ผลของสารโดปต่อสมบัติทางแสงและการนำไฟฟ้าของพอลิ(3-เฮกซิลไทโอฟีน)

นางสาววรรณา บรรณรักษ์กุล

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาปิโตรเคมีและวิทยาศาสตร์พอลิเมอร์ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2548 ISBN : 974-17-4083-2 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

EFFECTS OF DOPING AGENTS ON OPTICAL AND CONDUCTIVE PROPERTIES OF POLY(3-HEXYLTHIOPHENE)

Miss Wanna Bannarukkul

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science Program in Petrochemistry and Polymer Science Faculty of Science Chulalongkorn University Academic Year 2005 ISBN : 974-17-4083-2

Thesis Title	Effects of Doping Agents on Optical and Conductive Properties of
	Poly(3-hexylthiophene)
Ву	Miss Wanna Bannarukkul
Field of Study	Petrochemistry and Polymer Science
Thesis Advisor	Assistant Professor Worawan Bhanthumnavin, Ph.D.
Thesis Coadvisor	Assistant Professor Yongsak Sritana-anant, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

Hath Hun_ Dean of the Faculty of Science

(Professor Piamsak Menasveta, Ph.D.)

THESIS COMMITTEE

Olf RUL Chairman

(Professor Pattarapan Prasassarakich, Ph.D.)

W. Hole - Thesis Advisor

(Assistant Professor Yongsak Sritana-anant, Ph.D.)

(Assistant Professor Warinthorn Chavasiri, Ph.D.)

p. Houen Member

(Assistant Professor Voravee Hoven, Ph.D.)

⁽Assistant Professor Worawan Bhanthumnavin, Ph.D.)

วรรณา บรรณรักษ์กุล : ผลของสารโดปต่อสมบัติทางแสงและการนำไฟฟ้าของพอลิ (3-เฮกซิลไทโอฟืน) (EFFECTS OF DOPING AGENTS ON OPTICAL AND CONDUCTIVE PROPERTIES OF POLY(3-HEXYLTHIOPHENE) อ.ที่ปรึกษา: ผศ.ดร. วรวรรณ พันธุมนาวิน; อ.ที่ปรึกษาร่วม: ผศ.ดร. ยงศักดิ์ ศรีธนา อนันต์; 123 หน้า. ISBN : 974-17-4083-2.

งานวิจัยนี้เป็นการศึกษาการโดปพอลิ(3-เฮกซิลไทโอฟีน) ด้วยวิธีการต่างๆ ได้แก่ การโดป ้ด้วยกรด การโดปด้วยตัวออกซิไดซ์ และการโดปแบบโซลวาโต-คอนโทรล แล้วน้ำผลิตภัณฑ์ที่ ได้มาวิเคราะห์โดยใช้เทคนิค ทางสเปกโทรสโคปีต่างๆ จากนั้นจึงนำมาวิเคราะห์สมบัติการนำไฟ ฬาในสภาพสารละลายและฟิล์ม จากการทดลองพบว่า สามารถใช้กรดในการโดป พคลิ(3-เฮกซิลไทโอฟีน) เพื่อเพิ่มค่าการนำไฟฟ้าได้ทั้งในรูปแบบของสารละลายและแผ่นฟิล์ม จากการโดปด้วยตัวออกซิไดซ์พบว่า การผสมยูเรียไฮโดรเจนเปอร์ออกไซด์และกรด ใตรฟลูออโรอะซิติกก่อนนำมาออกซิไดซ์ จะได้พอลิ(3-เฮกซิลไทโอฟีน)ซึ่งมีค่าการดูดกลืนแสง ยูวี-วิสิเบิลที่ความยาวคลื่นสูงกว่าเดิม ส่วนการโดปแบบโซลวาโต-คอนโทรลด้วยกรด มีเทนซัลโฟนิก และไทโอฟีน จะสามารถขึ้นฟิล์มของพอลิเมอร์ที่ถูกโดปได้โดยไม่เกิดปัญหาการ ดกดะกอน ได้นำการคำนวณ เอซี-อินเด็กซ์ มาใช้เพื่อติดตามการเปลี่ยนแปลงการดูดกลืน แสงในช่วงยูวี-วิสิเบิลอันเนื่องมาจากการโดป ซึ่งสัมพันธ์กับความยาวคอนจูเกตของพอลิเมอร์ พบว่าสามารถใช้ในการติดตามการโดปได้ทั้งการใช้กรดและปฏิกิริยาออกซิเดชัน โดยค่า เอซี-อินเด็กซ์ที่ได้ลอดคล้องกับผลจากการใช้ค่าความยาวคลื่นสูงสุดของยูวี-วิสิเบิล สเปกตรัม และค่าการนำไฟฟ้าคีกด้วย

