CHAPTER III

EXPERIMENTAL

1. Sources of Plant Materials.

The rhizomes of Belamcanda chinensis (L.) DC. were purchased from Thai medicinal herb store in Bangkok, Thailand, in September 2003. The plant was identified by Prof. A Ueno of School of Pharmaceutical Sciences, University of Shizuoka. A voucher specimen, C003101, is deposited at Shizuoka.

The dried heartwood of Dalbergia parviflora Roxb. was purchased from Thai medicinal herb store in Bangkok, Thailand, in September 2003. The plant was identified by Dr. Chawalit Niyomdham of the Forest herbarium, Forest Botany Division, Royal Forest Department, Bangkok, Thailand. Authentication of the plant materials was done by Comparison with voucher specimens, BKF No. 68143, deposited in the Forest herbarium, Royal Forest Department, Bangkok, Thailand.
2. General Techniques.

2.1 Analytical Thin-Layer Chromatography (TLC).

Technique	$:$	One dimension, ascending
Adsorbent	$:$	Silica gel $60 \mathrm{~F}_{254}$ (E. Merck) precoated plate
		(Aluminium sheet)
Layer thickness	$:$	0.25 mm .
Distance	$: \quad 5 \mathrm{~cm}$.	
Temperature	$:$	Laboratory temperature (25-35 ${ }^{\circ} \mathrm{c}$)
Detection	$:$	1. Ultraviolet light (254 and 365 nm)
		$2.50 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ in $\mathrm{H}_{2} \mathrm{O}$ and heating at $105^{\circ} \mathrm{c}$ for 10 min

2.2 Column Chromatography.

2.2.1 Vacuum Liquid Column Chromatography.

Adsorbent : Silica gel 60 (No. 7734) particle size $0.063-0.200 \mathrm{~nm}$ (70-230 mesh ASTM) (E. Merck)
Packing method : Dry packing

Sample loading : The sample was dissolved in a small amount of organic solvent, mixed with a small quantity of absorbent, dried, triturated and then placed gently on top of the column

Detection : Fractions were examined by TLC observing under UV light (254 and 356 nm) and $50 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ spraying reagent in hot condition.

2.2.2 Gradient Formation Liquid Column Chromatography.

Absorbent	$:$	Silica gel 60 (No. 7734) particle size $0.063-0.200 \mathrm{~nm}$ $(70-230$ mesh ASTM) (E. Merck)
Packing method	$:$	Wet packing
Sample loading	$:$	The sample was dissolved in a small amount of organic solvent, mixed with a small quantity of absorbent, dried,
Detection		triturate and then placed gently on top of the column

2.2.3 Porus Polymer Gel Chromatography.

Absorbent	D	Diaion HP-20
Packing method	$:$	Wet packing
Sample loading	$:$	The sample was dissolved in water and then placed on
top of the column.		

2.2.4 High Performance Liquid Chromatography (HPLC).

Column (Preparative) : Develosil-Lop-ODS No. 0603110, 10-20 $\mu \mathrm{m}, 5 \mathrm{x} 100 \mathrm{~cm}$ (Nomura Chemical Co., Ltd.)
(Semi-prep.): \quad Capcell Pak ODS No. AQED 01063, $5 \mu \mathrm{~m}, 2 \mathrm{x} 25 \mathrm{~cm}$ (Shiseido Fine Chemical Co., Ltd.)
(Analytical) : Capcell Pak ODS, $5 \mu \mathrm{~m}, 0.46 \times 25 \mathrm{~cm}$
Flow rate : $\quad 45 \mathrm{~mL} / \mathrm{min}$ for semi-preparative column
6-9 mL/min for semi-preparative column
$1 \mathrm{ml} / \mathrm{min}$ for analytical column

Mobile phase		Acetonitrile (MeCN) in $\mathrm{H}_{2} \mathrm{O}$
Sample preparative		The sample was dissolved in a small amount of eluent and injected into the column.
Injection volume		2 g in 10 mL for preparative column 50 mg in $500 \mu \mathrm{~L}$ for semi-preparative column 1 mg in $10 \mu \mathrm{~L}$ for analytical column
Pump		1. 887-PU (Jasco) for preparative column 2. 880-PU (Jasco) for semi-preparative and analytical column 3. PU-2089 Plus (Jasco) for semi-preparative column
Detector	:	UV-Vis detector 875-UV (Jasco) variable wavelength
Recorder	.	1. Hitachi 561 2. Sekonic SS-250 F
Temperature		Room temperature

2.3 Gas chromatography (GC).

Column : GL Sciences TC-1, $0.25 \mathrm{~mm} x 30 \mathrm{~m}$
Column temperature : $\quad 235^{\circ} \mathrm{C}$
Carrier gas : $\quad \mathrm{N}_{2}$

2.4 Spectroscopy.

2.4.1 Ultraviolet (UV) Absorption Spectra.

UV spectra were measured in MeOH with a Hitachi-U 3410
Spectrometer. (School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan)

2.4.2 Proton and Carbon-13 Nuclear Magnetic Resonance (${ }^{1} \mathrm{H}$ and ${ }^{13}$ C-NMR) Spectra.

${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR (100 MHz) Spectra were recorded on a JEOL JNM- $\alpha 400$ instrument. (School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan)

Solvents for NMR spectra were deuterated dimethylsulfoxide $\left(\right.$ DMSO- $\left.d_{6}\right)$, deuterated chloroform $\left(\mathrm{CDCl}_{3}\right)$ deuterated acetone $\left(\mathrm{CD}_{3} \mathrm{OCD}_{3}\right)$,
deuterated methanol ($\mathrm{CD}_{3} \mathrm{OD}$). Chemical shifts were given in $\delta(\mathrm{ppm})$ with tetramethylsilane (TMS) as an internal standard.

2.4.3 Mass Spectra.

FABMS were obtained on a JEOL JMS-700 mass spectrometer in m-nitrobenzyl alcohol (NBA) as the matrix agent. (School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan)

2.5 Physical Properties.

2.5.1 Optical Rotations.

Optical rotations were measured on a JASCO DIP-360 digital polarimeter. (School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan)

2.5.2 Circular Dichroism (CD) Spectra.

CD Spectra were recorded on a JASCO J-20A spectropolarimeter. (School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan)

2.6 Solvents.

Throughout this work, all organic solvents were commercial grade and were redistilled prior to use.

2.7 Chemicals

Eagle's MEM and RPMI media (Nissui Pharmaceutical Co., Ltd., Tokyo, Japan)

Fetal bovine serum (FBS), trypsin-EDTA (Gibco, grand Island, NY, USA)

Antibiotics (Meiji Seika Kaisha Ltd., Tokyo, Japan)
L-Glutamine (Wako Pure Chemical Industries Ltd., Osaka, Japan)
17β-Estradiol, dextran-coated charcoal (DCC) (Sigma Chemicals, St. Louis, MO, USA)

OPTI-MEM Reduce Serum Medium, LIPOFECTAMINE ${ }^{\text {TM }}$ Reagent (Invitrogen, CA, USA)

Pica Gene Luminescence Kit, Pica Gene Cell Culture Lysis Reagent LUC/PGC-50 (Toyo Ink Co., Tokyo, Japan)

3. Extraction and Isolation.

3.1 Extraction and Isolation of Compounds from Belamcanda chinensis.

3.1.1 Extraction.

The dried rhizomes of Belamcanda chinensis (1 Kg) were chopped, ground and then macerated with methanol ($3 \times 5 \mathrm{~L}$). The extracts were combined and evaporated under reduced pressure at the temperature $60^{\circ} \mathrm{C}$ to yield 280 g (28% base on dried weight of rhizomes) of yellow-brown gummy residue.

3.1.2 Isolation.

A part of this concentrated extract (140 g) was adsorbed on silica gel No. 7734 (400 g) and eluted successively with n-hexane (5 L), $\mathrm{CHCl}_{3}(5 \mathrm{~L})$, EtOAc (5 L) and MeOH (5 L), to yield a n-hexane soluble extract $(9.5 \mathrm{~g}, 1.9 \%$ of dried weight of rhizomes), a chloroform soluble extract ($25.5 \mathrm{~g}, 5.1 \%$ of dried weight of rhizomes), an ethyl acetate soluble extract ($9 \mathrm{~g}, 1.8 \%$ of dried weight of rhizomes) and a MeOH soluble extract ($70.5 \mathrm{~g}, 14.1 \%$ of dried weight of rhizomes) after evaporation of organic solvents.

The ethyl acetate soluble extract was chromatographed on a silica gel column ($3.5 \times 20 \mathrm{~cm}$, silica gel 60 No .7734) and fractionated using chloroformmethanol ($85: 15,15 \mathrm{~L}$). Fractions of 300 ml were collected and pooled by TLC analysis to afford a total of 12 combined fractions: fraction I (85 mg), II (850 mg), III (520 mg), IV (1.28 g), V (550 mg), VI (485 mg), VII (680 mg), VIII (580 mg), IX $(780 \mathrm{mg}), \mathrm{X}(1.7 \mathrm{~g}), \mathrm{XI}(2.8 \mathrm{~g})$, XII (260 mg) as shown in Scheme 4.

3.1.2.1 Isolation of Compound BC1 (Tectorigenin) and BC3

(Irigenin)

Fraction II (850 mg) was purified by HPLC using Developsil-Lop-ODS ($5 \times 100 \mathrm{~cm}$, flow rate $45 \mathrm{~mL} / \mathrm{min}$ with detector at 205 nm) with $\mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O}$ (30:70) as eluent to give $\mathrm{BC1}(90 \mathrm{mg})$ and $\mathrm{BC} 3(115 \mathrm{mg})\left(t_{\mathrm{R}}=228\right.$ and 272 min , respectively). Compounds BC 1 and BC 3 were identified as tectorigenin [14] and irigenin [5] , respectively.

3.1.2.2 Isolation of Compound BC2 (Irisflorentin).

Fraction I (85 mg) was purified by HPLC on Capcell Pak ODS (2 $x 25 \mathrm{~cm}$, flow rate $6 \mathrm{~mL} / \mathrm{min}$ with detection at 205 nm) with $\mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O}$ (45:55) as eluent to give $\mathrm{BC} 2(59 \mathrm{mg})\left(t_{\mathrm{R}}=41 \mathrm{~min}\right)$. It was identified as irisflorentin [7].

3.1.2.3 Isolation of Compound BC4 (Irilin D).

Fraction III (520 mg) was purified by HPLC on Developsil-Lop-ODS ($5 \times 100 \mathrm{~cm}$, flow rate $45 \mathrm{~mL} / \mathrm{min}$ with detection at 205 nm) with MeCN $\mathrm{H}_{2} \mathrm{O}(27: 73)$ as eluent to give $\mathrm{BC} 4(4 \mathrm{mg})\left(t_{\mathrm{R}}=208 \mathrm{~min}\right)$. This compound was subsequently identified as irilin D [412].

3.1.2.4 Isolation of compound BC5 (Tectoridin), BC6 (Iristectorin

 B) BC8 (Iridin), BC9 (Hispiduloside) and BC10 (Jaceoside).Fraction VII (680 mg) was separated by HPLC using Developsil- Lop-ODS ($5 \times 100 \mathrm{~cm}$, flow rate $45 \mathrm{~mL} / \mathrm{min}$ with detection at 205 nm) with $\mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O}(15: 85)$ as eluent to give BC5 $(96.1 \mathrm{mg})$, BC6 (155.5 mg), BC8 $(283.3 \mathrm{mg}), \mathrm{BC} 9(20.9 \mathrm{mg})$ and $\mathrm{BC} 10(11.2 \mathrm{mg})\left(t_{\mathrm{R}}=372,452,692,800\right.$, and 864 min , respectively). Compounds $\mathrm{BC} 5, \mathrm{BC} 6, \mathrm{BC} 8, \mathrm{BC} 9$ and BC 10 were identified as tectoridin [13], iristectorin B [413], iridin [4], hispiduloside [415] and jaceoside [416], respectively.

