รายการอ้างอิง

- Raibert, M. H.; Craig, J. J. Hybrid Position/Force Control of Manipulators. ASME Journal of Dynamic Systems, Measurement, and Control, Vol. 102 (June 1981): 126-133.
- Hogan, N. Impedance Control: An Approach to Manipulation: Part I Theory, Part II

 Implementation, Part III Applications. Trans of the ASME, Journal of
 Dynamic Systems, Measurement, and Control, Vol. 107 (March 1985): 1-24.
- Anderson, R. J.; Spong, M. W. Hybrid Impedance Control of Robotic Manipulators.
 IEEE Journal of Robotics and Automation, Vol. 4, No. 5, (October 1988): 549-556.
- Yoshikawa, T.; Sugie, T.; Tanaka, M. Dynamic Hybrid Position/Force Control of Robot Manipulators – Controller Design and Experiment. IEEE Journal of Robotics and Automation, Vol. 4, No. 6 (December 1988): 699-705.
- Stokic, D. M.; Vukobratovic, M. K. An Adaptive Hybrid Control Scheme for Manipulation Robots with Implicit Force Control. IEEE, 1991.
- Surdilovic, D.; Kirchhof, J. A New Position Based Force/Impedance Control for Industrial Robots. Proceedings of the 1996 IEEE International Conference on Robotics and Automation, Minneapolis, Minnesota, April 1996.
- Volpe, R.; Khosla, P. Theoretical Analysis and Experimental Verification of a Manipulator/Sensor/Environment Model for Force Control. Proceedings of the 1996 IEEE International Conference on Systems, Man, and Cybernetics, Los Angeles, November 1990.
- Volpe, R.; Khosla, P. Experiment Verification of a Strategy for Impact Control.
 Proceedings of the 1991 IEEE International Conference on Robotics and Automation, Sacramento, California, April 1991.
- Volpe, R.; Khosla, P. An Experimental Evaluation and Comparison on Explicit Force Control Strategies for Robotic Manipulators. Proceedings of the 1992 IEEE International Conference on Robotics and Automation, Nice, France, May 1992.
- Lu, Z.; Kawamura, S.; Goldenberg, A. A. An Approach to Sliding Mode-Based Impedance Control. IEEE Transactions on Robotics and Automation, Vol. 11, No. 5 (October 1995).

- Kwan, C. M. Hybrid Force/Position Control for Manipulators with Motor Dynamics Using a Sliding-Adaptive Approach. IEEE Transactions on Automatic Control, Vol. 40, No. 5 (May, 1995).
- 12. Slotine, J. J.; Li, W. Applied Nonlinear Control. Prentice-Hall International, 1991
- Hsu, F. Y.; Fu, L. C. A New Design of Adaptive Fuzzy Hybrid Force/Position Controller for Robot Manipulators. Proceedings of the 1995 IEEE International Conference on Robotics and Automation, 1995.
- 14. Hsu, F. Y.; Fu, L. C. Adaptive Fuzzy Hybrid Force/Position Control for Robot Manipulators Following Contours of an Uncertain Object. Proceedings of the 1996 IEEE International Conference on Robotics and Automation, Minneapolis, Minnesota, April 1996.
- Tangpornprasert, P. Hybrid Force-Position Control of a Robot Manipulator Arm. Master's Thesis, Mechanical Engineering Department, Graduate School, Chulalongkorn University, 1996.
- 16. Boworn Panyaworawat. **Adaptive Implicit Control**. Master's Thesis, Mechanical Engineering Department, Graduate School, Chulalongkorn University, 2000.
- 17. Hill, J.; Park, W. T. Real time control of a robot with a mobile camera.Proceedings of the 9th ISIR, Washington D.C., Mar 1979, pp. 233-246.
- Geschke, C. A Robot Task Using Visual Tracking. Robotics Today, (Winter 1981-1982).
- Clocksin, W. F.; Bromley, J. S. E.; Davey, P. G.; Vidler, A. R.; Morgan, C. G. An Implementation of Model-Based Visual Feedback for Robot Arc Welding of Thin Sheet Steel. The International Journal of Robotic Research, Vol. 4, No. 1 (Spring 1985).
- 20. Kabuka, M.; McVey, E.; Shironoshita, P. An Adaptive Approach to Video Tracking. IEEE Journal of Robotics and Automation, Vol. 4, No. 2 (April 1998).
- Zhuang, X.; Huang, T. S.; Haralick, R. M. A Simple Procedure to Solve Motion and Structure from Three Orthographic Views. IEEE Journal of Robotics and Automation, Vol. 4, No. 2 (April 1998).
- 22. Sanderson, A. C.; Weiss, L. E. Adaptive visual servo control of robots. In Robot Vision Ed: Pugh A. IFS 1983.
- 23. Weiss, L. E. Dynamic Visual Servo Control of Robots: An Adaptive Image-Based Approach. Ph.D. Thesis, CMU, 1984.