สาขาวิชา ปิโตรเคมีและวิทยาศาสตร์พอลิเมอร์ ลายมือชื่อนิสิต (สมจุบ) (ประกอบกุษ) กะ ปีการศึกษา 2548 ลายมือชื่ออาจารย์ที่ปรึกษา (กะคร์) (กะคร # # 4672396023: MAJOR PETROCHEMISTRY AND POLYMER SCIENCE KEYWORD: CONDUCTIVE POLYMER / SOLVATO-CONTROLLED DOPING / DOPING AGENT

WANNA BANNARUKKUL: EFFECTS OF DOPING AGENTS ON OPTICAL AND CONDUCTIVE PROPERTIES OF POLY(3-HEXYLTHIOPHENE). THESIS ADVISOR: ASSIST. PROF. WORAWAN BHANTHUMNAVIN, Ph.D., THESIS COADVISOR: ASSIST. PROF. YONGSAK SRITANA-ANANT, Ph.D., 123 pp. ISBN 974-17-4083-2.

This research investigated various doping methods of poly(3-hexylthiophene) including acid, oxidative and, solvato-controlled doping. The doped products were subjected to many spectroscopic analysis and conductivity measurements in the form of either a solution or a film. The acid doping was found to increase the conductivity of both the solution and film of poly(3-hexylthiophene). For oxidative doping, premixed urea hydrogenperoxide and trifluoroacetic acid could oxidize poly(3-hexylthiophene) to yield the polymer with bathochromic shift of λ_{max} . Solvato-controlled doping with methanesulfonic acid and thiophene gave the film of dope polymer without pre-precipitation problem. The AC-index calculation was used for monitoring the change in UV-visible absorption induced by doping that could be related to the effective conjugation length of the polymer. It was found that AC-index calculation was applicable with the monitoring of acid and oxidative doping process. Their values corresponded well with the results from λ_{max} of UV-visible spectra and conductivity.

Field of study Petrochemist	ry and Polymer S	Science Student's signature Wanna Bannarukkul
Academic year	2005	Advisor's signature M. Plake
		Co-advisor's signature ML GH

ACKNOWLEDGEMENTS

I would like to express my sincere appreciation and gratitude to my advisor, Assist. Prof. Dr. Worawan Bhanthumnavin, my co-advisor, Assist. Prof. Dr. Yongsak Sritana-anant for supporting me both in science and life, and encouraging me throughout the course of my study. I am sincerely grateful to the members of the thesis committee, Prof. Dr. Pattarapan Prasassarakich, Assist. Prof. Dr. Warinthorn Chavasiri, and Assist. Prof. Dr. Voravee Hoven for their comments, suggestions and time to read the thesis.

I am very grateful to Assoc. Prof. Dr. Anuvat Sirivat, Ms. Datchanee Chotpattananont, and Mr. Toemphong Puvanatvattana, of the Petroleum and Petrochemical College, Chulalongkorn University, for their suggestions and help on the use of the equipment for measuring conductivity of polymer film, and Dr. Amarawan Intasiri for the help on measuring conductivity of polymer solution.

Many thanks go to Assist. Prof. Dr. Thumnoon Nhujak, Dr. Wanlapa Aeungmaitrepirom, Dr. Apichat Imyim and Dr. Amarawan Intasiri for use of HP 8453 UV-Visible spectrophotometer, and Assoc. Prof. Dr. Tirayut Vilaivan for Varian, CARY 100 Bio UV-Visible temperature controlled spectrophotometer as well as fruitful suggestions on solving research problems.

Also many thanks to all Organic Synthesis Research Unit members for suggestions concerning experimental techniques and their kind assistance during my thesis work.

Finally, I would like to specially thank my family members: father, mother, two brothers and others for their love, kindness and support throughout my entire study.

CONTENTS

ABSTRAC	T IN THA	AI	iv
ABSTRAC	T IN ENG	GLISH	v
ACKNOW	LEDGEM	IENTS	vi
LIST OF FI	IGURES		x
LIST OF T	ABLES		xviii
LIST OF A	BBREVI	ATIONS	xxi
CHAPTER	I : INTRO	ODUCTION AND THEORY	1
1.1	Conjuga	ated polymers: organic semiconductors	2
1.2	Regiore	gular polymer	6
	1.2.1	Electrical conductivity	7
	1.2.2	UV-visible spectroscopy	7
	1.2.3	NMR spectroscopy	9
1.3	Synthes	is of poly(3-alkylthiophene)	13
	1.3.1	Electrochemical polymerization	14
	1.3.2	Oxidative coupling polymerization with iron (III)	
		chloride	14
	1.3.3	Grignard coupling and other chemical polymerizations	16
		- Rieke method	16
		- McCullough method	17
1.4	Synthesi	is of polythiophene with thienyl S,S-dioxide units	19
1.5	Effect of	f doping	23
	1.5.1	Chemical doping by charge transfer	24
	1.5.2	Electrochemical doping	24
1.7	Effective	e Conjugation Length (ECL)	29
1.6	Objectiv	'es	33
1.7	Scope of	f investigation	33