In addition, purification of fraction XI (2.8 g) using HPLC on Developsil-Lop-ODS ($5 \times 100 \mathrm{~cm}$, flow rate $45 \mathrm{~mL} / \mathrm{min}$ with detection at 205 nm) with $\mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O}(18: 82)$ as eluent also gave tectoridin $(1.1 \mathrm{~g})\left(t_{\mathrm{R}}=212 \mathrm{~min}\right)$.

3.1.2.5 Isolation of Compound BC7 (Iristectorin A).

Fraction V (550 mg) was purified by HPLC using Developsil-Lop-ODS ($5 \times 100 \mathrm{~cm}$, flow rate $45 \mathrm{~mL} / \mathrm{min}$ with detection at 205 nm) with MeCN$\mathrm{H}_{2} \mathrm{O}(18: 82)$ as eluent to give $\mathrm{BC} 7(30 \mathrm{mg})\left(t_{\mathrm{R}}=432 \mathrm{~min}\right)$. This compound was later identified as iristectorin A [414].
3.1.2.6 Isolation of Compound BC11 (Androsin), BC12 (Iriflophenone), BC13 (Belamphenone), BC14 (Belalloside A), BC15 (Belalloside B) and BC16 (Resveratrol).

Fraction IV (1.28 g) was separated by HPLC using Developsil Lop-ODS ($5 \times 100 \mathrm{~cm}$, flow rate $45 \mathrm{~mL} / \mathrm{min}$ with detection at 205 nm) with MeCN$\mathrm{H}_{2} \mathrm{O}(18: 82)$ as eluent to give $\mathrm{BC} 11(9.7 \mathrm{mg}), \mathrm{BC} 12(3.9 \mathrm{mg}), \mathrm{BC} 13(3.6 \mathrm{mg}), \mathrm{BC} 14$ $(1.5 \mathrm{mg}), \mathrm{BC} 15(1.5 \mathrm{mg})$ and $\mathrm{BC} 16(385 \mathrm{mg})\left(t_{\mathrm{R}}=164,168,188,304,312\right.$ and 476 min, respectively). Compound BC 11 was identified as androsin [417]. Compound BC 12 was identified as iriflophenone [418]. Compounds $\mathrm{BC} 13, \mathrm{BC} 14$ and BC 15 were assigned as 1-(4-hydroxyphenyl)-2-(3,5-dihydroxphenyl) ethanone [419], acetovanillone 1-O- β-D-(6-O-vanilloyl) glucopyranoside [420] and acetovanillone 1O - β-D-(6-O-4-hydroxybenzoyl) glucopyranoside [421], and given the trivial name as belamphenone, belalloside A and belalloside B , respectively. These compounds were isolated from natural sources for the first time in this study. Compounds BC16 was identified as resveratrol [57].
3.2 Extraction and Isolation of Compounds from the Heartwood of Dalbergia parviflora.

3.2.1 Extraction

The dried coarsely powdered heartwood of Dalbergia parviflora (2 kg) was refluxed with methanol ($3 \times 20 \mathrm{~L}$). The extracts were combined and evaporated to yield 910 g (45.5% of dried weight of heartwood) of a red-brown viscous mass.

3.2.2 Isolation.

A part of methanol extract (150 g) was then chromatographed on a silica gel column ($12 \times 40 \mathrm{~cm}$, silica gel 60 No . 7734) and fractionated using a stepped gradient of chloroform and methanol (98:2, 96:4, 94:6, 9:1, 15 L each). Fractions of 500 mL were collected and grouped by TLC analysis to afford a total of 26 combined fractions: fraction A (3.1 g), B (0.5 g), C (0.6 g), D (0.6 g), E (0.5 g$)$, F $3.1 \mathrm{~g}), \mathrm{G}(3.2 \mathrm{~g}), \mathrm{H}(4.3 \mathrm{~g}), \mathrm{I}(8.5 \mathrm{~g}), \mathrm{J}(9.9 \mathrm{~g}), \mathrm{K}(1.6 \mathrm{~g}), \mathrm{L}(0.9 \mathrm{~g}), \mathrm{M}(8.9 \mathrm{~g}), \mathrm{N}(8.9$ $\mathrm{g}), \mathrm{O}(4.9 \mathrm{~g}), \mathrm{P}(5.2 \mathrm{~g}), \mathrm{Q}(5.2 \mathrm{~g}), \mathrm{R}(5.5 \mathrm{~g}), \mathrm{S}(8.2 \mathrm{~g}), \mathrm{T}(7.6 \mathrm{~g}), \mathrm{U}(10.0 \mathrm{~g}), \mathrm{V}(8.0 \mathrm{~g})$, $\mathrm{W}(3.1 \mathrm{~g}), \mathrm{X}(3.1 \mathrm{~g}), \mathrm{Y}(4.2 \mathrm{~g})$ and $\mathrm{Z}(9.6 \mathrm{~g})$.
3.2.2.1 Isolation of Compounds DP1 (Khriol A), DP2, (Mucronulatol), DP3 (7-De-O-methoxybustigenin), DP4 (3'-Methoxyviolanone), DP5 (Onogenin), DP6 (Sativanone), DP7 (Khrinone D), DP8 (Pinocembrin), DP9 (Biochanin A), DP10 (Hydroxyobustyrene) and DP11 (2'-Methoxybiochanin A).

Fraction I $(8.5 \mathrm{~g})$ was purified by HPLC using Developsil-LopODS ($5 \times 100 \mathrm{~cm}$, flow rate $45 \mathrm{~mL} / \mathrm{min}$ with detection at 205 nm) with $\mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O}$ $(35: 65)$ as eluent to give DP1 $(140 \mathrm{mg})\left(t_{\mathrm{R}}=130 \mathrm{~min}\right)$, DP2 $(870 \mathrm{mg})\left(t_{\mathrm{R}}=167 \mathrm{~min}\right)$, DP3 $(8 \mathrm{mg})\left(t_{\mathrm{R}}=190 \mathrm{~min}\right)$, DP4 $(3.8 \mathrm{~g})\left(t_{\mathrm{R}}=210 \mathrm{~min}\right), \mathrm{DP} 5(130 \mathrm{mg})\left(t_{\mathrm{R}}=220 \mathrm{~min}\right)$, DP6 $(310 \mathrm{mg})\left(t_{\mathrm{R}}=240 \mathrm{~min}\right)$, DP7 $(5 \mathrm{mg})\left(t_{\mathrm{R}}=270 \mathrm{~min}\right)$, DP8 $(85 \mathrm{mg})\left(t_{\mathrm{R}}=307 \mathrm{mg}\right)$, DP9 $(320 \mathrm{mg})\left(t_{\mathrm{R}}=328 \mathrm{~min}\right), \mathrm{DP} 10(55 \mathrm{mg})\left(t_{\mathrm{R}}=340 \mathrm{~min}\right)$ and DP11 $(45 \mathrm{mg})\left(t_{\mathrm{R}}=\right.$ 488 min). Compound DP1 was assigned as khriol A [422], which was isolated from natural sources for the first time in this study.

Compounds DP2, DP3, DP4, DP5 and DP6 were identified as mucronulatol [77], 7-demethoxybustigenin [423], 3'-methoxyviolanone [197], onogenin [252], and sativanone [175], respectively. Compound DP7 was a novel compound and was confirmed as khrinone D [424]. Compounds DP8, DP9, DP10 and DP11 were pinocembrin [174], biochanin A [95], hydroxyobtustyrene [355] and 2'-methoxybiochanin A [425], respectively.
3.2.2.2. Isolation of Compounds DP12 (($6 \mathrm{a} R, 11 \mathrm{a} R)$-3,8-dihydroxy-9-methoxypterocarpan), DP13 (8-Demethylduartin), DP14 (Pinobanksin) and DP15 (Secundiflorol H).

Fraction J (9.9 g) was separated by HPLC using Developsil-LopODS ($5 \times 100 \mathrm{~cm}$, flow rate $45 \mathrm{~mL} / \mathrm{min}$ with detection at 205 nm) with $\mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O}$ (35:65) as eluent to yield 14 fractions: fraction J-a (30 mg), J-b (104 mg), J-c (540 mg), J-d ($5,693 \mathrm{mg}$), J-e (320 mg), J-f (406 mg), J-g ($1,330 \mathrm{mg}$), J-h (131 mg), J-i (57 mg), J-j (37 mg), J-k (42 mg), J-l (74 mg), J-m (64 mg) and J-n (359 mg).

Fraction J-c was further purified by HPLC using Developsil-LopODS ($5 \times 100 \mathrm{~cm}$, flow rate $45 \mathrm{~mL} / \mathrm{min}$ with detection at 205 nm) with $\mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O}$ $(45: 55)$ as eluent to give DP12 $(36 \mathrm{mg})\left(t_{\mathrm{R}}=75 \mathrm{~min}\right)$ and DP13 $(113 \mathrm{mg})\left(t_{\mathrm{R}}=105\right.$ $\mathrm{min})$. Compounds DP12 and DP13 were identified as ($6 \mathrm{a} R, 11 \mathrm{a} R$) $-3,8$-dihydroxy-9methoxypterocarpan [426] and 8-demethylduartin [427], respectively.

Fraction J-d was further purified by HPLC using Developsil-Lop-ODS ($5 \times 100 \mathrm{~cm}$, flow rate $45 \mathrm{~mL} / \mathrm{min}$ with detection at 205 min) with $\mathrm{MeOH}-$ $\mathrm{H}_{2} \mathrm{O}(45: 55)$ as eluent to give DP14 $(800 \mathrm{mg})\left(t_{\mathrm{R}}=157 \mathrm{~min}\right)$ and DP15 $(2.3 \mathrm{~g})\left(t_{\mathrm{R}}=\right.$ $189 \mathrm{~min})$. These compounds were identified as (+)-pinobanksin [428] and (-)secundiflorol H [429], respectively.

3.2.2.3 Isolation of Compound DP17 (Violanone).

Fraction N (8.9 g) was separated by HPLC using Developsil-Lop-ODS ($5 \times 100 \mathrm{~cm}$, flow rate $45 \mathrm{~mL} / \mathrm{min}$ with detection at 205 nm) with MeCN $\mathrm{H}_{2} \mathrm{O}$ (35:65) as eluent to give 14 fractions: N -a (7 mg), $\mathrm{N}-\mathrm{b}(80 \mathrm{mg}), \mathrm{N}-\mathrm{c}(210 \mathrm{mg})$, $\mathrm{N}-\mathrm{d}(390 \mathrm{mg})$, N -e ($3,500 \mathrm{mg}$), N -f (206 mg), $\mathrm{N}-\mathrm{g}(1,114 \mathrm{mg}), \mathrm{N}-\mathrm{h}(850 \mathrm{mg}), \mathrm{N}-\mathrm{i}(46$ $\mathrm{mg}), \mathrm{N}-(20 \mathrm{mg}), \mathrm{N}-\mathrm{k}(247 \mathrm{mg}), \mathrm{N}-\mathrm{l}(22 \mathrm{mg}), \mathrm{N}-\mathrm{m}(315 \mathrm{mg})$ and $\mathrm{N}-\mathrm{n}(1,395 \mathrm{mg})$.

Fraction N-e further purified by HPLC using Developsil-LopODS ($5 \times 100 \mathrm{~cm}$, flow rate $45 \mathrm{~mL} / \mathrm{min}$ with detection at 205 min) with $\mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O}$ $(30: 70)$ as eluent to give $\operatorname{DP17}(3,170 \mathrm{mg})\left(t_{\mathrm{R}}=204 \mathrm{~min}\right)$. It was identified as violanone [177].
3.2.2.4 Isolation of Compound DP16 (7,3'-Dihydroxy-4'methoxyisoflavanone).

