CHAPTER III

 RESULTS

3.1. Comparison of the amino acid sequence of the CGTase from Bacillus circulans A11 with those of thermostable CGTases and the design of mutagenic primers

CGTases from different sources have different characteristics in terms of activity, optimum temperature, thermostability, substrate specificity, and some local structures. The differences lie on the primary amino acid sequence, which dictates the higher-level structure of the enzyme. It is believed that one could simulate one enzyme with the other by mimicking the primary structure of the former enzyme. In this study, I attempted to create a thermophilic CGTase from the mesophilic one from Bacillus circulans A11 (A11 CGTase). The amino acid sequences from different thermophilic organisms were downloaded from the GenBank for amino acid sequence comparison. They were CGTases from Thermoanaerobacterium thermosulfurigenes EM1 (Tonkova, 1998) Thermoanaerobacter sp. ATCC 53627, B. stearothermophilus NO2 and B. stearothermophilus ET1 (Chung et al., 1998), which had temperature optima of $80-85,90$ and $80^{\circ} \mathrm{C}$, respectively. Of these, the crystal structures of CGTases from T. thermosulfurigenes EM1 (Knegtel et al., 1996) and B. stearothermophilus (Kubota M, Matsuura Y, Sakai S, Katsube Y, PDB 1CYG, unpublished) were known.

The amino acid sequence of CGTase from B. circulans All was then compared to those of the thermostable CGTases using clustalX (Thompson et al., 1999). The result is shown in Fig. 3.1. The result shows moderate homology ($\sim 70 \%$) among the five CGTases as several homologous segments are seen scattering all over the entire amino acid sequences. There are, however, three major and one minor regions in the All CGTases that are different from those of thermostable CGTases. The four regions (I, II, III and IV) consist of amino acid residues at positions 89-94, 265-271, 333-339, and 538-540 (A11 CGTase numbering), respectively. The first
three regions reside in the catalytic domain A / B while the fourth region is located in domain D whose function is not fully unveil. The fourth region is likely not involved in the thermostability of the enzyme since it is found also in some thermostable CGTases.

The primers, corresponding to the three different amino acid regions in A11 CGTase, were then designed. The designed primers mimic the amino acid residues of the thermostable CGTases. Two primers, A and B , were designed for region I mutagenesis, because there were variation in amino acid sequences among the four thermostable CGTases. Primers C and D were designed for region II and III mutagenesis, respectively. Primer A and B introduced base substitutions/addition and substitutions/deletion, respectively. Primer C and D provided only base substitutions (Fig. 3.2). Amino acid substitutions were made in favor of the amino acid sequence in CGTase from thermostable enzyme. Upon mutagenesis, the amino acid sequences in CGTase from B. circulans A11 would be changed to DSTFGGS, DASGS, VDPNNHY, and YIGEGDT in regions I_{A}, I_{B}, II, and III, respectively. For the screening of mutants, primers A , and D were designed to create restriction sites, BamHI and HindIII, respectively, in the mutant plasmids. Primers B and C were both designed to create the same restriction site, Sall, in the mutant plasmids.

ATCC53627
1CIU
All
ET1
No2

ATCC5 3627
1CIU
A11
ET1
No2

ATCC53627
1CIU
All
ET1
No2

ATCC53627
1CIU
All
ET1
No2

ATCC5 3627
1CIU
All
ET1
No2

ATCC53627
1CIU
All
ETI
No2

TTAYNVIKKLAPLRKSNPAIAYGTQKQRWINNDVYIYERQFGNNVALVAINRNLS 439 TTAYNVIKKLAPLRKSNPAIAYGTTQQRWINNDVYIYERKFGNNVALVAINRNLS 439 TTAYQVIQKLAPLRKSNPAIAYGSTQERWINNDVIIYERKFGNNVAVVAINRNMN 439 TRAYQVIQKLSSLRRSNPALSYGDTEQRWINSDVYIYERQFGKDVVLVAVNRSLS 435 TRAYQVIQKLSSLRRNNPALAYGDTEQRWINGDVYVYERQFGKDVVLVAVNRSSS 435 ***:**:**:.**:.***::** ::****** :***:**::*.:**:**. .