				14
CHAPTER	II : EXP	ERIMENTAL SECTI	ON	35
2.1	Chemic	als		35
2.2	Instrum	ents and apparatus		
2.3	Synthes	s of poly(3-hexylthic	ophene) (P3HT)	
2.4	The fra	tionation of P3HT		37
2.5	The dop	ing of P3HT		37
	2.5.1	Doped with trifluor	pacetic acid (TFA)	
	2.5.2	Doped with methan	esulfonic acid (MSA)	38
	2.5.3	Doped with acetic a	cid	38
	2.5.4	Doped with chloroa	cetic acid (CA)	
	2.5.5	Doped with dichloro	bacetic acid (DCA)	38
	2.5.6	Doped with trichlor	oacetic acid (TCA)	39
	2.5.7	Doped with toluene	-4-sulfonic acid monohy	drate
		(TsOH.H ₂ O) and tol	uene-4-sulfonic acid	39
2.6	The dop	ng of P3HT fraction	s with TFA	39
2.7	Oxidatio	n of P3HT		39
	2.5.1	By H_2O_2/TFA		
	2.5.2	By Urea Hydrogen I	Peroxide (UHP)/TFA	40
2.8	Solvato	controlled doping		40
2.9	Conduc	ivity measurement		41
	2.9.1	Polymer solution by	conductometer	
	2.9.2	Polymer film by 4-P	oint Probe	42
		2.9.2.1 P3HT film	doped by iodine vapor .	42
		2.9.2.2 P3HT cast	film by doped TCA	42

CHAPTER	III : RES	ULTS AND DISCUSSION 44	
3.1	Synthes	is of P3HT 44	
3.2	The frac	ctionation of P3HT 46	
3.3	The dop	ving of P3HT 53	
	3.3.1	Doping with trifluoroacetic acid (TFA) 53	
	3.3.2	Doping with methanesulfonic acid (MSA) 56	
	3.3.3	Doping with acetic acid 57	
	3.3.4	Doping with chloroacetic acid (CA), dichloroacetic	
		acid (DCA) and trichloroacetic acid (TCA) 57	
	3.3.5	Doping with toluene-4-sulfonic acid	
3.4	The dop	ing of P3HT fractions with TFA 62	
3.5	Oxidatio	on of P3HT 63	
	3.5.1	By H ₂ O ₂ /TFA	
	3.5.2	By Urea Hydrogen Peroxide (UHP)/TFA 64	
3.6	Solvato-	controlled doping 67	
3.7	Conduct	ivity measurement 71	
	3.7.1	Polymer solution by conductometer 71	
	3.7.2	Polymer film by 4-Point Probe 73	
		3.7.2.1 P3HT film doped by iodine vapor 73	
		3.7.2.2 P3HT film doped by TCA 74	
CHAPTER	IV : CON	ICLUSIONS 75	
REFERENC	CES		,
APPE	NDIX A.		
APPE	NDIX B.)
APPE	NDIX C.		
APPE	NDIX D.		
VITAE			3

LIST OF FIGURES

Figures

1.1	Molecular structures of some conjugated polymers: note the bond-	
	alternated structures	1
1.2	Calculated (frontier) energy levels of oligothiophenes with $n = 1-4$ and	
	polythiophene (E _g = band gap energy)	3
1.3	Simple band picture explaining the difference between an insulator, a	
	semiconductor, and a metal	4
1.4	The conductivity of conducting polymers decreases with falling	
	temperature in contrast to that of metals	5
1.5	regioisomers of the poly(3-alkylthiophene)	6
1.6	Effect of HH couplings on thiophene ring coplanarity (A regioregular	
	P3AT, and B regiorandom P3AT)	8
1.7	Band gaps and electrical and optical properties vary with coplanarity	9
1.8	¹ H NMR spectra of (a) regiorandom (1:1:1:1, HT-HT: HT-HH:TT-	
	HT:TT-HH) P3HT and (b) regioregular (98.5%) of HT linkage P3HT	11
1.9	¹³ C NMR spectra of (a) regiorandom (1:1:1:1, HT-HT: HT-HH:TT-	
	HT:TT-HH) P3HT and (b) regioregular (98.5%) of HT linkage P3HT	12
1.10	The electrochemical method for the synthesis of P3ATs	14
1.11	The oxidative coupling reaction of 3-alkylthiophene by $FeCl_3$	15
1.12	The Rieke method for the preparation of P3AT	16
1.13	The McCullough method for the regiospecific synthesis of poly(3-	
	alkylthiophene)s with 100% HT couplings	18
1.14	Trapping of organometallic intermediates	18
1.15	Copolymer of thiophene S, S-dioxide prepared by a Pd-catalyzed	
	reaction	21
1.16	Schematic representation of polythiophene in the undoped, singly, and	
	doubly oxidized (left), and singly and doubly reduced (right) states	25
1.17	Polaron and bipolaron of Polythiophene	26