Fraction N-d (390 mg) was separated on HPLC (Capcell Pak ODS $2 \times 25 \mathrm{~cm}$, flow rate $6 \mathrm{~mL} / \mathrm{min}$ with detection at 205 nm) with $\mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O}$ (30:70) as eluent to give DP16 $(125 \mathrm{mg})\left(t_{\mathrm{R}}=164 \mathrm{~min}\right)$. It was identified as $7,3^{\prime}$-dihydroxy-4'methoxyisoflavanone [430].

3.2.2.5 Isolation of Compounds DP18 (Arizonicanol A), DP19 (Tectorigenin), DP20 (Khrinone C) and DP21 (Vestitone).

Fraction $\mathrm{N}-\mathrm{g}(1,114 \mathrm{mg})$ was further purified by HPLC using Developsil-Lop-ODS ($5 \times 100 \mathrm{~cm}$, flow rate $45 \mathrm{~mL} / \mathrm{min}$ with detection at 205 nm) with $\mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O}(25: 75)$ as eluent to give DP18 $(45 \mathrm{mg})\left(t_{\mathrm{R}}=197 \mathrm{~min}\right)$, DP19 $(610 \mathrm{mg})\left(t_{\mathrm{R}}\right.$ $=220 \mathrm{~min})$, DP20 $(150 \mathrm{mg})\left(t_{\mathrm{R}}=228 \mathrm{~min}\right)$ and DP21 $(25 \mathrm{mg})\left(t_{\mathrm{R}}=444 \mathrm{~min}\right)$. Compounds DP18 and DP19 were identified as arizonicanol A [431] and tectorigenin [14], respectively. Compound DP20 was assigned as a new isoflavone, khrinone C [432] and compound DP21 was identified as vestitone [176].

3.2.2.6 Isolation of Compound DP22 (Pratensein).

Fraction N-h (590 mg) was further purified by HPLC (Developsil-Lop-ODS $5 \times 100 \mathrm{~cm}$, flow rate $45 \mathrm{~mL} / \mathrm{min}$ with detection at 205 nm) with $\mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O}(30: 70)$ as eluent to give DP22 $(715 \mathrm{mg})\left(t_{\mathrm{R}}=371 \mathrm{~min}\right)$. This compound was identified as pratensein [433].

3.2.2.7 Isolation of Compound DP23 (2'-Methoxyformononetin).

Fraction N-i (46 mg) was further purified by HPLC recycling mode (Capcell Pak ODS 2x25 cm, flow rate $9 \mathrm{~mL} / \mathrm{min}$ with detection at 205 nm) with $\mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O}(35: 65)$ as eluent to give $\mathrm{DP} 23(10 \mathrm{mg})\left(t_{\mathrm{R}}=47.5 \mathrm{~min}\right)$. It was identified as 2^{\prime}-methoxyformononetin [434].

3.2.2.8 Isolation of Compounds DP24 (Formononetin) and DP25

 (Vestitol).Fraction $\mathrm{N}-\mathrm{k}$ (247 mg) was further purified by using Capcell Pak ODS ($2 \times 25 \mathrm{~cm}$, flow rate $9 \mathrm{~mL} / \mathrm{min}$ with detection at 205 nm) recycling with MeCN$\mathrm{H}_{2} \mathrm{O}(35: 65)$ as eluent to give DP24 $(30 \mathrm{mg})\left(t_{\mathrm{R}}=38.5 \mathrm{~min}\right)$ and DP25 $(150 \mathrm{mg})\left(t_{\mathrm{R}}=\right.$ 40 min), respectively. Compound DP24 was identified as formononetin [72]. Compound DP25 was identified as vestitol [78].

3.2.2.9 Isolation of Compound DP26 (Xenognosin)

Fraction N-m (315 mg) was further purified by HPLC using Capcell Pak ODS ($2 \times 25 \mathrm{~cm}$, flow rate $9 \mathrm{~mL} / \mathrm{min}$ with detection at 205 nm) with $\mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O}(35: 65)$ as eluent to give $\mathrm{DP} 26(15 \mathrm{mg})\left(t_{\mathrm{R}}=112 \mathrm{~min}\right)$. It was identified as xenognosin [435].
3.2.2.10 Isolation of Compounds DP27 (Dalparvinol A), DP28 (Khrinone B), DP29 (Dalparvin) and DP30 (5'-Methyxyvestitol).

Fraction O (4.9 g) was separated by HPLC using Developsil-Lop-ODS ($5 \times 100 \mathrm{~cm}$, flow rate $45 \mathrm{~mL} / \mathrm{min}$ with detection at 205 nm) with MeCN$\mathrm{H}_{2} \mathrm{O}(30: 70)$ as eluent to give DP27 $(22 \mathrm{mg})\left(t_{\mathrm{R}}=74 \mathrm{~min}\right)$, DP28 $(980 \mathrm{mg})\left(t_{\mathrm{R}}=106\right.$ $\mathrm{min}), \mathrm{DP} 29(520 \mathrm{mg})\left(t_{\mathrm{R}}=188 \mathrm{~min}\right)$ and DP30 $(140 \mathrm{mg})\left(t_{\mathrm{R}}=240 \mathrm{~min}\right)$, respectively.

Three new compounds DP27, DP28 and DP29 were isolated from this fraction. Compound DP27, which was a new 2,3-dihydroflavonol, $(2 R, 3 R)$ -(-)-dalparvinol A [436]. Compounds DP28 and DP29 were assigned as khrinone B [437] and dalparvin [438], respectively. Compound DP30 was identified as (3R)-(-)-5'-methoxyvestitol [183].

3.2.2.11 Isolation of Compound DP31 (Khrinone A).

Fraction P (5.2 g) was separated by HPLC using Developsil-LopODS ($5 \times 100 \mathrm{~cm}$, flow rate $45 \mathrm{~mL} / \mathrm{min}$ with detection at 205 nm) with $\mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O}$ $(35: 65)$ as eluent to give DP31 $(406 \mathrm{mg})\left(t_{\mathrm{R}}=80 \mathrm{~min}\right)$. It was identified as khrinone A [439].
3.2.2.12 Isolation of Compounds DP32 (Dalparvinol B), DP33 (Khrinone E), DP34 (3'-Methoxydaidzein), DP35 (Calycosin).

Fraction $\mathrm{Q}(5.2 \mathrm{~g})$ was chromatographed by HPLC using Developsil-Lop-ODS ($5 \times 100 \mathrm{~cm}$, flow rate $45 \mathrm{~mL} / \mathrm{min}$ with detection at 205 nm) with $\mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O}(30: 70)$ as elute to give 12 fractions: $\mathrm{Q}-\mathrm{a}(70 \mathrm{mg}), \mathrm{Q}-\mathrm{b}(612 \mathrm{mg}), \mathrm{Q}-\mathrm{c}$ (68 mg), Q-d (1.3g), Q-e (118 mg), Q-f (45 mg), Q-g (33 mg), Q-h (1.5 g), Q-i (126 mg), Q-j (227 mg), Q-k (964 mg) and precipitation $\mathrm{Q}^{\prime}(57 \mathrm{mg})$.

Fraction Q-d (1.3 g) was further separated by HPLC using Developsil-Lop-ODS ($5 \times 100 \mathrm{~cm}$, flow rate $45 \mathrm{~mL} / \mathrm{min}$ with detection at 205 nm) with $\mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O}(25: 75)$ as eluent to yield 7 fractions. Major fraction Q-d5 (965 mg) was further separated by HPLC (Developsil-Lop-ODS $5 \times 100 \mathrm{~cm}$, flow rate $45 \mathrm{~mL} / \mathrm{min}$ with detection at 205 nm) with $\mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O}(20: 80)$ to give DP32 $(10 \mathrm{mg})\left(t_{\mathrm{R}}=170\right.$ min). It was confirmed as a new 2, 3-dihydroflavonol, dalparvinol B [440].

Compound DP35 (Calycosin [81], 513 mg) was separated ($t_{\mathrm{R}}=$ $497 \mathrm{~min})$. Repeated purification of fraction Q-d54 (25 mg) by HPLC using Capcell Pak ODS ($2 \times 25 \mathrm{~cm}$, flow rate $6 \mathrm{~mL} / \mathrm{min}$ with detection at 205 nm) with $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ (38:62) as eluent to afford 2 mg of DP33 ($t_{\mathrm{R}}=78 \mathrm{~min}$) and 2 mg of DP34 ($t_{\mathrm{R}}=83$ min). Compound DP33 was identified as new isoflavone, khrinone E [441]. And DP34 was identified as 3 '-methoxydaidzein [196].

3.2.2.13 Isolation of Compound DP36 (Theralin).

Fraction Q-g (33 mg) was chromatographed by HPLC using Capcell Pak ODS ($2 \times 25 \mathrm{~cm}$, flow rate $6 \mathrm{~mL} / \mathrm{min}$ with detection at 205 nm) with $\mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O}(22: 78)$ as eluent to give $\mathrm{DP} 36(5 \mathrm{mg})\left(t_{\mathrm{R}}=165 \mathrm{~min}\right)$. It was identified as theralin [442].

3.2.2.14 Isolation of Compounds DP37 (Naringenin) and Compound DP38 (Genistein).

Fraction Q-h (1.5 g) was further purified by HPLC using Developsil-Lop-ODS ($5 \times 100 \mathrm{~cm}$, flow rate $45 \mathrm{~mL} / \mathrm{min}$ with detection at 205 nm) with $\mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O}(25: 75)$ as eluent to give DP37 $(792 \mathrm{mg})\left(t_{\mathrm{R}}=184 \mathrm{~min}\right)$ and DP38 $(198 \mathrm{mg})\left(t_{\mathrm{R}}=194 \mathrm{~min}\right)$, respectively. Compounds DP37 and DP38 were identified as naringenin [251] and genistein [3], respectively.
3.2.2.15 Isolation of Compounds DP39 (Liquiritigenin) and Compound DP40 (Isoliquiritigenin).

Fraction Q-j (227 mg) was purified by HPLC using Developsil-Lop-ODS($5 \times 100 \mathrm{~cm}$, flow rate $45 \mathrm{~mL} / \mathrm{min}$ with detection at 205 nm) with MeCN $\mathrm{H}_{2} \mathrm{O}(35: 65)$ as eluent to give $\mathrm{DP} 39(32 \mathrm{mg})\left(t_{\mathrm{R}}=22 \mathrm{~min}\right)$ and DP40 $(116 \mathrm{mg})\left(t_{\mathrm{R}}=50\right.$ min). Compound DP39 was identified as liquritigenin [84]. Compound DP40 was identified as isoliquiritigenin [83].

3.2.2.16 Isolation of compound 41 (Bowdichione).

Fraction $Q^{\prime}(57 \mathrm{mg})$ was purified by HPLC using Capcell Pak ODS ($2 \times 25 \mathrm{~cm}$, flow rate $9 \mathrm{~mL} / \mathrm{min}$ with detection at 205 nm) with $\mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O}$ $(16.5: 83.5)$ as eluent to yield DP41 $(3 \mathrm{mg})\left(t_{\mathrm{R}}=110 \mathrm{~min}\right)$. This compound was later identified as bowdichione [443].

4. Acid Hydrolysis of BC 14 and BC 15.

Compound BC $14\left(1 \mathrm{mg}\right.$.) was dissolved in $10 \% \mathrm{H}_{2} \mathrm{SO}_{4}(1 \mathrm{~mL})$ and heated at $95^{\circ} \mathrm{C}$ for 1 h . After cooling, the reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ and extracted with ethyl acetate $(2 \mathrm{~mL} \times 3)$. The ethyl acetate phases were evaporated, and acetovanillone and vanillic acid were identified by direct comparison with authentic samples. The water layer was passed through an Amberlite IRA-60E
column ($6 \times 60 \mathrm{~mm}$), and the eluate was concentrated. The residue was dissolved in pyridine $(50 \mu \mathrm{~L})$ and stirred with D-cysteine methyl ester (3 mg) for 1.5 h . at $60^{\circ} \mathrm{C}$. To the reaction mixture, hexamethyldisilazane ($15 \mu \mathrm{~L}$) and trimethylsilyl chloride (15 $\mu \mathrm{L}$) were added, and the mixture was stirred for 30 min at $60^{\circ} \mathrm{C}$. The supernatant was then analyzed by GC [column: GL Sciences TC-1, $0.25 \mathrm{~mm} \times 30 \mathrm{~m}$; column temperature: $235{ }^{\circ} \mathrm{C}$; carrier gas: N_{2}; retention time: D-Glc (21.4 min), L-Glc (20.4 min) (Eddarir et al., 2001)], and from BC 14, D-Glc was detected. Acid hydrolysis of BC 15 was performed in the same manner, and D-Glc was detected.