TSYYITGLYTALPAGTYSDMLGGLLNGSSITVSSNGSVTPFTLAPGEVAVWQYVS 494 TSYNITGLYTALPAGTYTDVLGGLLNGNSISVASDGSVTPFTLSAGEVAVWQYVS 494 TPASITGLVTSLPQGSYNDVLGGILNGNTLTVGAGGAASNFTLAPGGTAVWQYTT 494 KSYSITGLFTALPSGTYTDQLGALLDGNTIQVGSNGAVNAFNLGPGEVGVWTYSA 490 SNYSITGLFTALPAGTYTDQLGGLLDGNTIQVGSNGSVNAFDLGPGEVGVWAYSA 490

TTNPPLIGHVGPTMTKAGQT ITIDGRGFGTTAGQVLFGTTPAT---IVSWEDTEV 546 SSNSPLIGHVGPTMTKAGQTITIDGRGFGTTSGQVLFGSTAGT---IVSWDDTEV 546 DATAPIIGNVGPMMAKPGVTITIDGRGFGSGKGTVYFGTTAVTGADIVAWEDTQI 549 AESVPIIGHIGPMMGQVGHKLTIDGEGFGTNVGTVKFGNTVAS---VVSWSNNQI 542 TESTPIIGHVGPMMGQVGHQVTIDGEGFGTNTGTVKFGTTAAN---VVSWSNNQI 542

KVKVPALTPGKYNITLKTASGVTSNSYNNINVLTGNQVCVRFVVNNATTVWGENV 601 KVKVPSVTPGKYNISLKTSSGATSNTYNNINILTGNQICVRFVVNNASTVYGENV 601 QVKIPAVPGGIYDIRVANAAGAASNIYDNFEVLTGDQVTVREVINNATTALGQNV 604 TVTVPNIPAGKYNITVQTSGGQVSAAYDNFEVLTNDQVSVRFVVNNANTNWGENI 597 VVAVPNVSPGKYNITVQSSSGQTSAAYDNFEVLTNDQVSVRFVVNNATTNLGQNI 597

YLTGNVAELGNWDTSKAIGPMFNQVVYQYPTWYYDVSVPAGTTIEF--IKKNGS- 653 YLTGNVAELGNWDTSKAIGPMFNQVVYQYPTWYYDVSVPAGTTIQFKFIKKNGN- 655 FLTGNVSELGNWDPNNAIGPMYNQVVYQYPTWYYDVSVPAGQTIEFKFLKKQGS- 658 YLVGNVHELGNWNTSKAIGPLFNQVIYSYPTWYVDVSVPEGKTIEFKFIKKDGSG 652 YIVGNVYELGNWDTSKAIGPMFNQVVYSYPTWYIDVSVPEGKTIEFKFIKKDSQG 652 ::.*** *****:..:****::***;**************:* :**:...

TVTWEGGYNHVYTTPTSGTATVIVDWQP 681 TITWEGGSNHTYTVPSSSTGTVIVNWQQ 683 TVTWEGGANRTFTTPTSGTATMNVNWQP 686 NVIWESGSNHVYTTPTSTTGTVNVNWQY 680 NVTWESGSNHVYTTPTNTTGKIIVDWQN 680 .: **.**:.:**:. *...: *:**

Fig. 3.1. Amino acid sequence comparison of the various CGTases. The different amino acid sequences of CGTases from Thermoanaerobacterium thermosulfurigenes EM1 (1CIU), Thermoanaerobacter sp. ATCC 53627 (ATCC53627), Bacillus circulans A11 (A11), Bacillus stearothermophilus NO2 (No2) and Bacillus stearothermophilus ET1 (ET1) were aligned. Double arrows indicate the amino acid sequences of CGTase from B. circulans All that are different from those of thermostable CGTases. Numbering of the amino acid sequence starts at the N - terminal amino acid of each mature enzyme.

PRIMER A (47mer)

Bamir

PRIMER B (41mer)

Fig. 3.2. The design of oligonucleotides used in the USE mutagenesis procedure. The nucleotide sequences of wild type to be mutated are underlined. The newly created restriction sites are shaded.

3.2. Mutagenesis of CGTase gene from Bacillus circulans A11 using USE mutagenesis

The plasmid pVR328, carrying the CGTase gene from B. circulans A11, was used as a template for the USE mutagenesis procedure (Fig.2.2). The mutagenic primers A, B, C, and D along with the reference ScaI primer were used to mutate the CGTase gene at the three regions described above. The mutagenesis procedure generated a mixture of mutated plasmids. After removing the mostly wild type plasmids with ScaI digestion, the mutated plasmids were separated into individual clones by transformation. The plasmid clones were prepared, and screened for the presence of added restriction sites, BamHI, Sall, and HindIII. The positions of these sites were confirmed by restriction enzyme digestion and agarose gel electrophoresis (Fig. 3.3). Four mutated plasmids, pRS1A, 1B, 2 and 3, were obtained as shown in Fig. 3.4 with the restriction sites, BamHi, SalI, Sall, and HindIII, respectively. It should be noted that the pRS3 were obtained after screening nine clones because the designed primer contained multiple nucleotides in several positions in order to create multiple mutated sequences. Two identical clones were selected after restriction digestion and DNA sequencing. Only one clone was chosen to represent the pRS3.