1.18	UV-vis-nir spectroelectrochemical curves recorded for regioregular	
	poly(3-octylthiophene) in 0.1 M Bu ₄ NBF ₄ solution in acetonitrile: (a)	
	E = 0 mV; (b) $E = 500 mV$; (c) $E = 800 mV$; (d) $E = 900 mV$; (e) $E =$	
	1000 mV; (f) E = 1200 mV; (g) E = 1400 mV. (E measured vs	
	Ag/AgCl reference electrode)	27
1.19	Projected equatorial structure of P3OT at various doping levels	27
1.20	A defect in polyacetylene and steric induced structural twisting in	
	poly(3-alkylthiophene)	30
1.21	Twisting of polythiophene	30
1.22	Elution Curves of regioregular poly(3-hexylthiophene) fractions	
	obtained by selective extraction	31
1.23	THF solution UV-vis spectra recorded for the fractions of regioregular	
	poly(3-hexylthiophene) differing in their average molecular weight,	
	which is an indication of higher conjugation length	32
1.24	THF solution UV-vis spectra recorded for the fractions of regioregular	
	poly(3-hexylthiophene). Note that the bathochromic shift observed for	
	higher molecular weight fractions is much more pronounced than in	
	the case of solution spectra	33
3.1	Part of ¹ H-NMR spectrum of P3HT showing (a) aromatic protons and	
	(b) α-methylene protons	44
3.2	UV-visible spectra of the fractions of poly(3-hexylthiophene)(P3HT)	
	from consecutive extractions	47
3.3	UV-visible spectra of solid film cast from evaporation of the fractions	
	of poly(3-hexylthiophene)(P3HT) from consecutive extractions	48
3.4	CHCl ₃ solution and solid-state UV-visible spectra of polythiophene	
	derivatives	48
3.5	¹ H NMR spectra of poly(3-hexylthiophene) fractions differing in their	
	average molecular weight	49

3.6	λ_{max} of poly(3-hexylthiophene) fractions ranged by their average	
	molecular weight	52
3.7	%HT of poly(3-hexylthiophene) fractions ranged by their average	
	molecular weight	52
3.8	AC-index values of poly(3-hexylthiophene) fractions ranged by their	
	average molecular weight	53
3.9	UV-visible spectra of P3HT doped with trifluoroacetic acid (TFA) at	
	different equivalent	54
3.10	Absorbance of P3HT doped with trifluoroacetic acid (TFA):	
	(♦) 440 nm; () 541 nm; (▲) 824 nm	54
3.11	AC-index curves of P3HT doped with trifluoroacetic acid (TFA) at	
	various equivalents	55
3.12	AC-index curves of P3HT doped with trifluoroacetic acid (TFA) at	
	30 min	55
3.13	AC-index curves of P3HT doped with acid: (\diamondsuit) MSA 0.33×10^3	
	equivalents; () MSA 0.5×10^3 equivalents; () TFA 0.83×10^3	
	equivalents	56
3.14	UV-visible spectra of P3HT doped with acetic acid at 30×10^3	
	equivalents 30 min after the addition	57
3.15	AC-index values of 0.3 μ mol P3HT doped with acids at 3.33×10^3	
	equivalents during 60 min after additions	58
3.16	AC-index values of 0.3 μ mol P3HT doped with acids at 3.33 $\times 10^3$	
	equivalents during 60 min after additions	58
3.17	AC-index values of 0.3 μ mol P3HT doped with acid at 3.33×10^3	
	equivalents during 60 min after additions	59
3.18	AC-index values of 0.3 μ mol P3HT doped with acids at 3.33×10^3	
	equivalents during 60 min after additions: (�) solid TCA; (🕅) solid	
	TCA+H ₂ O; (▲) TCA in dry CHCl ₃	59

