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ABSTRACT

4971020063  Petrochemical Technology Program
Suttipong Luckanahasapom: Deoxygenation of Fatty Acid for the
Production of Renewable Diesel
Thesis Advisors: Dr. Siripom Jongpatiwut, Prof. Somchai Osuwan,
and Prof. Daniel E. Resasco, 68 pp.

Keywords:  Renewable diesel/ Deoxygenation/ Oleic acid/ Palmitic acid/
NiMo/AIZ) 3 NiMoS/AIZ) 3Pd/C

The deoxygenation of oleic acid and palmitic acid to diesel-like hy-
drocarbons was studied over commercial NiIMo/AI2) 3 NiMoS/AIZ) 3 and Pd/C cata-
lysts. In the deoxygenation of oleic acid over NiMo/Al20) 3 under hydrogen atmos-
phere, n-octadecane (n-C18) and n-heptadecane ( -C17) was observed'as main prod-
ucts with small amounts of stearic acid, octadecanol, CO, and water. The reaction
pathway has been proposed; that is, oleic acid is hydrogenated to stearic acid, fol-
lowed by the hydrogenation of stearic acid to octadecanol. After that, octadecanol
can undergo either hydroceoxygenation via dehydration to octadecene and hydro-
genation to n-C18, or hydrodecarbonylation via decarbinylation to heptadecene and
hydrogenation to n-C17. The deoxygenation of oleic acid over NiMo/AI2) 3 is more
selective to hydrodeoxygenation path as higher yield of n-C18 was observed. Due to
the higher acidity, the dehydration was enhanced over NiMoS/AI2) 3 resulted in
higher n-C18 selectivity compared to that obtained with unsulphided catalyst. In con-
trast, Pd/C gave only n-C17 hydrocarbon resulted from hydrodecarbonylation path.
Similarly, the preferred reaction for palmitic deoxygenation over NiMo/Al2) 3 and
NiMoS/AI2) 3 is hydrodeoxygenation while the preferred reaction over Pd/C is hy-
drodecarbonylation. The optimum condition for deoxygenation of both oleic acid and
palmitic acid is at 325°c, 500 psig.
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