Fig. 3.3. Restriction digestion of pRS1A, 1B, 2, and 3. Lane M: $\lambda /$ HindIII marker; lane 1: pRS1A digested with BamHI, lane 2: pRS1B digested with Sall, lane 3: pRS2 digested with Sall, and lane 4: pRS3 digested with HindIII.

Restrictiom digestion and DNA sequencing to confirm the mutation sites

Fig. 3.4. The mutated plasmids, pRSIA, 1B, 2 and 3. The plasmids were processed to confirm the mutations by restriction digestion and DNA sequencing. The new restriction sites are boxed and the sizes of the DNA fragments are indicated.

3.3. DNA sequencing determination of the mutation regions

The precise DNA sequences around the mutation regions in $\mathrm{pRS} 1 \mathrm{~A}, 1 \mathrm{~B}, 2$ and 3 were determined using the ABI Prism Big Dye Terminator Cycle Sequencing. The four mutants had the nucleotide sequences as designed (Fig. 3.5). Nucleotide sequences between the two restriction sites bordering the mutation regions were also checked to make certain that there were no additional mutations. The mutation regions were subsequently subcloned using the two border restriction sites into the wild type plasmid replacing the wild type sequences.

Fig. 3.5. Nucleotide sequencing of mutant regions $I_{A}, I_{B}, I I$, and III in pRSIA, 1B, 2 and 3, respectively. The new restriction sites are boxed. Each mutation region is indicated by a line over the region.

3.4. Construction of the mutant CGTases

The DNA fragments containing the mutation regions were subcloned into the original plasmid (pVR 328) replacing the wild type sequence to avoid other possible mutation sequences in the mutated plasmids. Then, the resulting plasmids were used for the construction of mutant CGTases that had the combinations of mutation regions.

To subclone the mutation regions into the pVR 328 , the DNA fragments between the restriction sites indicated in Fig. 3.6 were removed from pRS1A and 1B as the 608 bp NsiI-SphI fragments, and pRS2 and 3 as the 680 bp NdeI-SacII fragments, and replaced the corresponding fragments in pVR328. These resulted in pRS4A, 4B, 5 and 6 , respectively. The combination of mutant regions was further constructed. The cloning sites were NdeI and SacII, which covered the mutation regions II and III. The pRS7A, 7B, 8A, 8B, 9, 10A and 10B were mutant plasmids containing the mutation regions $\mathrm{I}_{A}+I I, \mathrm{I}_{B}+\mathrm{II}, \mathrm{I}_{A}+\mathrm{III}, \mathrm{I}_{\mathrm{B}}+\mathrm{III}, \mathrm{II}+\mathrm{III}, \mathrm{I}_{\mathrm{A}}+\mathrm{II}+\mathrm{III}$ and $\mathrm{I}_{\mathrm{B}}+\mathrm{II}+\mathrm{III}$, respectively (Fig. 3.6).

The plasmid pRS7A, 7B, 8A and 8B were constructed by subcloning the mutation regions II and III in place of the wild type sequences in pRS4A and 4B. Thus, the pRS7A contained additional BamHI and Sall sites and the pRS7B contained two additional Sall sites. The pRS8A and the pRS8B contained the additional BamHI and HindIII sites and the additional Sall and HindIII sites, respectively.

The pRS9, which contained regions II and III with the additional Sall and HindIII sites, was constructed by mutating the single-stranded pRS6 DNA with primer C using USE mutagenesis procedure. This was due to the fact that there were no appropriate restriction sites between regions II and III that could be used for cloning. After obtaining the mutant plasmid pRSCD108 with regions II and III mutated, the combination was subcloned into the pVR328 resulting in pRS9. The pRS10A and 10B, which contained all three mutation regions, were constructed by subcloning mutated regions II and III in pRS9 replacing the corresponding sequences in pRS4A and 4B, respectively. The mutated plasmids, pRS10A and 10B, therefore, contained BamHI, SalI and HindIII sites, and SalI, SalI and HindIII sites, respectively.