Page

3.19	Absorbance at 839 nm of 0.3 μ mol P3HT doped with acids : (\blacklozenge) CA;	
	(🖾) DCA; (▲) TCA	60
3.20	AC-index values of 0.3 μ mol P3HT doped with acids : (\blacklozenge) CA; (\boxtimes)	
	DCA; (🍐) TCA	60
3.21	AC-index values of 0.3 μ mol P3HT doped with 3.33 \times 10 ³ equivalents	
	acids ranged in their pK _a values	61
3.22	AC-index values of P3HT doped with acids at 0.83×10^3 equivalents :	
	(\blacklozenge) TsOH.H ₂ O; (\blacksquare) TsOH; (\blacktriangle) anhydrous TFA	62
3.23	Increase of AC-index values of poly(3-hexylthiophene) fractions upon	
	doping with Trifluoroacetic acid (TFA): (\blacklozenge) acetone ; (\boxtimes) hexane ;	
	(\blacktriangle) CH ₂ Cl ₂ ; (×) 10%CHCl ₃ in CH ₂ Cl ₂ ; (*) CHCl ₃	62
3.24	UV-visible spectra of P3HT oxidized by H_2O_2/TFA from 10 to 120	
	min oxidation. Arrows indicate the directions of absorbance changes	
	of that areas over time	63
3.25	AC-index values of P3HT oxidized by H ₂ O ₂ /TFA (mole ratio P3HT :	
	•	
	H_2O_2 : TFA = 0.15 : 37.5 : 3.72)	64
3.26	H_2O_2 : TFA = 0.15 : 37.5 : 3.72) AC-index value of P3HT oxidized by UHP/TFA (mole ratio P3HT :	64
3.26	$H_2O_2: TFA = 0.15: 37.5: 3.72)$ AC-index value of P3HT oxidized by UHP/TFA (mole ratio P3HT : UHP: TFA = 0.15: 37.5: 3.72)	64 65
3.26 3.27	$H_2O_2: TFA = 0.15: 37.5: 3.72)$ AC-index value of P3HT oxidized by UHP/TFA (mole ratio P3HT : UHP : TFA = 0.15: 37.5: 3.72) UV-visible spectra of P3HT was oxidized by UHP/TFA measuring	64 65
3.26 3.27	$H_2O_2: TFA = 0.15: 37.5: 3.72)$ AC-index value of P3HT oxidized by UHP/TFA (mole ratio P3HT : UHP : TFA = 0.15: 37.5: 3.72) UV-visible spectra of P3HT was oxidized by UHP/TFA measuring every 10 min interval until 120 min (mole ratio P3HT : UHP : TFA =	64 65
3.26 3.27	$\begin{array}{l} H_2O_2: \mathrm{TFA} = \ 0.15: 37.5: 3.72) \\ \mathrm{AC}\ \mathrm{index}\ \mathrm{value}\ \mathrm{of}\ \mathrm{P3HT}\ \mathrm{oxidized}\ \mathrm{by}\ \mathrm{UHP}/\mathrm{TFA}\ \mathrm{(mole\ ratio}\ \mathrm{P3HT}\ \mathrm{:} \\ \mathrm{UHP}: \mathrm{TFA} = \ 0.15: 37.5: 3.72) \\ \mathrm{UV}\ \mathrm{visible}\ \mathrm{spectra}\ \mathrm{of}\ \mathrm{P3HT}\ \mathrm{was}\ \mathrm{oxidized}\ \mathrm{by}\ \mathrm{UHP}/\mathrm{TFA}\ \mathrm{measuring} \\ \mathrm{every}\ 10\ \mathrm{min}\ \mathrm{interval}\ \mathrm{until}\ 120\ \mathrm{min}\ \mathrm{(mole\ ratio}\ \mathrm{P3HT}\ \mathrm{:}\ \mathrm{UHP}\ \mathrm{TFA} = \\ 0.03: 0.75: 7.5) \\ \end{array}$	64 65 66
3.263.273.28	$H_2O_2: TFA = 0.15: 37.5: 3.72)$ AC-index value of P3HT oxidized by UHP/TFA (mole ratio P3HT : UHP : TFA = 0.15: 37.5: 3.72) UV-visible spectra of P3HT was oxidized by UHP/TFA measuring every 10 min interval until 120 min (mole ratio P3HT : UHP : TFA = 0.03: 0.75: 7.5) UV-visible spectra of P3HT was oxidized by UHP/TFA measuring	64 65 66
3.263.273.28	$H_2O_2: TFA = 0.15: 37.5: 3.72)$ AC-index value of P3HT oxidized by UHP/TFA (mole ratio P3HT : UHP : TFA = 0.15: 37.5: 3.72) UV-visible spectra of P3HT was oxidized by UHP/TFA measuring every 10 min interval until 120 min (mole ratio P3HT : UHP : TFA = 0.03: 0.75: 7.5) UV-visible spectra of P3HT was oxidized by UHP/TFA measuring every 10 min interval until 120 min (mole ratio P3HT : UHP : TFA =	64 65 66
3.263.273.28	H_2O_2 : TFA = 0.15 : 37.5 : 3.72) AC-index value of P3HT oxidized by UHP/TFA (mole ratio P3HT : UHP : TFA = 0.15 : 37.5 : 3.72) UV-visible spectra of P3HT was oxidized by UHP/TFA measuring every 10 min interval until 120 min (mole ratio P3HT : UHP : TFA = 0.03 : 0.75 : 7.5) UV-visible spectra of P3HT was oxidized by UHP/TFA measuring every 10 min interval until 120 min (mole ratio P3HT : UHP : TFA = 0.09 : 2.25 : 67.5)	64 65 66
3.263.273.283.29	$H_2O_2: TFA = 0.15: 37.5: 3.72)$ AC-index value of P3HT oxidized by UHP/TFA (mole ratio P3HT : UHP : TFA = 0.15: 37.5: 3.72) UV-visible spectra of P3HT was oxidized by UHP/TFA measuring every 10 min interval until 120 min (mole ratio P3HT : UHP : TFA = 0.03: 0.75: 7.5) UV-visible spectra of P3HT was oxidized by UHP/TFA measuring every 10 min interval until 120 min (mole ratio P3HT : UHP : TFA = 0.09: 2.25: 67.5) AC-index values of P3HT oxidized by UHP/TFA at 55 °C (mole ratio	64 65 66

