REFERENCES

- Agrell, J., Boutonnet, M., and Fierro, J.L.G. (2003) Production of hydrogen from methanol over binary Cu/ZnO catalysts Part II. Catalytic activity and reaction pathways. <u>Applied Catalysis A: General</u>, 253, 213-223.
- Agrell, J., Brigersson, H., and Boutonnet, M. (2002) Steam reforming of methanol over a Cu/ZnO/Al₂O₃ catalyst: a kinetic analysis and strategies for suppression of CO formation. <u>Journal of Power Sources</u>, 106, 249-257.
- Ahmed, S., Doshi, R., Kumar, R., and Krumpelt, M. (1997) A new route for fuel cell. <u>Electric Hybrid Vehicle Technology</u>, 97, 77-80.
- Alejo, L., Lago, R., Pena, M.A., and Fierro, J.L.G. (1997) Partial oxidation of methanol to produce hydrogen over Cu–Zn based catalysts. <u>Applied Catalystsis A:General</u>, 162, 281-297.
- Amphlett, J.C., Mann, R.F., and Pepply, B.A. (1996) On board hydrogen purification for steam reforming/PEM fuel cell vehicle power plant. <u>International</u> <u>Journal of Hydrogen Energy</u>, 21(8), 673-678.
- Amphlett, J.C., Creber, K.A.M, Davis, J.M., Mann, R.F., Peppley, B.A., and Stokes,
 D.M. (1994) Hydrogen production by steam reforming of methanol for polymer electrolyte fuel cells. <u>International Journal of Hydrogen Energy</u>, 19 (2), 131-137.
- Andreeva, D., Idakiev, V., Tabakova, T., and Andreev, A. (1995) Low-Temperature Water-Gas Shift Reaction over Au/α-Fe₂O₃. Journal of Catalysis, 158, 354-355.
- Andreeva, D., Idakiev, V., Tabakova, T., Andreev, A., and Giovanoli, R. (1996) Low-Temperature Water-Gas Shift Reaction on Au/α-Fe₂O₃ catalyst. <u>Applied Catalystsis A:General</u>, 134, 275-283.
- Andreeva, D., Tabakova, T., Idakiev, V., Christov, P., and Giovanoli, R. (1998) Au/α-Fe₂O₃ catalyst for water-gas shift reaction prepared by depositionprecipitation. <u>Applied Catalystsis A:General</u>, 169, 9-14.

- Bichon, P., Asheim, A., Jordal, A., Sperle, T., Fathi, M., Holmen, A., and Blekkan,
 E.A. (2006) Hydrogen from methanol steam reforming over Cu-based catalysts with and without Pd promotion. <u>International Journal of Hydrogen</u> <u>Energy.</u>
- Bond, G.C., Louis, C., and Thompson, D.T. (2006). <u>Catalysis by Gold</u>. London: Imperial College Press.
- Cameron, D., Holliday, R., and Thompson, D. (2003) Gold's future role in fuel cell systems. Journal of Power Sources, 118, 298-303.
- Cao, C., Xia, G., Holladay, J., Jones, E., and Wang, Y. (2004) Kinetic studies of methanol steam reforming over Pd/ZnO catalyst using a microchannel reactor. <u>Applied Catalysis A: General</u>, 262, 19-29.
- Chang, C.K., Chen, Y.J., and Yeh, C.T. (1998) Characterizations of aluminasupported gold temperature-programmed reduction. <u>Applied Catalysis A:</u> <u>General</u>, 174, 13-23.
- Chang, F.W., Yu, H.Y., Roselin, S., and Ou, T.C. (2006) Hydrogen production by partial oxidation of methanol over gold catalysts supported on TiO2-MOx (M = Fe, Co, Zn) composite oxide. <u>Applied Catalysis A: General</u>, 302, 157-167.
- Chin, Y.H., Wang, Y., Robert A.D., and Li, X.S. (2003) Methanol steam reforming over Pd/ZnO: Catalyst preparation and pretreatment studies. <u>Fuel Process-</u> <u>ing Technology</u>, 83, 193-201.
- Chin, Y.H., Dagle, R., Hu, J., Dohnalkova, A.C., and Wang, Y. (2002) Steam reforming of methanol over highly active Pd/ZnO catalyst. <u>Catalysis Today</u>, 77, 79-88.
- Choi, Y. and Stenger, H.G. (2002) Fuel cell grade hydrogen from methanol on a commercial Cu/ZnO/Al₂O₃ catalyst. <u>Applied Catalysis B: Environmental</u>, 38, 259-269.