- Weiss, L. E.; Sanderson, A. C.; Neumann, C. P. Dynamic Sensor-Based Control of Robots with Visual Feedback. Journal of Robotics and Automation, v. RA-3 1987.
- Chongstitvatana, P.; Conkie, A. Behavior Based Assembly Experiments using Vision Sensing. DAI TR #466, University of Edinburgh, 1990.
- Conkie, A.; Chongstitvatana, P. An Uncalibrated Stereo Visual Servo System.
 DAITR#475, University of Edinburgh, 1990.
- Chongstitvatana, P. The Design and Implementation of Vision-Based Behavioral Modules for a Robotic Assembly System. Ph.D. Thesis, University of Edinburgh, 1990.
- Feddema, J. T.; Lee, G. C. S.; Mitchell, O. R. Weighted selection of Image Features for Resolved Rate Visual Feedback Control. IEEE Transaction on Robotics and Automation, Vol. 7, No. 1 (February 1991): 31-47.
- Zheng, J. Y.; Chen, Q.; Tsuji, S. Active Camera Guided Manipulation.
 Proceedings of the 1991 IEEE International Conference on Robotics and Automation, Sacramento, California, April 1991.
- Wijesoma, S. W.; Wolfe, D. F. H.; Richards, R. J. Eye-to-Hand Coordination for Vision-Guided Robot Control Application. The International Journal of Robotics Research, Vol. 12, No. 1 (February, 1993).
- 31. Kubota, Takashi; Hashimoto, Hideki. Neural Networks for Robotic Control: theory and applications; Visual control of robotic manipulator based on neural networks. Ellis Horwood, pp. 218-244.
- 32. Hager, Gregory D. Real-Time Feature Tracking and Projective Invariance as a Basis for Hand-Eye Coordination. DCS RR-1010. Yale University, New Heaven, CT, January 1994.
- 33. Tsui, H. T.; Zhang, Z. Y., Kong, S. H. Feature Tracking from an Image Sequence Using Affine Invariant and Hough Transform. Intelligent Robots and Computer Vision XV, SPIE's Photonics East'96, November 1996.
- Corke, P. I.; Good, Malcolm C. Dynamic Effects in Visual Closed-Loop Systems.
 IEEE Transactions on Robotics and Automation, Vol. 12, No. 5 (October 1996).
- Wilson, W. J.; Hulls, C. C. Williams; Bell. Graham S. Relative End-Effector Control Using Cartesian Position Based Visual Servoing. IEEE Transactions on Robotics and Automation, Vol. 12, No. 5 (October, 1996).