xiii

3.30	UV-visible spectra of P3HT, which was solvato-controlled doped by	
	MSA and pyridine, measuring after heating at 80 $^{\circ}$ C for 0, 30 and 60	
	min (mole ratio P3HT : MSA : pyridine = 1 : 1 : 2)	69
3.31	UV-visible spectra of P3HT which was solvato-controlled doped by	
	MSA and triethylamine, measuring after heating at 80 °C for 0, 30 min	
	(mole ratio P3HT : MSA : triethylamine = 1 : 1 : 2)	69
3.32	UV-visible spectra of P3HT which was solvato-controlled doped by	
	MSA and thiophene, measuring after heating at 60 °C every 10 min	
	interval until 100 min (mole ratio P3HT:MSA:thiophene= 1:0.5:1)	70
3.33	AC-index values of P3HT which was solvato-controlled doped by	
	MSA and thiophene (mole ratio P3HT : MSA : thiophene = $1:0.5:1$)	70
3.34	Conductivity of 0.45 mM P3HT doped by TFA	71
3.35	AC-index values of P3HT in various concentrations	72
3.36	Conductivity of 0.05 mM P3HT fractions	72
A-1	The ¹ H-NMR (400 MHz, CDCl ₃) of poly(3-hexylthiophene)	86
A-2	FT-IR (KBr) spectrum of the oxidized P3HT	87
A-3	UV-visible spectrum of P3HT in CHCl ₃	87
B-1	Conductivity measurement by Four-point Probe method	89
C-1	Part of ¹ H NMR spectrum data of CHCl ₃ fraction	93
D-1	UV-visible spectra of poly(3-hexylthiophene) fractions ranged by their	
	average molecular weight (Figure 3.2)	96
D-2	UV-visible spectra of P3HT doped with Trifluoroacetic acid (TFA) at	
	different equivalent from 0 to 50 min (Figure 3.9)	96
D-3	UV-visible spectra of P3HT doped with 0.83×10^3 equivalent of TFA	
	from 0 to 30 min	97
D-4	UV-visible spectra of P3HT doped with 1.67×10^3 equivalent of TFA	
	from 0 to 30 min	98

D-5	UV-visible spectra of P3HT doped with 2.50×10^3 equivalent of TFA	
	from 0 to 30 min	98
D-6	UV-visible spectra of P3HT doped with 3.33×10^3 equivalent of TFA	
	from 0 to 30 min	98
D-7	UV-visible spectra of P3HT doped with 4.17×10^3 equivalent of TFA	
	from 0 to 30 min	99
D-8	UV-visible spectra of P3HT doped with 5.00×10^3 equivalent of TFA	
	from 0 to 30 min	99
D-9	UV-visible spectra of P3HT doped with 6.67×10^3 equivalent of TFA	
	from 0 to 30 min	99
D-10	UV-visible spectra of P3HT doped with 10.00×10^3 equivalent of TFA	
	from 0 to 30 min	100
D-11	AC-index curves of P3HT doped with Methanesulfonic acid (MSA)	
	0.33×10^3 equivalent from 0 to 60 min	101
D-12	AC-index curves of P3HT doped with Methanesulfonic acid (MSA)	
	0.5×10^3 equivalent from 0 to 60 min	101
D-13	AC-index curves of P3HT doped with Trifluoroacetic acid (TFA) 0.83	
	10 ³ equivalent from 0 to 60 min	101
D-14	UV-visible spectra of 0.3 μ mol P3HT doped with 3.33 $\times 10^3$	
	equivalents of CA + CHCL ₃ during 60 min after additions	103
D-15	UV-visible spectra of 0.3 μ mol P3HT doped with 3.33 \times 10 ³	
	equivalents of DCA during 60 min after additions	103
D-16	UV-visible spectra of 0.3 μ mol P3HT doped with 3.33 × 10 ³	
	equivalents of TCA + CHCl ₃ during 60 min after additions	103
D-17	UV-visible spectra of 0.3 μ mol P3HT doped with CA 3.33 $\times 10^3$	
	equivalents during 60 min after additions	105
D-18	UV-visible spectra of 0.3 μ mol P3HT doped with TCA 3.33 $\times 10^3$	
	equivalents during 60 min after additions	105