These recombinant plasmids were subjected to restriction digestion to verify not only the mutation regions but also the cloning sites (Fig. 3.7 and 3.8). The pRS4A was digested with BamHI and NsiI + SphI for the mutation regions and the cloning sites giving $4.3+1.5+0.4 \mathrm{~kb}$ and $5.6+0.6 \mathrm{~kb}$ DNA fragments, respectively (Fig. 3.7 lanes 1 and 2). The pRS4B was digested with SalI and NsiI + SphI for the mutation regions and the cloning sites giving $4.3+1.9 \mathrm{~kb}$ and $5.6+0.6 \mathrm{~kb}$ DNA fragments, respectively (Fig. 3.7 lanes 3 and 4). The pRS5, 6, 7A, 7B, 8A, 8B, 9, 10A, and 10B were digested with $N d e I+S a c I l$ for the cloning sites resulting in $5.3+0.9 \mathrm{~kb}$ DNA fragments (Fig. 3.7 lanes 6, 8, 10 and 12, and Fig. 3.8 lanes 2, 4, 7, 9 and 12). The pRS5 was digested with Sal I for the mutation regions resulting in $4.8+1.4 \mathrm{~kb}$ DNA fragments (Fig. 3.7 lane 5). The pRS6 was digested with HindIII for the mutation regions resulting in $4.4+1.8 \mathrm{~kb}$ DNA fragments (Fig. 3.7 lane 7). The pRS7A was digested with BamHI + Sall for the mutation regions resulting in $4.2+1.1+0.5+0.4 \mathrm{~kb}$ DNA fragments (Fig. 3.7 lane 9). The pRS7B was digested with Sall for the mutation regions resuiting in $4.3+\mathrm{i} .4+0.5 \mathrm{~kb}$ DNA fragments (Fig. 3.7 lane 11). The pRS8A was digested with BamillthindII for the mutation regions resulting in $3.2+\mathrm{i} .1+0.8+0.7+0.4 \mathrm{~kb}$ DNA fragments (Fig. 3.8 lane 1). The pRS8B was digested with Sall + HindIII for the mutation regions resulting in $3.2+1.2+1.1+0.7 \mathrm{~kb}$ DNA fragments (Fig. 3.8 lane 3). The pRS9 was digested with SalI and HindIII for the mutation regions resulting in $4.8+1.4 \mathrm{~kb}$ and $4.4+1.8 \mathrm{~kb}$ DNA fragments, respectively (Fig. 3.8 lanes 5 and 6). The pRS10A was digested with BamHI + SalI + HindIII for the mutation regions resulting in $3.2+1.1+0.8+0.5+0.4+0.2 \mathrm{~kb}$ DNA fragments (Fig. 3.8 lane 8). The pRS10B was digested with SalI and HindIII for the mutation regions resulting in $4.3+1.4+0.5 \mathrm{~kb}$ and $4.3+1.9 \mathrm{~kb}$ DNA fragments, respectively (Fig. 3.8 lanes 10 and 11).

Fig. 3.6. Summary of the mutant CGTase constructs. Regions $I_{A}, I_{B}, I I$, and III are the mutated regions containing the restriction sites, BamHI, SalI (for I_{B} and II) and HindIII, respectively.

Fig. 3.7. Restriction digestion of pRS4A, 4B, 5, 6, 7A and 7B. Lane M: λ HindIII marker; lanes 1 and 2: pRS4A digested with BamHI and NsiI + SphI, respectively; lanes 3 and 4: pRS4B digesied with SalI and Nsil + SphI, respectively; lane 5 and 6: pRS5 digested with SalI and NdeI + SacII, respectively; lane 7 and 8: pRS6 digested with HindIII and NdeI + SacII, respectively; lane 9 and 10: pRS7A digested with BamHI+ SalI and NdeI+SacII, respectively; lane 11 and 12: pRS7B digested with SalI and and NdeI + SacII, respectively.

Fig. 3.8. Restriction digestion of pRS8A, 8B, 9, 10A and 10B. Lane M: λ HindIII marker; lanes 1 and 2: pRS8A digested with BamHI + HindIII and NdeI + SacII, respectively; lanes 3 and 4: pRS8B digested with SalI + HindIII and NdeI + SacII, respectively; lane 5, 6 and 7: pRS9 digested with Sall and HindIII and NdeI + SacII, respectively; lane 8 and 9: pRS10A digested with BamHI + SalI + HindIII and NdeI + SacII, respectively; lane 10, 11 and 12: pRS10B digested with Sall and HindIII and NdeI+SacII, respectively.

