f T r a n s m is s io n R a te o n th e
P ro p o s e d A lg o r i t h m s

The experiments in this section are similar to those in Section 4.1. They are
designed to study the effect of the change of available bandwidth.

The average completion time for different percentage of coefficient of
variation are shown in Figure 24. For different percentages of coefficient of variation,
the change in average completion time is relatively small for all algorithms.

42

The percentage of coefficient of variation of
available bandwidth

* —A— R —ร— RR RWP —e— BRF — t— FRF

Figure 24: Average completion time in different percentages of coefficient of
variation of transmission rate

The insensitivity of the variance of bandwidth results from the behavior of
dynamic co-allocation. All algorithms divide data into many blocks. When a server
completes a block transmission, it requests for the next block. Consequently, when the
transmission is slow for a server, that slow server gets fewer blocks to transfer. On the
other hand, a server can transfer data faster; the server gets more blocks to transfer.
That is, the allocation adjusts automatically according to the effective transfer rate.
As a result, the variation of transmission rate only has small impact on all algorithms.

Next chapter describes the conclusions of this thesis and future works.

	Chapter IV Experiments and Results
	4.1 Performance for Fragments with Different Sizes and Different Numbers of Replicas
	4.2 Performance for Fragments with Different Sizes and Same Numbers of Replicas
	4.3 Performance for Fragments with Same Sizes and Different Numbers of Replicas
	4.4 The Effect of Variance of Transmission Rate on the Proposed Algorithms