D-19 UV-visible spectra of 0.3 μ mol P3HT doped with 3.33 \times 10 ³	
equivalents DCA during 60 min after additions	107
D-20 UV-visible spectra of 0.3 μ mol P3HT doped with 3.33 \times 10 ³	
equivalents DCA + CHCl ₃ during 60 min after additions	107
D-21 UV-visible spectra of 0.3 μ mol P3HT doped with solution of TCA	
3.33×10^3 equivalents in dry CHCl ₃ during 60 min after additions	109
D-22 UV-visible spectra of 0.3 μ mol P3HT doped with solid TCA 3.33 \times	
10 ³ equivalents during 60 min after additions	109
D-23 UV-visible spectra of 0.3 μ mol P3HT doped with 3.33×10^3	
equivalents TCA+H ₂ O (10 μ L) during 60 min after additions	109
D-24 UV-visible spectra of 0.3 μ mol P3HT doped with CA at various	
equivalent	110
D-25 UV-visible spectra of 0.3 μ mol P3HT doped with DCA at various	
equivalent	110
D-26 UV-visible spectra of 0.3 μ mol P3HT doped with TCA at various	
equivalent	110
D-27 UV-visible spectra of 0.3 μ mol P3HT doped with 3.33 \times 10 ³	
equivalents of TsOH.H ₂ O during 60 min after additions \dots	113
D-28 UV-visible spectra of 0.3 μ mol P3HT doped with 3.33 \times 10 ³	
equivalents of anhydrous TsOH during 60 min after additions	113
D-29 UV-visible spectra of acetone fraction of P3HT extraction doped with	
3.33×10^3 equivalents of TFA from 0 to 60 min	115
D-30 UV-visible spectra of hexane fraction of P3HT extraction doped with	
3.33×10^3 equivalents of TFA from 0 to 60 min	115
D-31 UV-visible spectra of CH_2Cl_2 fraction of P3HT extraction doped with	
3.33×10^3 equivalents of TFA from 0 to 60 min	115
D-32 UV-visible spectra of 10%CHCl ₃ in CH ₂ Cl ₂ fraction of P3HT	
extraction doped with 3.33×10^3 equivalents of TFA from 0 to 60 min	116

D-33	UV-visible spectra of CHCl ₃ fraction of P3HT extraction doped with	
	3.33×10^3 equivalents of TFA from 0 to 60 min	116
D-34	UV-visible spectra of P3HT oxidized by H_2O_2/TFA from 10 to 120 min	
	oxidation (Figure 3.24)	117
D-35	UV-visible spectra of P3HT oxidized by UHP/TFA (mole ratio P3HT :	
	UHP: TFA = 0.15: 37.5: 3.72)	118
D-36	UV-visible spectra of P3HT oxidized by UHP/TFA at 55 $^{\circ}$ C (mole ratio	
	P3HT : UHP : TFA = 0.05 : 0.10 : 0.20)	119
D-37	UV-visible spectra of P3HT solvato-controlled doped by MSA and	
	thiophene. Measuring the absorption after heating at 60 $^{\circ}$ C every 10	
	min intervals until 100 min(mole ratio P3HT : MSA : thiophene = 0.1	
	: 0.05 : 0.1)	120

LIST OF TABLES

Tables

1.1	Maximum wavelength absorption (λ_{max}) , nm of oligothiophene contair	
	thienyl S,S-dioxide and of the parent oligothiophene	21
1.2	Structures and maximum wavelength absorptions (λ_{max}) of	
	oligothiophenes and polythiophenes with and without thienyl S,S-	
	dioxide moieties	22
1.3	Macromolecular parameters of regioregular-P3HT fractions obtained	
	by selective extraction	31
2.1	Equivalents of TFA	38
2.2	Mole ratios of P3HT : UHP : TFA	40
2.3	Mole ratios of P3HT : Acid : Base in solvato-controlled doping	
	condition	41
2.4	Equivalents of TFA for conductometric method	42
2.5	Equivalents of TFA for 4-point probe method	43
3.1	Assignments of the IR spectrum of poly(3-hexylthiophene)	46
3.2	Macromolecular parameters of P3HT fractions from consecutive	
	extractions	46
3.3	¹ H NMR chemical shifts of aromatic and α -methylene protons in triads	
	and end groups of poly(3-hexylthiophene)	51
3.4	The mole ratios of P3HT : UHP : TFA in preoxidized conditions	65
3.5	The mole ratios of P3HT : Acid : Base in solvato-controlled doping	
	condition	68
3.6	The decrease of conductivity of I_2 doped P3HT film after taken out	
	of I ₂ chamber	73
3.7	Conductivity of P3HT doped by TCA	74
D-1	λ_{max} of P3HT fractions ranged by their average molecular	
	weight	95
D-2	%HT of P3HT fractions ranged by their average molecular weight	95