- Hashimoto, K.; Ebine, T.; Kimura, H. Visual Servoing with Hand-Eye Manipulation Optimal Control Approach. IEEE Transactions on Robotics and Automation, Vol. 12, No. 5 (October, 1996).
- Khadraoui, D.; Motyl, G., Martinet, P.; Gallice, J.; Chaumette, F. Visual Servoing in Robotics Scheme Using a Camera/Laser-Stripe Sensor. IEEE Transactions on Robotics and Automation, Vol. 12, No. 5 (October, 1996).
- 38. Kelly, Rafale. Robust Asymptotically Stable Visual Servoing of Planar Robots.
 IEEE Transactions on Robotics and Automation, Vol. 12, No. 5 (October, 1996).
- Sutanto, H.; Sharma, R.; Varma, V. Image based Autodocking without Calibration.
 Proceedings of the 1997 IEEE International Conference on Robotics and Automation, Albuquerque, New Mexico, April 1997.
- Shunjia, Yu; Rueywen, Liu. A New Edge Detection Algorithm: Fast and Localizing to a Single Pixel. IEEE, 1993.
- Davies, E.R.; Celano, D. Orientation Accuracy of Edge Detection Operators Acting On Binary and Saturated Grey-Scale Images. Electronics Letters, Vol. 29, No. 7 (April 1993).
- Shao, Suyi; Staudhammer, John; Grams, Ralph R. Pixel-Feature-Controlling Edge Detection Based on Regularization (PEDBOR). IEEE, 1993.
- 43. WU, Paul S.; LI, Ming Fast Edge Detection for Color Image. Proceeding of ICSP'96, 1996: 871-874.
- 44. Hutchinson, S.; Hager, G. D.; Corke, P. I. A Tutorial on Visual Servo Control. IEEE Transactions on Robotics and Automation, Vol. 12, No. 5 (October, 1996).
- Castano, A., Hutchinson, S. Hybrid Vision/Position Servo Control of a Robotic Manipulator. Proceedings of the 1992 IEEE International Conference on Robotics and Automation, Nice, France, May 1992.
- Nelson, B. J.; Morrow, J. D.; Khosla, P. K. Improved Force Control Through Visual Servoing. 1995 American Control Conference, Seattle, Washington, June 1995.
- 47. Nelson, B.; Khosla, P. K. Force and Vision Resolvability for Assimilating Disparate Sensory Feedback. IEEE Transactions on Robotics and Automation, Vol. 12, No. 5 (October, 1996).
- 48. Nelson, B.; Khosla, P. K Integrating Force and Vision Feedback Within Virtual Environments for Telerobotic Systems. **Proceedings of the 1997 IEEE**

International Conference on Robotics and Automation, Albuquerque, New Mexico, April 1997.

- 49. Hosoda, Koh; Igarashi, Katsuji; Asada, Minoru. Adaptive Hybrid Visual Servo/Force Control in Unknown Environment. Proceedings of the 1996 IEEE/RSJ International Conference on Intelligent Robots and System (IROS 96), Osaka, 1996.
- 50. Morel, G.; Malis, E., Boudet, S. Impedance based combination of visual and force control. Proceedings of the 1998 IEEE International Conference on Robotics and Automation, Leuven, Belgium, May 1998.

ภาคผนวก

ภาคผนวก ก.

โปรแกรมจำลองการทำงาน

ภาคผนวก ก. แสดงถึงรายละเอียดโปรแกรมจำลองการทำงาน (Source code) ภาษา MatLAB[®] ซึ่งประกอบด้วย

- โปรแกรมจำลองการควบคุมแขนกลด้วยกล้องดิจิตัลกับหุ่นยนด์ แบบ SCARA 2 DOF (หัวข้อ 4.6)
- โปรแกรมจำลองการควบคุมแขนกลด้วยกล้องดิจิดัลกับหุ่นยนด์ PUMA 560 (หัวข้อ 4.7)
- โปรแกรมจำลองการควบคุมแขนกลด้วยกล้องดิจิตัลกับหุ่นยนด์ Stanford Arm (หัวข้อ 4.7)
- โปรแกรมจำลองการควบคุมแขนกลแบบผสมระหว่างแรง/รูปภาพ (หัวข้อ 6.8)