5. Acetylation of DP28 and DP31.

Compound DP28 (10 mg) and DP31 (10 mg) were dissolved in 2-3 drops of pyridine and added 2-3 drops of acetic anhydride, and mixture were stirred at room temperature overnight. Then the solvents were evaporated off by using jet evaporator to give the acetates DP28a (12 mg) and DP31a (12 mg).

* Isolation overed HPLC preparative column: Capcell-pak ODS ($2 \times 25 \mathrm{~cm}$), Solvent: $15-45 \% \mathrm{CH}_{3} \mathrm{CN}$

Cell proliferation stimulative activities of samples: (+++), $>100 \mathrm{pM}$ of Estradiol(E2); (++), > 10 pM of E2; (+), >1pM; (-), <1pM of E2.
Scheme 4 Separation of the rhizomes of Belamcanda chinensis

$$
\triangle \mathrm{MeOH}
$$

* Isolation overed HPLC preparative column: Developsil-Lop-ODS ($5 \times 100 \mathrm{~cm}$), Solvent: $30-45 \% \mathrm{CH}_{3} \mathrm{CN}, 45 \% \mathrm{CH}_{3} \mathrm{OH}$

Cell proliferation stimulative activities of samples: (+++), >100 pM of Estradiol(E2); (++), > 10 pM of $\mathrm{E} 2 ;(+),>1 \mathrm{pM} ;(-),<1 \mathrm{pM}$ of E 2 .
Scheme 5 Separation of the methanol extract of the heartwood of Dalbergia parviflora

* Isolation overed HPLC preparative column: Developsil-Lop-ODS ($5 \times 100 \mathrm{~cm}$), Solvent: $25-35 \% \mathrm{CH}_{3} \mathrm{CN}$
** Isolation overed HPLC preparative column: Capcell-pak ODS (2 X 25 cm), Solvent: $35 \% \mathrm{CH}_{3} \mathrm{CN}$
Scheme 6 Separation of fraction N from the methanol extract of the heartwood of Dalbergia parviflora

* Isolation overed HPLC preparative column: Developsil-Lop-ODS ($5 \times 100 \mathrm{~cm}$), Solvent: $20-35 \% \mathrm{CH}_{3} \mathrm{CN}$
** Isolation overed HPLC preparative column: Capcell-pak ODS (2 X 25 cm), Solvent: $16.5-22 \% \mathrm{CH}_{3} \mathrm{CN}, 38 \% \mathrm{CH}_{3} \mathrm{OH}$
Scheme 7 Separation of fraction Q from the methanol extract of the heartwood of Dalbergia parviflora

	$\mathbf{R}_{\mathbf{1}}$	$\mathbf{R}_{\mathbf{2}}$	$\mathbf{R}_{\mathbf{3}}$	$\mathbf{R}_{\mathbf{4}}$	$\mathbf{R}_{\mathbf{5}}$	$\mathbf{R}_{\mathbf{6}}$
BCl [14]	H	OCH_{3}	H	H	H	H
BC 2 [7]	CH_{3}	$-\mathrm{O}^{-} \mathrm{CH}_{2}-$			OCH_{3}	CH_{3}
$\mathrm{BC} 3[5]$	H	OCH_{3}	H	OH	CH_{3}	OCH_{3}
$\mathrm{BC} 4[412]$	H	OCH_{3}	H	OH	H	H
$\mathrm{BC} 5[13]$	H	OCH_{3}	Glc	H	H	H
$\mathrm{BC} 6[413]$	H	OCH_{3}	Glc	OCH_{3}	H	H
$\mathrm{BC} 7[414]$	H	OCH_{3}	Glc	OH	CH_{3}	H
$\mathrm{BC} 8[4]$	H	OCH_{3}	Glc	OH	CH_{3}	OCH_{3}

BC11 [417]
BC12 [418]

BC13 [419]

BC14 [420]

BC15 [421]

BC16 [57]

Figure 3 Structure of compounds isolated from the rhizomes of B. chinensis

	R_{1}	\mathbf{R}_{2}	\mathbf{R}_{3}	\mathbf{R}_{4}	
DPI [422]	OCH_{3}	H	OH	H	
DP2 [77]	H	CH_{3}	OH	H	
DP13 [427]	OH	CH_{3}	OH	H	
DP18 [431]	H	H	OH	H	
DP25 [78]	H	H	H	H	
DP30 [183]	H	H	H	OCH_{3}	
DP3 [423]	OH	+1	H	OCH_{3}	OCH_{3}
DP7 [424\|	OH		H	$-\mathrm{OCH}_{2} \mathrm{O}-$	
DP9 [95]	OH		H	OCH_{3}	H
DP11 [425]	OH	P1	H	OCH_{3}	H
DP19 [14\|	OH	3	H	OH	H
DP20 [432]	OH		OH	OCH_{3}	H
DP22 [433]	OH		OH	OCH_{3}	H
DP23 [434]	H		H	OCH_{3}	H
DP24 [72]	H	\square	$\bigcirc \mathrm{H}$	OCH_{3}	H
DP28 [437]	OH		H	OCH_{3}	OH
DP31 [439]	H		H	OCH_{3}	OH
DP33 [441]	H		OH	OCH_{3}	H
DP34 [196]	H		OCH_{3}	OH	H
DP35 [81]	H		OH	OCH_{3}	H
DP36 [442]	OH		H	OH	H
DP38 [3]	OH		H	OH	H

Figure 4 Structure of compounds isolated from the heartwood of D. parviflora

Figure 4 Structure of compounds isolated from the heartwood of D. parviflora (continued)

	$\mathbf{R}_{\mathbf{1}}$	$\mathbf{R}_{\mathbf{2}}$	$\mathbf{R}_{\mathbf{3}}$	$\mathbf{R}_{\mathbf{4}}$	$\mathbf{R}_{\mathbf{5}}$
DP14 [428]	OH	H	H	\mathbf{H}	H
DP27 [436]	H	OCH_{3}	OH	H	H
DP32 [440]	H	H	OCH_{3}	OH	OH

DP40 [83]

Figure 4 Structure of compounds isolated from the heartwood of D. parviflora (continued)

6. Physical and Spectra data of Isolated Compounds

6.1 Compound BC1 (Tectorigenin)

Compound BC 1 was obtained as amorphous powder ($90 \mathrm{mg} ; 9 \times 10^{-3} \%$
of dried weight of rhizomes)
FABMS $\quad:[\mathrm{M}+\mathrm{H}]^{+} m / z 301$ (calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{O}_{6}$)
${ }^{1} \mathrm{H}$ NMR $\quad: \delta \mathrm{ppm}, 400 \mathrm{MHz}$, in DMSO- d_{6}; Figure 20, Table 6
${ }^{13} \mathrm{C}$ NMR $\quad: \delta \mathrm{ppm}, 100.4 \mathrm{MHz}$, in DMSO- d_{6}, Table 6

6.2 Compound BC2 (Irisflorentin)

Compound BC2 was obtained as amorphous powder ($59 \mathrm{mg} ; 5.9 \times 10^{-3}$
$\%$ of dried weight of rhizomes)
FABMS $\quad:[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z} 387$ (calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{O}_{8}$)
${ }^{1} \mathrm{H}$ NMR $\quad: \delta \mathrm{ppm}, 400 \mathrm{MHz}$, in DMSO- d_{6}; Figure 21, Table 7
${ }^{13} \mathrm{C}$ NMR $\quad: \delta \mathrm{ppm}, 100.4 \mathrm{MHz}$, in DMSO- d_{6}; Figure 22, Table 7

6.3 Compound BC3 (Irigenin)

Compound BC3 was obtained as amorphous powder (115 mg;
$1.15 \times 10^{-2} \%$ of dried weight of rhizomes)
FABMS $\quad:[\mathrm{M}+\mathrm{H}]^{+} m / z 361$ (calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{O}_{8}$)
${ }^{1} \mathrm{H}$ NMR $\quad: \delta \mathrm{ppm}, 400 \mathrm{MHz}$, in DMSO- d_{6}; Figure 23, Table 8
${ }^{13} \mathrm{C}$ NMR $\quad: \delta \mathrm{ppm}, 100.4 \mathrm{MHz}$, in DMSO- d_{6}; Figure 24, Table 8

6.4 Compound BC4 (Irilin D)

Compound BC4 was obtained as amorphous powder ($4 \mathrm{mg} ; 4 \times 10^{-4} \%$ of dried weight of rhizomes)
FABMS $\quad:[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z} 317$ (calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{O}_{7}$)
${ }^{1} \mathrm{H}$ NMR $\quad: \delta \mathrm{ppm}, 400 \mathrm{MHz}$, in DMSO- d_{6}; Figure 25 , Table 9
${ }^{13} \mathrm{C}$ NMR $\quad: \delta \mathrm{ppm}, 100.4 \mathrm{MHz}$, in DMSO- d_{6}; Figure 26, Table 9

6.5 Compound BC5 (Tectoridin)

Compound BC5 was obtained as amorphous powder (96.1 mg ;
$9.6 \times 10^{-3} \%$ of dried weight of rhizomes)
FABMS : $[\mathrm{M}+\mathrm{H}]^{+} m / z 463$ (calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{O}_{11}$)
${ }^{1} \mathrm{H}$ NMR $\quad: \delta \mathrm{ppm}, 400 \mathrm{MHz}$, in DMSO- d_{6}; Figure 27, Table 10
${ }^{13} \mathrm{C}$ NMR $\quad: \delta \mathrm{ppm}, 100.4 \mathrm{MHz}$, in DMSO- d_{6}; Table 10

6.6 Compound BC6 (Iristectorin B)

Compound BC6 was obtained as amorphous powder (155.5 mg ; $1.5 \times 10^{-2} \%$ of dried weight of rhizomes)

FABMS $\quad:[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z} 493$ (calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{O}_{12}$)
${ }^{\mathrm{I}} \mathrm{H}$ NMR $\quad: \delta \mathrm{ppm}, 400 \mathrm{MHz}$, in DMSO- d_{6}; Figure 28 , Table 11
${ }^{13} \mathrm{C}$ NMR $\quad: \delta \mathrm{ppm}, 100.4 \mathrm{MHz}$, in DMSO- d_{6}; Figure 29 , Table 11

6.7 Compound BC7 (Iristectorin A)

Compound BC 7 was obtained as amorphous powder ($30 \mathrm{mg} ; 3 \times 10^{-3} \%$ base on dried weight of rhizomes)
FABMS : $[\mathrm{M}+\mathrm{H}]^{+} m / z 493$ (calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{O}_{12}$)
${ }^{1} \mathrm{H}$ NMR $\quad: \delta \mathrm{ppm}, 400 \mathrm{MHz}$, in DMSO- d_{6}; Figure 33, Table 12
${ }^{13} \mathrm{C}$ NMR $\quad: \delta \mathrm{ppm}, 100.4 \mathrm{MHz}$, in DMSO- d_{6}; Figure 34 , Table 12

6.8 Compound BC8 (Iridin)

Compound BC8 was obtained as amorphous powder (283.3 mg ; $2.8 \times 10^{-2} \%$ of dried weight of rhizomes)