- Durga Kumari, V., Subrahmanyam, M., Ratnamala, A., Venugopal, D., Srinivas, B., Phanikrishna Sharma, M.V., Madhavendra, S.S., Bikshapathi, B., Venkateswarlu, K., Krishnudu, T., Prasad, K.B.S., and Raghavan, K.V. (2002) Correlation of activity and stability of CuO/ZnO/Al₂O₃ methanol steam reforming catalysts with Cu/Zn composition obtained by SEM-EDAX analysis. <u>Catalysis Communications</u>, 3, 417-424.
- Fierro, G., Lo Jacono, M., Inversi, M., Porta, P., Cioci, F., and Lavecchia, R. (1995) Study of the reducibility of copper in CuO-ZnO catalysts by temperatureprogrammed reduction. <u>Applied Catalysis A:General</u>, 137, 327-348.
- Fujitani, T. and Nakamura, J. (1998) The effect of ZnO in methanl synthesis catalysts on Cu dispersion and the specific activity. <u>Catalysis Letters</u>, 56, 119-124.

Haruta, M. (1997) Size-and support-dependency in the catalysis of gold. <u>Catalysis</u> <u>Today</u>, 36, 153-166.

- Houteit, A., Mahzoul, H., Ehrburger, P., Benhardt, P., Legare, P., and Garin, F., (2006) Production of hydrogen by steam refroming of methanol over copper-based catalysts: The effect of cesium dopping. <u>Applied Catalysis</u> <u>A:General</u>, 306, 22-28.
- Huang, T.J. and Wang, S.W. (1986) Hydrogen production via partial oxidation of methanol over copper-zinc catalysts. <u>Applied Catalysis</u>, 24, 287-297
- Iwasa, N., Masuda, S., Ogawa, N., and Takezawa, N. (1995) Steam reforming of methanol over PdZn alloy upon the reaction. <u>Applied Catalysis A:General</u>, 125, 145-157.
- Iwasa, N., Mayanagi, T., Ogawa, N., Sokata, K., and Takazawa, N. (2004) New catalytic functions of Pd-Zn, Pd-Ga, Pd-In, Pt-Zn, Pt-Ga and Pt-In alloys in the conversions of methanol. <u>Catalysis Letters</u>, 54, 119-123.
- Kahlich, M.J., Gasteiger, H.A., and Behm, R.J. (1999) Kinetics of the selective lowtemperature oxidation of CO in H₂-rich gas over Au/α-Fe₂O₃. Journal of Catalysis, 182, 430-440.
- Karim, A., Conant, T., and Datye. A. (2006) The role of PdZn alloy formation and particle size on the selectivity for steam reforming of methanol. <u>Journal of</u> <u>Catalysis</u>, 243, 420-427.

- Lindstrom, B. and Petterson, L.J. (2002) Steam reforming of methanol over cop per-based monoliths: the effects of zirconia doping. Journal of Power Sources, 106(1-2), 264-273.
- Liu, S., Takahashi, K., Fuchigami, K., and Uematsu, K. (2006) Hydrogen production by oxidative methanol reforming on Pd/ZnO: Catalyst deactivation. <u>Applied Catalysis A:General</u>, 299, 58-65.
- Manzoli, M., Chiorino, A., and Boccuzzi, F. (2004) Decomposition and combined reforming of methanol to hydrogen: a FTIR and QMS study on Cu and Au catalysts supported on ZnO and TiO₂. <u>Applied Catalysis B: Environmental</u>, 57, 201-209.
- Men, Y., Gnaser, H., Zapf, R., Hessel, V., Ziegler, C., and Kolb, G. (2004) Steam reforming of methanol over Cu/CeO₂/γ-Al₂O₃ catalysts in a microchannel reactor. <u>Applied Catalysis A: General</u>, 277, 83-90.
- Naknam, P. (2006) Preferential catalytic oxidation of CO in the presence of H₂ over bimetallic Au-Pt supported on zeolite catalysts. M.S. Thesis in Petroleum technology, The Petroleum and Petrochemical College, Chulalongkorn University.
 - Papavasiliou, J., Avgouropoulos, G., and Ioannides, T. (2007) Combined steam reforming of methanol over Cu-Mn spinel oxide catalysts. <u>Journal of Catalysis</u>, 251, 7-20.
 - Ritzkopf, I., Vukojevic, S., Weidenthaler, C., Grunwaldt, J.D., and Schuth, F. (2006) Decrease CO production in methanol steam reforming over Cu/ZrO₂ catalysts prepared by the microemulsion technique. <u>Applied Catalysis</u> A:General, 302, 215-223.
 - Sakurai, H., Haruta, M. (1996) Synergism in methsnol synthesis from carbon dioxide over gold catalysts supported on metal oxides. <u>Catalysis Today</u>, 29, 361-365.
 - Silberova, B.A.A., Mul, G., Makkee, M., and Moulijin, J.A. (2006) DRIFTS study of water-gas shift reaction over Au/Fe₂O₃. Journal of Catalysis, 243, 171-182.

.