โปรแกรมจำลองการควบคุมแขนกลด้วยกล้องดิจิตัลกับหุ่นยนต์ แบบ SCARA 2 DOF

ภาษาที่ใช้: Matlab® Version 5.2

Toolbox: Robot Toolbox

โปรแกรมหลัก

```
Image Based Control Simulation on JOARA robot
8
   Approximate Jacobian Method
2
   Ratchatin Chancharoen,
00
    Copyright (c) 2000-2010 by Chulalongkorn university.
00
    $Revision: 1.0 $ $Date: 1999/10/15 $
% ===== Parameters
Stp = 0.05; Step size
% ===== Initial Positions
i=1;
q(1:2,i) = pi * [0; 0.5];
P = SCARA Visual(q(1:2,i));
E(i) = P' * P;
% ===== First Move
DQ = [Stp 0; 0 Stp];
for i=2:3,
  Pi = P;
  dq = DQ(1:2, i-1);
  q(1:2,i) = q(1:2,i-1) + dq;
   P = SCARA Visual(q(1:2,i));
  DF(1:2, i-1) = P-Pi;
   E(i) = P' * P;
end
% ====== Iterative Stp
i = i + 1;
Max iter = 2500; % Maximum iteration
while E(i-1) > 0.01 & i < Max iter,
   J = DF * inv(DQ);
   Sens(i) = det(J);
   dq1 = -0.01 * inv(J) * P;
   dq = -Stp*inv(J)*P/norm(inv(J)*P);
   if (dq1 < dq)
      dq = dql;
  end
   q(1:2,i) = q(1:2,i-1) + dq;
   Pi=P;
   P = SCARA_Visual(q(1:2,i));
   E(i) = P' * P;
   DF(1:2,1) = DF(1:2,2);
   DF(1:2,2) = P-Pi;
   DQ(1:2,1) = DQ(1:2,2);
   DQ(1:2,2) = dq;
   i=i+1;
```

```
b ====== Display robot path
L1 = 10;
L2 = 10;
Lx = 0;
for j=1:i-1,
X(j) = L1*cos(q(1,j))+L2*cos(q(1,j)+q(2,j))-Lx*sin(q(1,j)+q(2,j));
Y(j) = L1*sin(q(1,j))+L2*sin(q(1,j)+q(2,j))+Lx*cos(q(1,j)+q(2,j));
end
plot(X,Y);
```

้ฟังก์ชั้นจำลองการทำงานของหุ่นยนด์แบบ SCARA ที่มีความอิสระเท่ากับสอง

```
function SCARA Visual = SCARA Visual q;
% ===== Target Position
Pq = [0 5]';
% ===== Camera Parameter
z = 1;
Lamda = 1;
% ====== Link Parameters
L1 = 10;
L2 = 10;
Lx = 0;
1 ===== Positions
P(1) = L1 \cos(q(1)) + L2 \cos(q(1) + q(2)) - Lx \sin(q(1) + q(2));
P(2) = Ll*sin(q(1)) + L2*sin(q(1)+q(2)) + Lx*cos(q(1)+q(2));
P(3) = q(1) + q(2) + pi;
T = [cos(P(3)) sin(P(3));
    -sin(P(3)) cos(P(3))];
% ===== Visual Parameter
SCARA Visual = Lamda/z*T*[Pg-P(1:2)'];
```