FABMS : $[\mathrm{M}+\mathrm{H}]^{+} m / z 523$ (calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{O}_{13}$)
${ }^{1} \mathrm{H}$ NMR $\quad: \delta \mathrm{ppm}, 400 \mathrm{MHz}$, in DMSO- d_{6}; Figure 38, Table 13
${ }^{13} \mathrm{C}$ NMR $\quad: \delta \mathrm{ppm}, 100.4 \mathrm{MHz}$, in DMSO- d_{6}; Figure 39 , Table 13

6.9 Compound BC9 (Hispiduloside)

Compound BC 9 was obtained as amorphous powder (20.9 mg ; $2.1 \times 10^{-3} \%$ of dried weight of rhizomes)

FABMS $:[\mathrm{M}+\mathrm{H}]^{+} m / z 463$ (calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{O}_{11}$)
${ }^{1} \mathrm{H}$ NMR $\quad: \delta \mathrm{ppm}, 400 \mathrm{MHz}$, in DMSO- d_{6}; Figure 40, Table 14
${ }^{13} \mathrm{C}$ NMR $\quad: \delta \mathrm{ppm}, 100.4 \mathrm{MHz}$, in DMSO- d_{6}; Figure 41, Table 14

6.10 Compound BC10 (Jaceoside)

Compound $\mathrm{BC1} 0$ was obtained as amorphous powder (11.2 mg ; $1.1 \times 10^{-3} \%$ of dried weight of rhizomes)

FABMS : $[\mathrm{M}+\mathrm{H}]^{+} m / z 493$ (calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{O}_{12}$)
${ }^{1} \mathrm{H}$ NMR $\quad: \delta \mathrm{ppm}, 400 \mathrm{MHz}$, in DMSO- d_{6}; Figure 42, Table 15
${ }^{13} \mathrm{C}$ NMR $\quad: \delta \mathrm{ppm}, 100.4 \mathrm{MHz}$, in DMSO- d_{6}; Table 15

6.11 Compound BC11 (Androsin)

Compound BC11 was obtained as amorphous powder (9.7 mg ;
$9.7 \times 10^{-4} \%$ of dried weight of rhizomes)
FABMS $\quad:[\mathrm{M}+\mathrm{H}]^{+} m / z 329\left(\right.$ calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{8}$)
${ }^{1} \mathrm{H}$ NMR $\quad: \delta \mathrm{ppm}, 400 \mathrm{MHz}$, in DMSO- d_{6}; Figure 47, Table 16
${ }^{13} \mathrm{C}$ NMR $\quad: \delta \mathrm{ppm}, 100.4 \mathrm{MHz}$, in DMSO- d_{6}; Figure 49 , Table 16

6.12 Compound BC12 (Iriflophenone)

Compound BC 12 was obtained as amorphous powder $(3.9 \mathrm{mg}$;
$3.9 \times 10^{-4} \%$ of dried weight of rhizomes)
FABMS $\quad:[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z} 247$ (calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{O}_{5}$), Figure 50
${ }^{\prime}$ H NMR $\quad: \delta \mathrm{ppm}, 400 \mathrm{MHz}$, in DMSO- d_{6}; Figure 51 , Table 17
${ }^{13} \mathrm{C}$ NMR $\quad: \delta \mathrm{ppm}, 100.4 \mathrm{MHz}$, in DMSO- d_{6}; Figure 52 , Table 17

6.13 Compound BC13 (Belamphenone)

Compound BCl 3 was obtained as amorphous powder (3.6 mg ;
$3.6 \times 10^{-4} \%$ of dried weight of rhizomes)
HRFABMS : [$\mathrm{M}+\mathrm{H}]^{+} m / z 245.0802$ (calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{O}_{4}, 245.0814$), Figure 51
UV $\quad: \lambda_{\text {max }} \mathrm{nm}(\log \varepsilon)$, in MeOH
219 (sh) (4.00), 278 (3.87) nm
${ }^{1} \mathrm{H}$ NMR $\quad: \delta \mathrm{ppm}, 400 \mathrm{MHz}$, in DMSO- d_{6}; Figure 56 , Table 18
${ }^{13} \mathrm{C}$ NMR $\quad: \delta \mathrm{ppm}, 100.4 \mathrm{MHz}$, in DMSO- d_{6}; Figure 57, Table 18

6.14 Compound BC14 (Belalloside A)

Compound BC14 was obtained as amorphous powder (1.5 mg ; $1.5 \times 10^{-4} \%$ of dried weight of rhizomes)
HRFABMS : $[\mathrm{M}+\mathrm{Na}]^{+} m / z 501.1357$ (calcd For $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{11} \mathrm{Na}, 501.1373$)
$[\alpha]_{\mathrm{D}}{ }^{25} \quad:-37.7^{\circ}(c 0.2, \mathrm{MeOH})$
UV $\quad: \lambda_{\text {max }} \mathrm{nm}(\log \varepsilon)$, in MeOH
221 (sh) (4.27), 264 (3.78), 294 (3.90) nm
${ }^{1} \mathrm{H}$ NMR $\quad: \delta \mathrm{ppm}, 400 \mathrm{MHz}$, in DMSO- d_{6}; Figure 61, Table 19
${ }^{13} \mathrm{C}$ NMR $\quad: \delta \mathrm{ppm}, 100.4 \mathrm{MHz}$, in DMSO- d_{6}; Figure 62, Table 19

6.15 Compound BC15 (Belalloside B)

Compound BC15 was obtained as amorphous powder (1.5 mg ;
$1.5 \times 10^{-4} \%$ base on dried weight of rhizomes)
HRFABMS : [M+Na] ${ }^{+} \mathrm{m} / \mathrm{z} 471.1247$ (calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{10} \mathrm{Na}, 471.1267$)
$[\alpha]_{D}{ }^{25} \quad:+9.5^{\circ}(c 0.2, \mathrm{MeOH})$
UV $\quad: \lambda_{\text {max }} \mathrm{nm}(\log \varepsilon)$, in MeOH; Figure
224 (sh) (414), 260 (3.86), 299 (3.64) nm
${ }^{1} \mathrm{H}$ NMR $\quad: \delta \mathrm{ppm}, 400 \mathrm{MHz}$, in DMSO- d_{6}; Figure 66, Table 20
${ }^{13} \mathrm{C}$ NMR $\quad: \delta \mathrm{ppm}, 100.4 \mathrm{MHz}$, in DMSO- d_{6}; Figure 67, Table 20

6.16 Compound BC16 (Resveratrol)

Compound BC16 was obtained as amorphous powder (385 mg ; $3.8 \times 10^{-2} \%$ of dried weight of rhizomes)
FABMS $:[\mathrm{M}+\mathrm{H}]^{+} m / z 229$ (caled for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{O}_{3}$)
${ }^{\mathrm{j}} \mathrm{H}$ NMR $\quad: \delta \mathrm{ppm}, 400 \mathrm{MHz}$, in DMSO- d_{6}; Figure 68, Table 21
${ }^{13} \mathrm{C}$ NMR $\quad: \delta \mathrm{ppm}, 100.4 \mathrm{MHz}$, in DMSO- d_{6}; Figure 69, Table 21

6.17 Compound DP1 (\pm)-Khriol A)

Compound DP1 was obtained as amorphous powder (140 mg ;
$4.25 \times 10^{-2} \%$ of dried weight of heartwood)
HRFABMS : [M $]^{+} m / z 318.1115$ (calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{6}, 318.1103$); Figure 66
UV $\quad: \lambda_{\text {max }} \mathrm{nm}(\log \varepsilon)$ in MeOH
277 (3.68), 230 (sh) (4.28) nm
${ }^{1} \mathrm{H}$ NMR $\quad: \delta \mathrm{ppm}, 400 \mathrm{MHz}$, in DMSO- d_{6}; Figure 71, Table 22
${ }^{13} \mathrm{C}$ NMR $\quad: \delta \mathrm{ppm}, 100.4 \mathrm{MHz}$, in DMSO- d_{6}; Figure 73 , Table 22

6.18 Compound DP2 ((3R)-(+)-Mucronulatol)

Compound DP 2 was obtained as amorphous powder $(870 \mathrm{mg} ; 0.26 \%$ of dried weight of heartwood)
FABMS : $[\mathrm{M}]^{+} m / z 302$ (calcd for $\mathrm{C}_{17} \mathrm{O}_{18} \mathrm{H}_{5}$); Figure 76
$[\alpha]_{\mathrm{D}}{ }^{25} \quad:+19.3^{\circ}(c 1.0 \mathrm{MeOH})$
CD $:[\theta](\mathrm{nm}) 3700(283),-14600(230), 27500(211)\left(\mathrm{c} 2.2 \times 10^{-4}, \mathrm{MeOH}\right)$
${ }^{1}$ H NMR $\quad: \delta \mathrm{ppm}, 400 \mathrm{MHz}$, in DMSO- d_{6}; Figure 77, Table 23
${ }^{13} \mathrm{C}$ NMR $\quad: \delta \mathrm{ppm}, 100.4 \mathrm{MHz}$, in DMSO- d_{6}; Figure 79, Table 23
6.19 Compound DP3 (7-Demethoxybustigenin)

Compound DP3 was obtained as amorphous ($8 \mathrm{mg} ; 2.43 \times 10^{-3} \%$ of dried weight of heartwood)
FABMS : [M] ${ }^{+} m / z 344$ (calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{7}$); Figure 83
${ }^{1} \mathrm{H}$ NMR $\quad: \delta \mathrm{ppm}, 400 \mathrm{MHz}$, in acetone- d_{6}; Figure 84, Table 24
${ }^{13} \mathrm{C}$ NMR $\quad: \delta \mathrm{ppm}, 100.4 \mathrm{MHz}$, in acetone- d_{6}; Figure 86, Table 24

6.20 Compound DP4 ((\pm)- $\mathbf{3}^{\mathbf{\prime}}$ - Methoxyviolanone)

Compound DP4 was obtained as amorphous powder (3.8 g ; 1.15% of dried weight of heartwood)

FABMS $\quad:[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z} 331$ (calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{O}_{6}$) ; Figure 87
${ }^{1} \mathrm{H}$ NMR $\quad: \delta \mathrm{ppm}, 400 \mathrm{MHz}$, in acetone- d_{6}; Figure 88, Table 25
${ }^{13} \mathrm{C}$ NMR $\quad: \delta \mathrm{ppm}, 100.4 \mathrm{MHz}$, in acetone- d_{6}; Figure 89 , Table 25
6.21 Compound DP5 ((\pm) - Onogenin)

Compound DP5 was obtained as amorphous powder ($130 \mathrm{mg} ; 3.94 \times$ $10^{-2} \%$ of dried weight of heartwood)
FABMS : [M] ${ }^{+} m / z 314$ (calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{6}$); Figure 93
${ }^{1} \mathrm{H}$ NMR $\quad: \delta \mathrm{ppm}, 400 \mathrm{MHz}$, in acetone- d_{6}; Figure 94 , Table 26
${ }^{13} \mathrm{C}$ NMR $: \delta \mathrm{ppm}, 100.4 \mathrm{MHz}$, in acetone- d_{6}; Figure 95, Table 26

6.22 Compound DP6 ((3R)-(+)- Sativanone)

Compound DP6 was obtained as amorphous powder ($310 \mathrm{mg} ; 9.4 \times$ $10^{-2} \%$ of dried weight of heartwood)

FABMS $:[\mathrm{M}+\mathrm{H}]^{+} m / z 301$ (calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{O}_{5}$); Figure 96
$[\alpha]_{D}{ }^{25} \quad:+9.7^{\circ}(c 1.0, \mathrm{MeOH})$
CD $\quad:[\theta](\mathrm{nm}) 5200(280),-12500(235)\left(c 1.9 \times 10^{-4}, \mathrm{MeOH}\right)$
${ }^{1} \mathrm{H}$ NMR $\quad: \delta \mathrm{ppm}, 400 \mathrm{MHz}$, in DMSO- d_{6}; Figure 97, Table 27
${ }^{13} \mathrm{C}$ NMR $\quad: \delta \mathrm{ppm}, 100.4 \mathrm{MHz}$, in DMSO- d_{6}; Figure 98, Table 27