3.5. The activities of the mutant CGTases

3.5.1. Halo zone on LB-starch agar

The E. coli JM109 transformants harboring each of the mutant CGTase gene was tested for dextrinizing activity on an LB-starch agar plate. Cells with dextrinizing activity gave halo zone surrounding the colonies after exposure to a $\mathrm{KI}-\mathrm{I}_{2}$ indicator solution. Fig. 3.9 shows separately such activity from each mutant clone. Fig. 3.10 summarizes the halo zone assay of all the mutant transformants. All mutant CGTases are dextrinizing active slightly higher than that of wild-type CGTase.
pVR328

Fig. 3.9. Iodine test for dextrinizing activity of wild type and mutant CGTases. Clear zones surrounding the colonies indicate starch hydrolysis activity.

Fig. 3.10. Summary of the iodine test for dextrinizing activity of the wild type and the mutant CGTases. Clear zone surrounding the colonies indicates starch hydrolysis activity.

3.5.2. Dextrinizing activity assay at various temperatures

The crude enzymes in the culture supernatants of the transformants were also assayed for dextrinizing activity using the modified Fuwa method (Fuwa et al., 1954) (Table 3.1). The activities of the wild type and mutant CGTases were measured at different temperatures. The profiles in Fig. 3.11 reveal 3 groups of mutant CGTases with different optimum temperatures. The mutant pRS6 (region III mutant) has more or less the same optimum temperature as the wild type at $65^{\circ} \mathrm{C}$. The pRS4A $\left(\mathrm{I}_{\mathrm{A}}\right), 4 \mathrm{~B}\left(\mathrm{I}_{\mathrm{B}}\right), 5(\mathrm{II}), 8 \mathrm{~A}\left(\mathrm{I}_{\mathrm{A}}+\mathrm{III}\right), 8 \mathrm{~B}\left(\mathrm{I}_{\mathrm{B}}+\mathrm{III}\right)$ and 9 (II +III$)$ have lower optimum temperature at about $60^{\circ} \mathrm{C}$. The pRS7A $\left(\mathrm{I}_{\mathrm{A}}+\mathrm{II}\right), 7 \mathrm{~B}\left(\mathrm{I}_{\mathrm{B}}+\mathrm{II}\right), 10 \mathrm{~A}\left(\mathrm{I}_{\mathrm{A}}+\mathrm{II}+\mathrm{III}\right)$ and $10 \mathrm{~B}\left(\mathrm{I}_{\mathrm{B}}+\mathrm{II}+\mathrm{III}\right)$ seem to have lower optimum temperature than $60^{\circ} \mathrm{C}$.

Table 3.1. Dextrinizing activity assay of wild type and mutant CGTases at various temperatures.

Dextrinizing activity (unit/mg protein)						
Temperature $\left({ }^{\circ} \mathrm{C}\right)$	40	50	60	65	70	80
WT	1063.24	2714.54	6082.47	6759.62	6545.78	1437.46
pRS4A	2925.06	4128.89	5747.66	5665.69	3964.96	1275.55
pRS4B	1369.17	2484.70	2959.09	2855.76	2132.42	711.59
pRS5	3440.55	7146.41	9713.99	9405.88	5314.88	522.07
pRS6	1484.60	3015.15	5212.17	5736.14	5396.02	1259.38
pRS7A	1773.04	2741.47	3006.46	2204.25	884.11	19.27
pRS7B	1178.99	1653.32	1692.84	1327.56	760.55	128.12
pRS8A	1243.16	2568.37	4217.70	3778.70	2547.85	717.99
pRS8B	2616.62	4607.92	5840.84	5596.91	4204.34	975.69
pRS9	1120.54	2077.10	2916.89	2810.05	1383.91	360.26
pRS10A	1968.78	3427.56	3478.84	2592.75	1057.04	25.64
pRS10B	1719.08	3134.56	3692.54	2391.95	767.23	155.91

Fig. 3.11. Dextrinizing activity assay of the wild-type and mutant CGTases. The values are shown as relative activity at various temperatures. Each experiment was performed in duplicate.