โปรแกรมจำลองการควบคุมแขนกลด้วยกล้องดิจิตัลกับหุ่นยนต์ PUMA 560

ภาษาที่ใช้: Matlab® Version 5.2

Toolbox: Robot Toolbox

โปรแกรมหลัก

```
Image Based Control Simulation on PUMA 560 Manipulator Arm
90
   Approximate Jacobian Method
90
   Ratchatin Chancharoen,
  Copyright (c) 2000-2010 by Chulalongkorn university.
90
   $Revision: 1.0 $ $Date: 1999/10/15 $
% ===== Parameters
puma560;
Stp = 0.0025; Step size
% ===== Initial Positions
i=1;
q(1:6,i) = [0 \ 0 \ 0 \ 0 \ 0]';
P=PUMA_Visual(q(1:6,i));
E(1:3,i) = P';
% ===== Initial Move
DQ = [Stp 0 0;
      0 Stp 0;
      0 0 Stp];
for i=2:4,
   q(1:3,i) = q(1:3,i-1) + DQ(:,i-1);
   q(4:6,i) = [0 \ 0 \ 0]';
  P=PUMA Visual(q(1:6,i));
  E(1:3,i) = P';
   DF(1:3, i-1) = E(1:3, i) - E(1:s, i-1);
end
°₀ ====== Iterative Move
Max iter = 600; Maximum iteration
i = i + 1;
while i < Max iter,
   J = DF * inv(DQ);
   Del = -Stp*inv(J)*E(:,i-1)/norm(inv(J)*E(:,i-1));
   q(1:3,i) = q(1:3,i-1) + Del;
   q(4:6,i) = [0 \ 0 \ 0]';
   P=PUMA Visual(q(1:6,i));
   E(1:3, 1) = P';
   DF(1:3,1) = DF(1:3,2);
   DF(1:3,2) = DF(1:3,3);
   DF(1:3,3) = E(1:3,i) - E(1:3,i-:);
   DQ(1:3,1) = DQ(1:3,2);
   DQ(1:3,2) = DQ(1:3,3);
```

```
DQ(1:3,3) = Del;
i=i+1;
```

end

```
% ====== Display movement
plotbot(p560,q');
```

ฟังก์ชันจำลองการทำงานของหุ่นยนต์ PUMA560

```
function PUMA_Visual = PUMA_Visual(q)
% ====== Target
Pg = [0.25 -0.25 0.005]';
% ====== Robot and Camera Parameter
puma560;
Lamda = 0.01;
% ===== Kinematics
T = rkine(p560,q);
P = T(1:3,4);
R = T(1:3,1:3);
uv = Lamda/P(3)*(Pg(1:2)-P(1:2));
A = Pg(3)-(Lamda/P(3)*0.5)^2;
PUMA_Visual(1:2) = uv;
PUMA_Visual(3) = A;
```

ผลลัพธ์การจำลอง

ร**ูปที่ ก.1** ผลลัพธ์การจำลองควบคุมหุ่นยนต์ PUMA 560 ด้วยกล้องดิจิดัล

โปรแกรมจำลองการควบคุมแขนกลด้วยกล้องดิจิตัลกับหุ่นยนต์ Stanford Arm

ภาษาที่ใช้: Matlab® Version 5.2

Toolbox: Robot Toolbox

โปรแกรมหลัก

```
Image Based Control Simulation on Stanford Arm
   Approximate Jacobian Method
010
   Ratchatin Chancharoen,
00
   Copyright (c) 2000-2010 by Chulalongkorn university.
   $Revision: 1.0 $ $Date: 1999/10/15 $
010
% ===== Parameters
stanford;
Stp = 0.005; Step size
% ===== Initial Positions
i=1;
q(1:6,i) = [0 pi/3 -pi/4 0 0 0]';
P=Stanford Visual(q(1:6,i));
E(1:3,i) = P';
% ===== Initial Move
DQ = [Stp 0 0;
      0 Stp 0;
      0 0 Stp];
for i=2:4,
  q(1:3,i) = q(1:3,i-1) + DQ(:,i-1);
   q(4:6,i) = [0 \ 0 \ 0]';
  P=Stanford_Visual(q(l:6,i));
  E(1:3,i) = P';
   DF(1:3,i-1) = E(1:3,i)-E(1:3,i-1);
end
% ===== Iterative Move
Max iter = 500;  Maximum iteration
i=i+1;
while i < Max iter,
   J = DF^*inv(DQ);
   Dell = -0.01*inv(J)*E(:,i-1);
   Del = -Stp*inv(J)*E(:,i-l)/norm(inv()*E(:,i-l));
   if (Dell < Del)
      Del = Dell;
   end
   q(1:3,i) = q(1:3,i-1) + Del;
   q(4:6,i) = [0 \ 0 \ 0]';
   P=Stanford Visual(q(1:6,i));
   E(1:3,i) = P';
   DF(1:3,1) = DF(1:3,2);
   DF(1:3,2) = DF(1:3,3);
```

```
DF(1:3,3) = E(1:3,i)-E(1:3,i-i);
DQ(1:3,1) = DQ(1:3,2);
DQ(1:3,2) = DQ(1:3,3);
DQ(1:3,3) = Del;
i=i+1;
```