6.23 Compound DP7 (Khrinone D)

Compound DP7 was obtained as amorphous powder (5 mg ; 1.52×10^{-3} $\%$ of dried weight of heartwood)
HRFABMS : [M$]^{+} m / z 328.0557$ (calcd for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{O}_{7}, 328.0583$); Figure 102
UV $\quad: \lambda_{\text {max }} \mathrm{nm}(\log \varepsilon)$ in MeOH

$$
299.5 \text { (4.02), } 260 \text { (4.26), } 225 \text { (sh) (4.34) }
$$

${ }^{1} \mathrm{H}$ NMR $\quad: \delta \mathrm{ppm}, 400 \mathrm{MHz}$, in acetone- d_{6}; Figure 103, Table 28
${ }^{13} \mathrm{C}$ NMR $\quad: \delta \mathrm{ppm}, 100.4 \mathrm{MHz}$, in acetone- d_{6}; Figure 105 , Table 28

6.24 Compound DP8 ((2S)- (-)- Pinocembrin)

Compound DP8 was obtained as amorphous powder ($85 \mathrm{mg} ; 2.58 \times$ $10^{-2} \%$ of dried weight of heartwood)
FABMS $:[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z} 257$ (calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{O}_{4}$); Figure 106
$[\alpha]_{D}{ }^{25} \quad:-48.3^{\circ}(c 1.0, \mathrm{MeOH})$
CD $\quad:[\theta](\mathrm{nm})-49300(283), 69300(216)\left(c 2.6 \times 10^{-4}, \mathrm{MeOH}\right)$
${ }^{1} \mathrm{H}$ NMR $\quad: \delta \mathrm{ppm}, 400 \mathrm{MHz}$, in DMSO- d_{6}; Figure 107, Table 29
${ }^{13} \mathrm{C}$ NMR $\quad: \delta \mathrm{ppm}, 100.4 \mathrm{MHz}$, in DMSO- d_{6}; Figure 108, Table 29

6.25 Compound DP9 (Biochanin A)

Compound DP9 was obtained as amorphous powder (320 mg ; $9.71 \times$ $10^{-2} \%$ of dried weight of heartwood)
FABMS $\quad:[\mathrm{M}+\mathrm{H}]^{+} m / z 285$ (calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{O}_{5}$); Figure 112
${ }^{1} \mathrm{H}$ NMR $\quad: \delta \mathrm{ppm}, 400 \mathrm{MHz}$, in DMSO- d_{6}; Figure 113, Table 30
${ }^{13} \mathrm{C}$ NMR $\quad: \delta \mathrm{ppm}, 100.4 \mathrm{MHz}$, in DMSO- d_{6}; Figure 115, Table 30

6.26 Compound DP10 (Hydroxyobtustyrene)

Compound DP10 was obtained as amorphous powder ($55 \mathrm{mg} ; 1.67 \times$ $10^{-2} \%$ of dried weight of heartwood)
FABMS : [M] ${ }^{+} m / z 256$ (calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3}$); Figure 116
${ }^{1} \mathrm{H}$ NMR $\quad: \delta \mathrm{ppm}, 400 \mathrm{MHz}$, in acetone- d_{6}; Figure 117, Table 31
${ }^{13} \mathrm{C}$ NMR $\quad: \delta \mathrm{ppm}, 100.4 \mathrm{MHz}$, in acetone- d_{6}; Figure 119 , Table 31

6.27 Compound DP11 (2' - Methoxybiochanin A)

Compound DP11 was obtained as amorphous powder (45 mg ; $1.36 \times$ $10^{-2} \%$ of dried weight of heartwood)
FABMS $\quad:[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z} 315$ (calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{O}_{6}$); Figure 120
${ }^{1} \mathrm{H}$ NMR $\quad: \delta \mathrm{ppm}, 400 \mathrm{MHz}$, in acetone- d_{6}; Figure 121, Table 32
${ }^{13} \mathrm{C}$ NMR $\quad: \delta \mathrm{ppm}, 100.4 \mathrm{MHz}$, in acetone- d_{6}; Figure 123 , Table 32
6.28 Compound DP12 ((6aR, 11aR)-(-)-3, 8 - dihydroxy - 9 - methoxy pterocarpan)

Compound DP12 was obtained as amorphous powder ($36 \mathrm{mg} ; 1.09 \times$ $10^{-2} \%$ of dried weight of heartwood)
FABMS $\quad:[\mathrm{M}]^{+} m / z 286$ (calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{5}$)
$[\alpha]_{D}{ }^{25} \quad:-174.4^{\circ}(c 0.5, \mathrm{MeOH})$
$\mathrm{CD} \quad:[\theta](\mathrm{nm}) 12200(296),-73800(234)\left(c 2.5 \times 10^{-4}, \mathrm{MeOH}\right)$
${ }^{1} \mathrm{H}$ NMR $: \delta \mathrm{ppm}, 400 \mathrm{MHz}$, in MeOH- d_{4}, Table 33
${ }^{13} \mathrm{C}$ NMR $\quad: \delta \mathrm{ppm}, 100.4 \mathrm{MHz}$, in $\mathrm{MeOH}-d_{4}$, Table 33

6.29 Compound DP13 ((3S)-(+)-8 - Demethylduartin)

Compound DP13 was obtained as amorphous powder ($113 \mathrm{mg} ; 3.43 \times$ $10^{-2} \%$ of dried weight of heartwood)

FABMS $\quad:[\mathrm{M}]^{+} m / z 318$ (calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{6}$)
$[\alpha]_{D}{ }^{25} \quad:+16.3^{\circ}(c 1.0, \mathrm{MeOH})$
CD $\quad:[\theta](\mathrm{nm}) 6400(238),-17700(215)\left(c 2.5 \times 10^{-4}, \mathrm{MeOH}\right)$
${ }^{1} \mathrm{H}$ NMR $\quad: \delta \mathrm{ppm}, 400 \mathrm{MHz}$, in MeOH- d_{4}, Table 34
${ }^{13} \mathrm{C}$ NMR $\quad: \delta \mathrm{ppm}, 100.4 \mathrm{MHz}$, in $\mathrm{MeOH}-d_{4}$, Table 34
6.30 Compound DP14 (($2 R, 3 R)-(+)$ - Pinobanksin)

Compound DP14 was obtained as amorphous powder ($800 \mathrm{mg} ; 0.243$ $\%$ of dried weight of heartwood)

FABMS $\quad:[\mathrm{M}+\mathrm{H}]^{+} m / z 273$ (calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{O}_{5}$)
$[\alpha]_{\mathrm{D}}{ }^{25} \quad:+12.4^{\circ}(c 1.0, \mathrm{MeOH})$
$\mathrm{CD} \quad:[\theta](\mathrm{nm})-37800(288), 71000(222)\left(c 2.1 \times 10^{-4}, \mathrm{MeOH}\right)$
${ }^{1} \mathrm{H}$ NMR $\quad: \delta \mathrm{ppm}, 400 \mathrm{MHz}$, in acetone- d_{6}, Table 35
${ }^{13} \mathrm{C}$ NMR $\quad: \delta \mathrm{ppm}, 100.4 \mathrm{MHz}$, in acetone- d_{6}, Table 35

6.31 Compound DP15 ((3S) - (-)- Secundiflorol H)

Compound DP15 was obtained as amorphous powder ($2.3 \mathrm{~g} ; 0.7 \%$ of dried weight of heartwood)

FABMS $\quad:[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z} 333$ (calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{O}_{7}$)
$[\alpha]_{\mathrm{D}}{ }^{25} \quad:-7.9^{\circ}(c 1.0, \mathrm{MeOH})$
$\mathrm{CD} \quad:[\theta](\mathrm{nm})-8900(282), 8900(221)\left(c 1.8 \times 10^{-4}, \mathrm{MeOH}\right)$
${ }^{1} \mathrm{H}$ NMR $\quad: \delta \mathrm{ppm}, 400 \mathrm{MHz}$, in acetone- d_{6}, Table 36
${ }^{13} \mathrm{C}$ NMR $\quad: \delta \mathrm{ppm}, 100.4 \mathrm{MHz}$, in acetone- d_{6}, Table 36

6.32 Compound DP16 ((\pm) - 7, 3^{\prime} - Dihydroxy - $\mathbf{4}^{\prime}$ - methoxyisoflavanone)

Compound DP16 was obtained as amorphous powder ($125 \mathrm{mg} ; 3.79 \times$ $10^{-2} \%$ of dried weight of heartwood)
FABMS : $[\mathrm{M}+\mathrm{H}]^{+} m / z 287$ (calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{O}_{5}$); Figure 124
${ }^{1} \mathrm{H}$ NMR $\quad: \delta \mathrm{ppm}, 400 \mathrm{MHz}$, in DMSO- d_{6}; Figure 125, Table 37
${ }^{13} \mathrm{C}$ NMR $\quad: \delta \mathrm{ppm}, 100.4 \mathrm{MHz}$, in DMSO- d_{6}; Figure 127, Table 37

6.33 Compound DP17 ((\pm)-Violanone)

Compound DP17 was obtained as amorphous powder $(3.17 \mathrm{~g} ; 0.96 \%$ of dried weight of heartwood)
FABMS : $[\mathrm{M}+\mathrm{H}]^{+} m / z 317$ (calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{O}_{6}$); Figure 128
${ }^{1} \mathrm{H}$ NMR $\quad: \delta \mathrm{ppm}, 400 \mathrm{MHz}$, in DMSO- d_{6}; Figure 129, Table 38
${ }^{13} \mathrm{C}$ NMR $\quad: \delta \mathrm{ppm}, 100.4 \mathrm{MHz}$, in DMSO- d_{6}; Figure 131, Table 38

6.34 Compound DP18 ((3R)- (+) - Arizonicanol A)

Compound DP18 was obtained as amorphous powder (45 mg; $1.36 \times 10^{-2} \%$ of dried weight of heartwood)
FABMS $:[\mathrm{M}+\mathrm{H}]^{+} m / z 289\left(\right.$ calcd for $\left.\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{O}_{5}\right)$; Figure 135
$[\alpha]_{D}{ }^{25} \quad:+4.1^{\circ}(c 0.2, \mathrm{MeOH})$
CD $\quad:[\theta](\mathrm{nm}) 1900(280),-8600(232)\left(c 4.18 \times 10^{-5}, \mathrm{MeOH}\right)$
${ }^{1} \mathrm{H}$ NMR $: \delta \mathrm{ppm}, 400 \mathrm{MHz}$, in acetone- d_{6}; Figure 136 , Table 39
${ }^{13} \mathrm{C}$ NMR $\quad: \delta \mathrm{ppm}, 100.4 \mathrm{MHz}$, in acetone- d_{6}; Figure 137, Table 39

6.35 Compound DP19 (Tectorigenin)

Compound DP19 was obtained as amorphous powder ($610 \mathrm{mg} ; 0.19 \%$ of dried weight of heartwood)
FABMS $:[\mathrm{M}+\mathrm{H}]^{+} m / z 301$ (calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{O}_{6}$); Figure 138
${ }^{1} \mathrm{H}$ NMR $\quad: \delta \mathrm{ppm}, 400 \mathrm{MHz}$, in acetone- d_{6}; Figure 139, Table 40
${ }^{13} \mathrm{C}$ NMR $\quad: \delta \mathrm{ppm}, 100.4 \mathrm{MHz}$, in acetone $-d_{6} ;$ Figure 140 , Table 40

6.36 Compound DP20 (Khrinone C)

Compound DP20 was obtained as amorphous powder (150 mg ; $4.55 \times 10^{-2} \%$ of dried weight of heartwood)

