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ABSTRACT

4971017063:  PETROCHEMICAL TECHNOLOGY PROGRAM
Satjatham Polsaen: Mathematical Modeling and Experiment of
Breakthrough Curve for Deactivated Adsorbents Packed in a Multi-
Layer Gas Adsorber: Case of High Deactivation
Thesis Advisors: Asst. Prof. Sirirat Jitkarnka. and Asst. Prof. Kitipat
Siemanond, 90 pp.
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Deactivation/ Mass transfer coefficients/ Pressure Drop/ Adsorption
isotherm/ Breakthrough Curve

A multi-layer adsorber consisting of commercial activated alumina and two
sizes of 4A molecular sieve is One system that is used to remove water from natural
gas. The removal of vapour water from natural gas passing through the adsorber can
be described by usingthe modeling of breakthrough time based on mass halance. To
predict the breakthrough time, which changes along the time of service, the
adsorbents were acceleratingly aged, especially the molecular sieve, which was
studied only atthe low degrees of deactivation in previous works. Therefore, in this
work, the two sizes of molecular sieve were boiled at eoo°c, and the number of
batch cycles was varied to increase the aging. The SEM results showed that the
average crystal size decreased when the number of batches increased. Also, the
parameters in the mass balance equation and the water adsorption isotherms of
adsorbents changing with the percentage of deactivation were determined to be used
in the breakthrough time model in accordance with deactivation. It was found that the
curve of the adsorption isotherm becomes more flat with higher degrees of
deactivation, and Aranovich-Donohue for Toth was employed to explain the
adsorption isotherm at various degrees of deactivation. Then, the breakthrough time
from the experiments and theorem was compared which it was found that the
modified mathematical model gave good agreement with the experiments.
Additionally, the breakthrough time prediction for any degree of deactivation can be



accomplished by using the predicted adsorption isotherm that was written as a
function of degree of deactivation.
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