3.5.3. Thermostability of the CGTases

The effect of temperature on the stability of CGTases was also investigated (Table 3.2). The activities of crude enzymes from the wild type and mutant CGTases were compared at various temperatures, and the percentages of relative activity are shown in Fig. 3.12. In general, the profiles indicate that all mutated CGTases exhibit lower stability than the wild type CGTase except that of the pRS6 mutant, which has comparable stability to the wild type CGTase.

Table 3.2. Specific activities of wild type and mutant CGTases in the thermostability assay.

Thermostability activity (unit/mg protein)								
Temperature (${ }^{\circ} \mathrm{C}$)	40	50	55	60	65	70	80	
WT	1416.13	1336.54	1183.92	1130.50	187.51	62.14	9.81	
pRS4A	2997.89	2916.73	2619.15	1005.85	204.12	174.61	86.08	
pRS4B	1475.68	1380.81	1313.37	602.39	171.46	129.17	50.29	
pRS5	1965.04	1935.20	i 793.83	219.9 i	190.06	i64.93	47.12	
pRSó	1348.97	1333.31	1266.20	1173.36	271.81	85.01	49.22	
pRS7A	2790.61	2756.64	2465.44	317.99	116.48	75.23	2.43	
pRS7B	1477.30	1396.29	1039.33	141.41	123.57	98.85	68.65	
pRS8A	3580.52	3052.48	2953.65	1567.18	327.56	268.26	149.66	
pRS8B	2841.23	2830.07	2693.81	1819.33	303.78	230.07	122.85	
pRS9	1430.59	1385.85	1286.69	355.53	114.88	89.49	9.67	
pRS10A	1677.51	1445.04	1179.56	305.65	167.89	74.62	31.57	
pRS10B	2388.90	2100.87	1502.24	367.09	ió9.43	60.24	30.12	

Fig. 3.12. Thermostability of the wild type and mutant CGTases. The values are shown as relative activity at various temperatures. Each experiment was performed in duplicate.

3.5.4. Cyclodextrin forming activity

Cyclodextrin production by the mutant CGTases was determined by using HPLC. The crude enzyme from the culture of each mutant plasmid was incubated with soluble starch at $37^{\circ} \mathrm{C}$ for 12 hours. The reaction was terminated by boiling the mixture for 10 minutes. Then, 6 U of glucoamylase were added, and the mixture was incubated for 4 hours to convert the linear oligosaccharides to glucose. All mutant enzymes exhibited the cyclodextrin forming activity.

The results were shown in Fig. 3.13. All the mutant enzymes produced β-cyclodextrin as a major product and, hence, were β-CGTases. The pRS4A, 4B, 7A, 7B, 10A and 10B had increased proportion of α-cyclodextrin production, while that of β-cyclodextrin production was decreased significantly and the γ-cyclodextrin production remained unchanged. The pRS5 had proportion of α-, β-, γ - cyclodextrin production similar to that of the wild type. The pRS6 had proportion of α-, and β cyclodextrin production while that of γ-cyclodextrin production were decreased significantly. The pRS8A and 8B had increased proportion of α-cyclodextin production and produced slightly lower both proportion of β - and γ-cyclodextrins. The pRS9 had increased proportion of β-cyclodextrin production while the α - and γ cyclodextrin production were decreased.

The ratio of cyclodextrins produced is an important characteristic of CGTases from various organisms. It was observed from the HPLC elution profiles that some of the mutant CGTases had altered product specificity. To measure the ratios, the peak area of each cyciodextrin in the HPLC profiles was determined. The cyclodextrin ratios were then calculated as percentage of the total peak areas of α-, β and γ-cyclodextrins. Table 3.3 summarizes the two determinations of the CD-forming activity.

Fig. 3.13. HPLC profiles of cyclodextrins formed by the wild type and mutant CGTases.

Table 3.3. CD-forming activity of the CGTases.

Plasmids	Cyclodextrin ratios, α : $\beta: \gamma$ (\%)	
	Experiment I	Experiment II
Wild type	12:79:9	13:75:12
pRS4A	30:63:9	20:73:7
pRS4B	23:68:9	28:64:8
\qquad	$12: 81: 7$	17:77:6
pRS6	$18: 77: 5$	18:76:6
	25:67:8	27:65:8
pRS7B	$20: 74: 6$	24:66:10
$$	19:75:6	31:62:7
	23:71:6	20:71:9
	$7: 85: 8$	9:84:7
$\begin{gathered} \mathrm{pRS10A} \\ \mathrm{I}_{\mathrm{I}_{2}} \\ \hline \end{gathered}$	16:74:10	22:68:10
	21:69:10	25:68:7