HRFABMS : [M] $\mathrm{m} / \mathrm{z} 330.0746$ (calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{7}, 330.0740$); Figure 141
UV $\quad: \lambda_{\text {max }} \mathrm{nm}(\log \varepsilon)$ in MeOH
330 (3.68), 292 (4.04), 259(sh) (4.53)
${ }^{1} \mathrm{H}$ NMR $\quad: \delta \mathrm{ppm}, 400 \mathrm{MHz}$, in acetone- d_{6}; Figure 142, Table 41
${ }^{13} \mathrm{C}$ NMR $\quad: \delta \mathrm{ppm}, 100.4 \mathrm{MHz}$, in acetone- d_{6}; Figure 144 , Table 41

6.37 Compound DP21 (\pm) - Vestitone)

Compound DP21 was obtained as amorphous powder (25 mg ; $7.58 \times 10^{-3} \%$ of dried weight of heartwood)
FABMS : $[\mathrm{M}+\mathrm{H}]^{+} m / z 287$ (calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{O}_{5}$); Figure 147
${ }^{1} \mathrm{H}$ NMR $\quad: \delta \mathrm{ppm}, 400 \mathrm{MHz}$, in acetone- d_{6}; Figure 148 , Table 42
${ }^{13} \mathrm{C}$ NMR $\quad: \delta \mathrm{ppm}, 100.4 \mathrm{MHz}$, in acetone- d_{6}; Figure 149 , Table 42

6.38 Compound DP22 (Pratensein)

Compound DP22 was obtained as amorphous powder ($715 \mathrm{mg} ; 0.22 \%$ of dried weight of heartwood)

FABMS $\quad:[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z} 301$ (calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{O}_{6}$); Figure 150
${ }^{1} \mathrm{H}$ NMR $\quad: \delta \mathrm{ppm}, 400 \mathrm{MHz}$, in DMSO- d_{6}; Figure 151, Table 43
${ }^{13} \mathrm{C}$ NMR $\quad: \delta \mathrm{ppm}, 100.4 \mathrm{MHz}$, in DMSO- d_{6}; Figure 153, Table 43

6.39 Compound DP23 (2' - Methoxyformononetin)

Compound DP23 was obtained as amorphous powder (10 mg ; $3.03 \times 10^{-3} \%$ of dried weight of heartwood)

FABMS : $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z} 299$ (calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{O}_{5}$); Figure 154
${ }^{1} \mathrm{H}$ NMR $\quad: \delta \mathrm{ppm}, 400 \mathrm{MHz}$, in acetone- d_{6}; Figure 155 , Table 44
${ }^{13} \mathrm{C}$ NMR $\quad: \delta \mathrm{ppm}, 100.4 \mathrm{MHz}$, in acetone- d_{6}; Figure 157 , Table 44

6.40 Compound DP24 (Formononetin)

Compound DP24 was obtained as amorphous powder ($30 \mathrm{mg} ; 9.1 \times 10^{-3}$
$\%$ of dried weight of heartwood)
FABMS $\quad:[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z} 269$ (calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{O}_{4}$)
${ }^{1} \mathrm{H}$ NMR $: \delta \mathrm{ppm}, 400 \mathrm{MHz}$, in acetone- d_{6}; Figure 158 , Table 45
${ }^{13} \mathrm{C}$ NMR $\quad: \delta \mathrm{ppm}, 100.4 \mathrm{MHz}$, in acetone- d_{6}, Table 45

6.41 Compound DP25 ((3R)-(-) - Vestitol)

Compound DP25 was obtained as amorphous powder $150 \mathrm{mg} ; 4.55 \times$ $10^{-2} \%$ of dried weight of heartwood)

FABMS $\quad:[\mathrm{M}]^{+} m / z 272\left(\right.$ calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4}$)
$[\alpha]_{\mathrm{D}}{ }^{25} \quad:-11.2^{\circ}(c 0.6, \mathrm{MeOH})$
CD :[日] (nm) $3700(288),-9700(233),-10100(216)\left(c 4.35 \times 10^{-5}, \mathrm{MeOH}\right)$
${ }^{1} \mathrm{H}$ NMR $\quad: \delta \mathrm{ppm}, 400 \mathrm{MHz}$, in acetone- d_{6}; Figure 160 , Table 46
${ }^{13} \mathrm{C}$ NMR $: \delta \mathrm{ppm}, 100.4 \mathrm{MHz}$, in acetone- d_{6}; Figure 162, Table 46

6.42 Compound DP26 (Xenognosin)

Compound DP26 was obtained as amorphous powder (15 mg ; $4.55 \times 10^{-3} \%$ base on dried weight of heartwood)
FABMS : [M] ${ }^{+} m / z 256$ (calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3}$); Figure 163
${ }^{\mathrm{I}} \mathrm{H}$ NMR $\quad: \delta \mathrm{ppm}, 400 \mathrm{MHz}$, in acetone- d_{6}; Figure 164 , Table 47
${ }^{13} \mathrm{C}$ NMR $\quad: \delta \mathrm{ppm}, 100.4 \mathrm{MHz}$, in acetone- $d_{6} ;$ Figure 166, Table 47

6.43 Compound DP27 ($2 R, 3 R$) - Dalparvinol A)

Compound DP27 was obtained as amorphous powder 22 mg ; $6.67 \times$ $10^{-3} \%$ of dried weight of heartwood)

HRFABMS : $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z} 303.0846$ (calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{O}_{6}, 303.0824$)
$[\alpha]_{\mathrm{D}}{ }^{25} \quad:-5.0^{\circ}(c 0.3, \mathrm{MeOH})$
CD $:[\theta](\mathrm{nm})-18100(305),-4760(270), 10463(239), 29500(215)(c 2.1 \times$

$$
\left.10^{-4}, \mathrm{MeOH}\right)
$$

UV $\quad: \lambda_{\text {max }} \mathrm{nm}(\log \varepsilon)$ in MeOH
311 (3.86), 277 (4.12), 233(4.25), 215 (sh) (4.45)
${ }^{1} \mathrm{H}$ NMR $\quad: \delta \mathrm{ppm}, 400 \mathrm{MHz}$, in MeOH- d_{4}, Table 48
${ }^{13} \mathrm{C}$ NMR $\quad: \delta \mathrm{ppm}, 100.4 \mathrm{MHz}$, in $\mathrm{MeOH}-d_{4}$, Table 48

6.44 Compound DP28 (Khrinone B)

Compound DP28 was obtained as amorphous powder $980 \mathrm{mg} ; 0.3 \%$ of dried weight of heartwood)

HRFABMS : $[\mathrm{M}]^{+} m / z 316.0609$ (calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{7}, 316.0583$); Figure 170
UV $\quad: \lambda_{\text {max }} \mathrm{nm}(\log \varepsilon)$ in MeOH 298 (4.21), 260 (4.49)
${ }^{1} \mathrm{H}$ NMR $\quad: \delta \mathrm{ppm}, 400 \mathrm{MHz}$, in DMSO- d_{6}; Figure 171, Table 49
${ }^{13} \mathrm{C}$ NMR $\quad: \delta \mathrm{ppm}, 100.4 \mathrm{MHz}$, in DMSO- d_{6}; Figure 173, Table 49

6.45 Compound DP29 (\pm)-Dalparvin)

Compound DP29 was obtained as amorphous powder $520 \mathrm{mg} ; 0.16 \%$ of dried weight of heartwood)

HRFABMS : [M] ${ }^{+} m / z 316.0947$ (calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{6}, 316.0947$)
UV $\quad: \lambda_{\text {max }} \mathrm{nm}(\log \varepsilon)$ in MeOH
312(398), 278 (4.19), 230(4.26), 215 (sh) (4.46)
${ }^{1} \mathrm{H}$ NMR $\quad: \delta \mathrm{ppm}, 400 \mathrm{MHz}$, in acetone- d_{6}; Figure 174 , Table 50
${ }^{13} \mathrm{C}$ NMR $\quad: \delta \mathrm{ppm}, 100.4 \mathrm{MHz}$, in acetone- d_{6}; Figure 176 , Table 50

6.46 Compound DP30 ((3R)-(-) - 5'-Methoxyvestitol)

Compound DP30 was obtained as amorphous powder 140 mg ; $4.25 \times$ $10^{-2} \%$ of dried weight of heartwood)
FABMS : [M] ${ }^{+} m / z 302$ (calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{5}$)
$[\alpha]_{D}{ }^{25} \quad:-10.0^{\circ}(c 0.2, \mathrm{MeOH})$
CD $\quad:[\theta](\mathrm{nm})-7500(237),\left(c 1.87 \times 10^{-4}, \mathrm{MeOH}\right)$
${ }^{1}$ H NMR $\quad: \delta \mathrm{ppm}, 400 \mathrm{MHz}$, in acetone- d_{6}, Table 51
${ }^{13} \mathrm{C}$ NMR $\quad: \delta \mathrm{ppm}, 100.4 \mathrm{MHz}$, in acetone- d_{6}, Table 51

6.47 Compound DP31 (Khrinone A)

Compound DP31was obtained as amorphous powder $406 \mathrm{mg} ; 0.12 \%$ of dried weight of heartwood)

HRFABMS : [M] ${ }^{+} \mathrm{m} / \mathrm{z} 300.0647$ (calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{6}, 300.0634$); Figure 173
UV $\quad: \lambda_{\text {max }} \mathrm{nm}(\log \varepsilon)$ in MeOH

$$
300(4.37), 264(4.32), 248(4.43)
$$

${ }^{1} \mathrm{H}$ NMR $\quad: \delta \mathrm{ppm}, 400 \mathrm{MHz}$, in DMSO- d_{6}; Figure 178, Table 52
${ }^{13} \mathrm{C}$ NMR $\quad: \delta \mathrm{ppm}, 100.4 \mathrm{MHz}$, in DMSO- d_{6}; Figure 180 , Table 52

6.48 Compound DP32 ((2R, 3R)-(-)-Dalparvinol B)

Compound DP32 was obtained as amorphous powder $6 \mathrm{mg} ; 1.82 \times 10^{-3}$
$\%$ of dried weight of heartwood)
HRFABMS : $[\mathrm{M}]^{+} \mathrm{m} / \mathrm{z} 318.0755$ (calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{7}, 318.0740$)
$[\alpha]_{\mathrm{D}}{ }^{25}:-407.8^{\circ}(c 0.7, \mathrm{MeOH})$
$\mathrm{CD} \quad:[\theta](\mathrm{nm})-10900(276), 21900(315),\left(c 2.19 \times 10^{-3}, \mathrm{MeOH}\right)$
UV $\quad: \lambda_{\text {max }} \mathrm{nm}(\log \varepsilon)$ in MeOH
310 (3.91), 278 (4.11), 231(sh), 215 (sh) (4.21)
${ }^{1} \mathrm{H}$ NMR $\quad: \delta \mathrm{ppm}, 400 \mathrm{MHz}$, in acetone $-d_{6}$; Figure 183, Table 53
${ }^{13} \mathrm{C}$ NMR $\quad: \delta \mathrm{ppm}, 100.4 \mathrm{MHz}$, in MeOH- d_{4}; Figure 185 , Table 53

6.49 Compound DP33 (Krinone E)

Compound DP33 was obtained as amorphous powder ($2 \mathrm{mg} ; 6.07 \times 10^{-4}$ $\%$ of dried weight of heartwood)
HRFABMS : $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z} 315.0872$ (calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{O}_{6}, 315.0869$)
FABMS $\quad:[\mathrm{M}]^{+} \mathrm{m} / \mathrm{z} 31$ (calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{6}$)
UV $\quad: \lambda_{\text {max }} \mathrm{nm}(\log \varepsilon)$ in MeOH
298(4.04), 248 (4.38), 239(sh) (4.40)
${ }^{1} \mathrm{H}$ NMR $\quad: \delta \mathrm{ppm}, 400 \mathrm{MHz}$, in acetone- d_{6}; Figure 189 , Table 54
${ }^{13} \mathrm{C}$ NMR $: \delta \mathrm{ppm}, 100.4 \mathrm{MHz}$, in $\mathrm{MeOH}-d_{4}$; Figure 190, Table 54