end

```
plotbot(stanf,g');
```

ฟังก์ชันจำลองการทำงานของหุ่นยนต์ Stanford Arm

```
function stanford_Visual = stanrord Visual(q)
% ====== Target
Pg = [0.25 0.25 0.005]';
% ====== Robot and Camera Parameter
stanford;
Lamda = 0.01;
% ====== Kinematics
T = fkine(stanf,q);
P = T(1:3,4);
R = T(1:3,1:3);
uv = Lamda/P(3)*(Pg(1:2)-P(1:2) ;
A = Pg(3)-(Lamda/P(3)*0.5)^2;
stanford_Visual(1:2) = uv;
stanford_Visual(3) = A;
```

ผลลัพธ์การจำลอง

โปรแกรมจำลองการควบคุมแขนกลแบบผสมระหว่างแรง/รูปภาพ

ภาษาที่ใช้: Matlab® Version 5.2

Toolbox: Robot Toolbox

โปรแกรมหลัก

```
%Image Based Control Simulation on 2D Articulated Manipulator Arm
00
   Approximate Jacobian
00
   Ratchatin Chancharoen,
00
   Copyright (c) 2000-2010 by Chulalongkorn university.
    $Revision: 1.0 $ $Date: i · · ·/10/1 $
2
% ===== Parameters
Stp = 0.01;
              🖇 Step size
for i=1:1000,
  Goal(1:2,i) = [0 10 sin(i pi 1000)]';
end
% ===== Initial Positions
i=1;
q(1:2,i) = [pi/3 - pi/3]';
[qp X Fz]=Robot2D(q(1:2,i));
P = Goal(1:2,i)' - [X Fz];
E(1:2,i) = P';
% ===== Initial Move
DQ = [Stp 0;
     0 Stp];
for i=2:3,
  q(1:2,i) = q(1:2,i-1) + DQ(:,i-1);
   [qp X Fz]=Robot2D(q(1:2,i));
   P = Goal(1:2, i)' - [X Fz];
   E(1:2,i) = P';
   DF(1:2,i-1) = E(1:2,i)-E(1:-,i-1);
end
% ===== Iterative Move
Max iter = 1001; & Maximum iteration
i = i + 1;
while i < Max iter,
   J = DF^{*}inv(DQ);
   P = Goal(1:2, i)' - [X Fz];
   Del = -Stp*inv(J)*F';
   q(1:2,i) = q(1:2,i-1) + Del;
   [qp X Fz]=Robot2D(q(1:2,i));
   P = Goal(1:2,i)' - [X Fz];
   E(1:2,i) = P';
   DF(1:2,1) = DF(1:2,2);
   DF(1:2,2) = E(1:2,i) - E(1:2,i-1);
   DQ(1:2,1) = DQ(1:2,2);
   DQ(1:2,2) = Del;
```

i=i+1;

end

```
fid = fopen('data.txt','w');
fprintf(fid,'%7.4f \t %7.4f \n',E);
fclose(fid);
```

plot([Goal'+E' Goal'])

ฟังก์ชันจำลองการทำงานของหุ่นยนต์สองชิ้นต่อวิ่งบนรางไร้แรงเสียดทาน

```
function [qp, x, Fz] = Robot2D(q)
l=10;
k = 1;
lamda = 1;
z = 1;
qp = (q(1)-2*q(2))/5;
x = (lamda/z)*2*l*cos(qp);
Fz = k*(q(1)-qp)/(2*l*cos(qp));
```

ภาคผนวก ข.