٠

- Takahashi, K., Takezawa, N., and Kobayashi, H. (1982) The mechanism of steam reforming of methanol over a cupper-silica catalyst. <u>Applied Catalysis</u>, 2, 363-366.
- Takezawa, N. and Iwasa, N. (1997) Steam reforming and dehydrogenation of methanol: Difference in the catalytic functions of cupper and group VIII metals. <u>Catalysis Today</u>, 36, 45-56.
- Valenzuela, M.A., Bosch, P., Jimenez-Becerrill, J., Quiroz, O., and Paez, A.I. (2002)
 Preparation, Characterization and Photocatalytic activity of ZnO, Fe₂O₃ and ZnFe₂O₄. Journal of Photochemistry and Photobiology A: Chemistry, 148, 177-182.
- Wang, Y.H., Zhu, J.L., Zhange, J.C., Song, L.F., Hu, J.Y., Ong, S.L., and Ng, W.J. (2006) Selective oxidation of CO in hydrogen-rich mixtures and kinetics investigation on platinum-gold supported on zinc oxide catalyst. Journal of Power Sources, 155, 440-446.
- Wiese, W., Emonts, B., and Peters, R. (1999) Methanol steam reforming in a fuel cell drive system. <u>Journal of Power Sources</u>, 84, 187-193.
- Yang, H.C., Chang, F.W., and Roselin, L.S. (2007) Hydrogen production by partial oxidation of methanol over Au/CuO/ZnO catalysts. Journal of Molecular <u>Catalysis A:Chemical</u>, 276, 184-190.

APPENDIX

Appendix A Calibration of gas products

The relationship between the peak area from GC analysis and the gas concentration was conducted for the possible gas products such as hydrogen, carbon monoxide, and carbon dioxide.

Hydrogen

Peak Area	Amount (%)
9646.38	10.36
29585.25	27.60
···· 60355 . 00	49.79
83094.00	69.32

Figure A1 Calibration curve of gas hydrogen.

Where x is peak area from GC analysis

y is concentration (%)

Carbon dioxide

Peak Area	Amount (%)
0	0
335074.0	5.17
1516532.8	24.81
3219721.0	51.34
5050441.0	73.36

Figure A2 Calibration curve of gas carbondioxide.

Where x is peak area from GC analysis

y is concentration (%)

Carbon monoxide

Peak Area	Amount (%)
0	0
81433.2	0.5
152432.1	1.64
511313.4	5.69

Figure A3 Calibration curve of gas carbon monoxide.

Where x is peak area from GC analysis

y is concentration (%)

....

Methane

Peak Area	Amount (%)
0	0
233178	5.67
813712.67	16.92
1431971	31.0

Figure A4 Calibration curve of gas methane.

Where x is peak area from GC analysis

y is concentration (%)

Appendix B Particle size distribution from TEM analysis

Figure B1 Particle size distribution of Au/ZnO catalysts at various Au contents and calcination temperatures.

Figure B2 Particle size distribution of $Au/ZnO-Fe_2O_3$ catalysts at various molar ratios of ZnO to Fe_2O_3 .

(c) 5% Au/ZnO-Fe₂O₃, calcined at 400°C (d) 5% Au/ZnO-Fe₂O₃, calcined at 300°C

(e) 5% Au/ZnO-Fe₂O₃, calcined at 200°C

Figure B3 Particle size distribution of Au/ZnO-Fe₂O₃ catalysts at various gold contents and calcination temperatures.

Appendix C EDS pattern of Au/ZnO-Fe₂O₃ catalyst.

ÿ.

Figure C2 EDS pattern of Au/ZnO-Fe₂O₃ catalyst.

<u>Appendix D</u> Feed flow rate calculation from PRO/II

120

.

	Stream Name		S1	S2	HE	T-REACTOR
	Stream Description					
	Phase		Liquid	Vapor	Vapor	Vapor
	Fluid Rates	G-MOL/HR				
ł.	WATER		0.0306	0.0306	0.0000	0.0306
	METHANOL		0.0235	0.0235	0.0000	0.0235
•	HELIUM		0.0000	0.0000	0.0433	0.0433
	Rate	G-MOL/HR	0.054	0.054	0.043	0.097
•						
	Temperature	С	25.0000	150.0000	150.0000	150.0000
	Pressure	АТМ	1.0000	1.0000	1.0000	1.0000
•	Enthalpy	MM BTU/HR	0.0000	0.0000	0.0000	0.0000
	Molecular Weight					
	Vapor Rate	CM3/HR	1.512	n/a	n/a	n/a
•	Liquid Rate	G/CM3	n/a	0.001	0.000	0.001
•	Vapor Std. Density	G/CM3	0.870	n/a	n/a	n/a
	Liquid Std. Density					

CURRICULUM VITAE

Name:Salintip ThareejidDate of Birth:August 17, 1984

Nationality: Thai

University Education:

2002 – 2006 Bachelor Degree of Engineering in Petrochemical and Polymeric Material, Faculty of Engineering and Industrial Technology, Silapakorn University, Nakhon Pathom, Thailand.

Working Experience:

2004	Position:	Internship (Mar-May)
Ĩ.	Company name:	PTT Chemical (Thailand) Public
•		Co.,Ltd.

Proceedings:

 Thareejid S., Luengnarumitchai A., Gulari E., (2007, 29-30 October) Hydrogen Production from Steam Reforming of Methanol over Supported Au Catalyst. Proceedings of the 17th Thai Chemical Engineering and Applied Chemistry Conference (TICHE 17), Chiang Mai, Thailand.