6.50 Compound DP34 (3' - Methoxydaidzein)

Compound DP34 was obtained as amorphous powder ($2 \mathrm{mg} ; 6.07 \times 10^{-4}$ $\%$ of dried weight of heartwood)

FABMS : [M] ${ }^{+} m / z 284$ (calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{5}$)
${ }^{1} \mathrm{H}$ NMR $\quad: \delta \mathrm{ppm}, 400 \mathrm{MHz}$, in $\mathrm{MeOH}-d_{4}$; Figure 193, Table 55
${ }^{13} \mathrm{C}$ NMR $\quad: \delta \mathrm{ppm}, 100.4 \mathrm{MHz}$, in MeOH- d_{4}; Figure 195, Table 55

6.51 Compound DP35 (Calycosin)

Compound DP35 was obtained as amorphous powder ($513 \mathrm{mg} ; 0.16 \%$ of dried weight of heartwood)

FABMS $\quad:[\mathrm{M}]^{+} m / z 284$ (calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{5}$)
${ }^{1} \mathrm{H}$ NMR $\quad: \delta \mathrm{ppm}, 400 \mathrm{MHz}$, in MeOH- d_{4}; Figure 196, Table 56
${ }^{13} \mathrm{C}$ NMR $\quad: \delta \mathrm{ppm}, 100.4 \mathrm{MHz}$, in $\mathrm{MeOH}-d_{4}$; Figure 197, Table 56

6.52 Compound DP36 (Theralin)

Compound DP36 was obtained as amorphous powder ($5 \mathrm{mg} ; 1.52 \times 10^{-3}$
$\%$ of dried weight of heartwood)
FABMS $\quad:[\mathrm{M}]^{+} m / z 300\left(\right.$ calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{6}$)
${ }^{1} \mathrm{H}$ NMR $\quad: \delta \mathrm{ppm}, 400 \mathrm{MHz}$, in $\mathrm{MeOH}-d_{4}$; Figure 201, Table 57
${ }^{13} \mathrm{C}$ NMR $\quad: \delta \mathrm{ppm}, 100.4 \mathrm{MHz}$, in MeOH- d_{4}; Figure 203, Table 57

6.53 Compound DP37 ((2S)-(-)-Naringenin)

Compound DP37 was obtained as amorphous powder $792 \mathrm{mg} ; 0.24 \%$ of dried weight of heartwood)
FABMS : $[\mathrm{M}+\mathrm{H}]^{+} m / z 273$ (calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{O}_{5}$)
$[\alpha]_{D}{ }^{25} \quad:-79.5^{\circ}(c 1.0, \mathrm{MeOH})$
$\mathrm{CD} \quad:[\theta](\mathrm{nm})-23300(287),-7500(235)\left(c 2.4 \times 10^{-4}, \mathrm{MeOH}\right)$
${ }^{1} \mathrm{H}$ NMR $\quad: \delta \mathrm{ppm}, 400 \mathrm{MHz}$, in acetone- d_{6}; Figure 204, Table 58
${ }^{13} \mathrm{C}$ NMR $: \delta \mathrm{ppm}, 100.4 \mathrm{MHz}$, in $\mathrm{MeOH}-d_{4}$; Figure 205, Table 58

6.54 Compound DP38 (Genistein)

Compound DP38 was obtained as amorphous powder (198 mg; $6.0 \times 10^{-2} \%$ of dried weight of heartwood)

FABMS $\quad:[\mathrm{M}]^{+} m / z 270$ (calcd for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{O}_{5}$)
${ }^{1} \mathrm{H}$ NMR $\quad: \delta \mathrm{ppm}, 400 \mathrm{MHz}$, in MeOH- d_{4}; Figure 206, Table 59
${ }^{13} \mathrm{C}$ NMR $\quad: \delta \mathrm{ppm}, 100.4 \mathrm{MHz}$, in $\mathrm{MeOH}-d_{4}$; Figure 207, Table 59
6.55 Compound DP39 ((2S)-(-) - Liquiritigenin)

Compound DP39 was obtained as amorphous powder $(32 \mathrm{mg}$;
$9.7 \times 10^{-3} \%$ of dried weight of heartwood)
$[\alpha]_{\mathrm{D}}{ }^{25} \quad:-14.5^{\circ}(c 0.1, \mathrm{MeOH})$
FABMS $\quad:[\mathrm{M}]^{+} m / z 256$ (calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{4}$)
${ }^{1} \mathrm{H}$ NMR $\quad: \delta \mathrm{ppm}, 400 \mathrm{MHz}$, in acetone- d_{6}; Figure 208, Table 60
${ }^{13} \mathrm{C}$ NMR $\quad: \delta \mathrm{ppm}, 100.4 \mathrm{MHz}$, in $\mathrm{MeOH}-d_{4}$; Figure 209, Table 60

6.56 Compound DP40 (Isoliquiritigenin)

Compound DP40 was obtained as amorphous powder (116 mg; $3.52 \times 10^{-2} \%$ of dried weight of heartwood)
FABMS $\quad:[\mathrm{M}]^{+} m / z 256$ (calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{4}$)
${ }^{1} \mathrm{H}$ NMR $: \delta \mathrm{ppm}, 400 \mathrm{MHz}$, in acetone- d_{6}; Figure 210 , Table 61
${ }^{13} \mathrm{C}$ NMR $\quad: \delta \mathrm{ppm}, 100.4 \mathrm{MHz}$, in MeOH- d_{4}; Figure 211, Table 61

6.57 Compound DP41 (Bowdichione)

Compound DP41 was obtained as amorphous powder $3 \mathrm{mg} ; 9.1 \times 10^{-4}$ $\%$ of dried weight of heartwood)
FABMS : [M] $\mathrm{m} / \mathrm{z} 298$ (calcd for $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{O}_{6}$)
UV $\quad: \lambda_{\text {max }} \mathrm{nm}(\log \varepsilon)$ in MeOH

$$
\text { 297(4.07), } 249 \text { (4.19) }
$$

${ }^{1} \mathrm{H}$ NMR $\quad: \delta \mathrm{ppm}, 400 \mathrm{MHz}$, in DMSO- d_{6}; Figure 212, Table 62
${ }^{13} \mathrm{C}$ NMR $\quad: \delta \mathrm{ppm}, 100.4 \mathrm{MHz}$, in DMSO- d_{6}; Table 62

7. Evaluation for Estrogenic Activities.

In this study, the estrogenic activities are evaluated by monitoring the proliferation of cells and stimulatory potency of the substances in estrogen receptors containing cell lines, MCF-7 and T47D (Soto et al., 1995). In order to confirm the estrogenic activity of potential compounds, the luciferase transient assay was performed. This luciferase reporter gene assay was conducted according to the procedure of Edmunds and co-workers in 1997 with minor modifications.

7.1 Cell Culture

Human breast cancer cells, MCF-7 and T47D were purchased from the American Type Culture Collection (Manassas, VA). The MCF-7 cells were grown in MEM supplemented with $6 \mathrm{ng} / \mathrm{mL}$ insulin, 1 mM sodium pyruvate, 1 mM nonessential amino acids, 2 mM glutamine, 10% FBS, and antibiotics ($100 \mathrm{U} / \mathrm{mL}$ penicillin, $100 \mu \mathrm{~g} / \mathrm{mL}$ streptomycin) under a $5 \% \mathrm{CO}_{2}$ humidified atmosphere at $37{ }^{\circ} \mathrm{C}$. The T47D cells were grown in RPMI-1640 supplemented with 1 mM sodium pyruvate, 1 mM nonessential amino acids, 2 mM glutamine, 10% FBS, and antibiotics ($100 \mathrm{U} / \mathrm{mL}$ penicillin, $100 \mu \mathrm{~g} / \mathrm{mL}$ streptomycin) under a $5 \% \mathrm{CO}_{2}$ humidified atmosphere at $37^{\circ} \mathrm{C}$.

7.2 Cell Proliferation.

Cells were seeded into 96 -well tissue culture plates in 5\% DCC treated, FBS supplemented RPMI phenol red-free medium at a density of 1×10^{4} cells/well. Test compounds were added in 70% EtOH solution (control contained 0.7% ethanol) and incubated at $37^{\circ} \mathrm{C}$ with $5 \% \mathrm{CO}_{2}$ for 96 h . In all experiments, serial dilutions of estradiol were added as positive control. To evaluate relative cell concentrations, Alamar Blue reagent was used. After 3 h , fluorescence was measured at 590 nm with excitation at 530 nm using a FL500 spectrophotometer (BIO-TEK Instruments Inc, USA).

7.3 Construction of Luciferase Reporter Plasmid

The reporter gene EREx3-pGV-P2 was constructed using luciferase reporter gene pGV-p2 basis vector (Toyo Ink Co. Tokyo). Three tandem repeats of the consensus ERE oligonucleotide (GCTAGCAGGTCACAGTGACCT) upstream of the human TATA promoter sequence were inserted into the Nhe I-Xho I site of the multiple cloning site of the pGV-p2 basis vector.

7.4 Luciferase Reporter Gene Assay

The luciferase reporter gene assay was conducted according to the procedure of Edmunds and co-worker with minor modifications. MCF-7 or T47D cells were placed in phenol red-free MEM supplemented with 5\% DCC FBS for 48h prior to plating. The cells were transfected for 12h in OPTI-MEM with $2 \mu \mathrm{~g}$ of

EREx3-pGVP2 plasmid (containing three copies of the ERE linked to the luciferase gene) using LIPOFECTAMINE in a $12: 1$ ratio ($24 \mu \mathrm{~L}$ of liquid $/ 2 \mu \mathrm{~g}$ of DNA) according to the manufacturer's instruction. The medium was changed for phenol red-free MEM with 5% DCC-FBS, and the cells were incubated for 12 h . After 12 h , luciferase transfected-MCF-7 (MCF-7/Luc) or luciferase transfected-T47D (T47D/Luc) cells ($2 \times 10^{4} /$ well) were seeded in 96 well plates with the same medium ($90 \mu \mathrm{~L}$), and after culturing for 24 h , a test compound dissolved in the medium ($10 \mu \mathrm{~L}$) was added to each well, and further incubated for 12 h . In all experiments, serial dilutions of estradiol were added as positive control. After treatment with test compounds, the cells were washed twice with PBS and lysed by treatment with $20 \mu \mathrm{~L}$ lysis buffer (Pica gene assay kit; Toyo Ink Co. Tokyo) per well for 10 min at room temperature. Luciferase activities for the cell extracts were determined using Luciferase Substrate (Pica gene assay kit; Toyo Ink Co. Tokyo) in a luminometer (Labsystems Luminoskan RS).

7.5 Preparation of Herb Extracts.

Herbs were extracted with methanol by refluxing for 1 h. , and the insoluble contents were filtered off at room temperature. The methanolic solution was concentrated under vacuum. For assays involving methanolic extracts and phytochemicals, serial dilutions of the samples to be tested was made in a 70% aqueous ethanol solution at concentration 100 -fold higher than the desired final concentrations. The 70% ethanolic solutions were then diluted 10 -fold with cell culture medium. When tested for estrogenic activity, the final concentration of the organic solvent never exceeded 1%. This concentration was shown not to interfere with the different assays used, as a result of control experiments.

7.6 Data and Statistical Analysis.

Statistical differences were determined by analysis of variance followed by Dunnett's multiple comparison tests. Statistical significance was established at the $p<0.05$ level.

7.7 Calculation of $\mathbf{E q} \mathbf{E}_{10}$ and $\mathbf{E q} \mathbf{E}_{100}$.

EqE_{10} and EqE_{100} represent the concentration of the compound that stimulated the cell proliferations equivalent to 10 and 100 pM estradiol, respectively. These values were determined by linear regression analysis, which 3-5 different concentrations in quadruplicate versus ratio of cell proliferation to control were plotted.