ข้อมูลการทดสอบกับหุ่นยนต่อุตสาหกรรม

ภาคผนวก ข. แสดงถึงรายละเอียดข้อมูลจากการทดลองกับหุ่นยนต์อุดสาหกรรมของ บริษัท CRS Robotic Inc ในการทดลองด่างประกอบด้วย

- ผลการทดลองการควบคุมพารามิเตอร์รูปภาพของหุ่นยนต์จากบริษัท CRS Robotic Inc (รูปที่ 4.7)
- ผลการทดลองการควบคุมพารามิเตอร์รูปภาพของหุ่นยนด์จากบริษัท CRS Robotic Inc
 เมื่อความยาวช่วงก้าวเดินมีค่าต่างๆ กัน (รูปที่ 4.8)
- ผลการทดลองการควบคุมพารามิเตอร์รูปภาพของหุ่นยนด์จากบริษัท CRS Robotic Inc
 เมื่อตำแหน่งเริ่มดันมีค่าต่างๆ กัน (รูปที่ 4.10)
- ผลการทดลองการควบคุมพารามิเตอร์รูปภาพของหุ่นยนต์จากบริษัท CRS Robotic Inc (รูปที่ 4.15)
- ผลการทดลองการควบคุมพารามิเดอร์รูปภาพของหุ่นยนต์จากบริษัท CRS Robotic Inc (การทดลองเสริมเพื่อแสดงสิ่งที่กล้องมองเห็นในก้าวเดินต่างๆ)

ผลการทดลองการควบคุมพารามิเตอร์รูปภาพของหุ่นยนต์จากบริษัท CRS Robotic Inc

พารามิเตอร์ควบคุม:ตำแหน่งวัตถุในรูปภาพในแนวนอน (บ) และแนวดิ่ง (v)เป้าหมายบ และ v เป็นศูนย์ความยาวช่วงก้าวเดิน:0.025

Step No.	u (pixel)	v (pixel)	Joint 1	Joint 2	DQ	DF	J
0	-162	177	0	0			
1	-157	164	0.005	0		nitial Movemen	t
2	-149	162	0	0.005	0 0 005 0	$\begin{bmatrix} 8 & 5 \\ -2 & -13 \end{bmatrix}$	1000 1600 - 2600 - 400
3	-103	115	0.016574	0.018716	0.016574 0 0.018716 0.005	$\begin{bmatrix} 46 & 8 \\ -47 & -2 \end{bmatrix}$	969 1600 - 2384 - 400
4	-60	65	0.018042	0.017306	0.018042 0.016574 0.017306 0.018716	43 46 - 50 - 47	172 2306 - 2408 - 379
5	-31	33	0.011586	0.012148	0.011586 0.018042 0.012148 0.017306	$ \begin{bmatrix} 29 & 43 \\ -32 & -50 \end{bmatrix} $	1098 1340 - 2871 104
6	-15	15	0.005988	0.00666	0.005988 0.011586 0.00666 0.012148	16 29 -18 -32	$\begin{bmatrix} -277 & 2651 \\ 1253 & 3829 \end{bmatrix}$
7	-7	5	0.003905	0.003237	0.003905 0.005988 0.003237 0.00666	8 16 -10 -18	226 2199 - 1259 - 1570