Tables

D-3	AC-index values (300-700) of poly(3-hexylthiophene) fractions ranged	
	their average molecular weight (Figure D-1)	96
D-4	Absorbance values from Figure D-2	97
D-5	AC-index values (300-1000) of P3HT doped with Trifluoroacetic acid	
	(TFA) from Figure D-3 – Figure D-10	100
D-6	AC-index values (300-1000) of P3HT was doped with MSA	
	and TFA(Figure D-11 – Figure D-13)	102
D-7	AC-index values (300-1000) of 0.3 $\mu mol \ P3HT$ doped with 3.33×10^3	
	equivalents of acids during 60 min after additions (Figure D-14-D-16)	104
D-8	AC-index values (300-1000) of 0.3 μ mol P3HT doped with acids 3.33	
	10 ³ equivalents during 60 min after additions (Figure D-15 and Figure	
	17 – D-18)	106
D-9	AC-index value (300 - 1000) of 0.3 μmol P3HT doped with DCA 3.33 \times	
	10^3 equivalents during 60 min after additions (Figure D-19 – D-20)	108
D-10	AC-index values (300-1000) of 0.3 µmol P3HT doped with TCA 3.33	
	$\times 10^3$ equivalents during 60 min after additions (Figure D-21 – D-23)	110
D-11	Absorbance at 839 nm of 0.3 μ mol P3HT doped with CA, DCA and	
	TCA (Figure D-24 – D-26)	112
D-12	AC-index values (300-1000) of 0.3 μmol P3HT doped with CA, DCA	
	and TCA (Figure D-24 – D-26)	112
D-13	AC-index values (300-1000) of 0.3 μ mol P3HT was doped with	
	3.33×10^3 equivalents of acids ranged in their pK_a values	113
D-14	AC-index values (300-1000) of 0.3 μ mol P3HT doped with 3.33 $\times 10^3$	
	equivalents of acids (Figure D-27 – D-28 and Figure D-6)	114
D-15	AC-index values (300-1000) of poly(3-hexylthiophene) fractions upon	
	doping with Trifluoroacetic acid (TFA) (Figure D-29 – D-33)	117
D-16	AC-index values (300-1000) of P3HT oxidized by H_2O_2/TFA (mole	
	ratio P3HT : H_2O_2 : TFA = 0.15 : 37.5 : 3.72) (Figure D-34)	118

Tables

D-17 AC-index values (300-1000) of P3HT oxidized by UHP/TFA (mole
ratio P3HT : UHP : TFA = 0.15 : 37.5 : 3.72) (Figure D-35) 119
D-18 AC-index value (300-1000) of P3HT oxidized by UHP/TFA at 55°C
(mole ratio P3HT : UHP : TFA = $0.05 : 0.10 : 0.20$) (Figure D-36) 120
D-19 AC-index values (300-1000) of P3HT solvato-controlled doped by
MSA and thiophene (mole ratio P3HT : MSA : thiophene = $0.1 : 0.05$:
0.1) (Figure D-37) 12
D-20 Conductivity of 0.45 mM P3HT doped by TFA 12
D-21 Conductivity of P3HT doped by TFA in various concentrations 122
D-22 Conductivity of 0.05 mM P3HT fractions 122

LIST OF ABBREVIATIONS

[0]	: oxidation
°C	: degree celsius
μL	: microliter
μmol	: micromole
А	: absorbance
CA	: chloroacetic acid
CDCl ₃	: deuterated chloroform
CHCl ₃	: chloroform
CH_2Cl_2	: dichloromethane
CH ₃ CN	: acetonitrile
CH₃COOH	: acetic acid
cm ⁻¹	: per centimeter
DCA	: dichloroacetic acid
dppe	: 1,2-bis(diphenylphosphino)ethane
FeCl ₃	: ferric chloride
g	: gram
GPC	: gel permeation chromatography
HCI	: hydrochloric acid
НН	: head to head
H_2O_2	: hydrogen peroxide
hr	: hour
HT	: head to tail
IR	: infrared spectrophotometer
M _n	: number average molecular weight
M_{w}	: weight average molecular weight
МеОН	: methanol
mg	: milligram
min	: minute
mL	: milliliter

.

mmol	: millimole
MSA	: methanesulfonic acid
NaOH	: sodium hydroxide
nm	: nanometre
NMR	: nuclear magnetic resonance spectroscopy
P3AT	: poly(3-alkylthiophene)
P3HT	: poly(3-hexylthiophene)
ppm	: part per million
РТ	: polythiophene
S	: siemen
TCA	: trichloroacetic acid
TFA	: trifluoroacetic Acid
THF	: tetrahydrofuran
TsOH	: toluene-4-sulfonic acid
TsOH ⁺ H ₂ O	: toluene-4-sulfonic acid monohydrate
TT	: tail to tail
UHP	: urea Hydrogen Peroxide
UV	: ultra-violet