ตารางที่ ฃ.1 ดารางข้อมูล

ผลการทดลองการควบคุมพารามิเตอร์รูปภาพของหุ่นยนต์จากบริษัท CRS Robotic Inc เมื่อความยาวช่วงก้าวเดินมีค่าต่าง ๆ กัน

พารามิเตอร์ควบคุม: ดำแหน่งวัตถุในรูปภาพในแนวนอน (บ) และแนวดิ่ง (v) เป้าหมาย บ และ v เป็นศูนย์

	ความยาวช่วงก้าวเดิน							
Step Number	0.001		0.00)2	0.003			
	u	v	u	v	u	v		
1	-250	121	-250	121	-251	122		
2	-242	122	-242	122	-242	122		
3	-241	126	-241	126	-242	126		
4	-231	121	-221	116	-211	111		
5	-221	116	-201	106	-183	95		
6	-217	115	-198	105	-151	78		
7	-208	110	-179	94	-119	60		
8	-198	105	-157	83	-86	42		
9	-188	99	-136	71	-56	21		
10	-178	94	-115	59	-17	2		
11	-168	88	-114	59	39	-7		
12	-157	83	-89	47	-16	2		
13	-147	77	-67	35	-9	3		
14	-136	71	-43	22	39	-13		
15	-126	65	-9	13	-9	3		
16	-115	59	3	-4	-8	3		
17	-104	53			37	-15		
18	-103	52			-8	3		
19	-92	46			-4	4		
20	-82	39						
21	-71	33						
22	-59	26						
23	-50	19						
24	-34	14						
25	-21	7						
26	-5	2						

ตารางที่ ข.2	ดารางข้อมูล
--------------	-------------

ผลการทดลองการควบคุมพารามิเตอร์รูปภาพของหุ่นยนต์จากบริษัท CRS Robotic Inc เมื่อตำแหน่งเริ่มต้นมีค่าต่าง ๆ กัน

พารามิเตอร์ควบคุม:	ตำแหน่งวัตถุในรูปภาพในแนวนอน (บ) และแนวดิ่ง (v)
เป้าหมาย	u และ v เป็นศูนย์
ความยาวช่วงก้าวเดิน :	0.001

	ดำแหน่ง #1		ดำแหน่ง #2				ด้ำแหน่ง #4		ด้ำแหน่ง #5	
Step Number	u	v	11	V	11	V	11	V	11	17
1	-250	121	-255	-157	119	-144	188	28	 244	198
2	-242	122	-248	-156	127	-146	195	27	252	197
3	-241	126	-247	-151	126	-141	195	31	251	200
4	-231	121	-235	-145	119	-132	85	17	79	84
5	-221	116	-224	-138	110	-123	42	6	33	36
6	-217	115	-213	-130	102	-114	20	1	15	17
7	-208	110	-203	-123	95	-105	4	5	13	9
8	-198	105	-193	-116	87	-97			3	2
9	-188	99	-190	- 17	79	-88				
10	-178	94	-179	-110	7.2	-79				
11	-168	88	-168	-103	75	-81				
12	-157	83	-167	-104	66	-73				
13	-147	77	-156	-97	60	-64				
14	-136	71	-146	- 90		-56				
15	-126	65	-135	-84	4.4	-47				
16	-115	59	-125	-77	37	-39				
17	-104	53	-114	-71	31	-30				
18	-103	52	-103	5	23	-23				
19	-92	46	-100	-64	15	-15				
20	-82	39	-91	- 5 7	7	-7				
21	-71	33	-81	-51	10	-6				
22	-59	26	-70	-45	0	1				
23	-50	19	-60	-39						
24	-34	14	-49	-33						
25	-21	7	-39	-28						
26	-5	2	-27	-23						
27			-22	-16						
28			-13	-9						
29			-7	-6						
30			- 4	-3						

ตารางที่ ฃ.3 ตารางข้อมูล

ผลการทดลองการควบคุมพารามิเตอร์รูปภาพของหุ่นยนต์จากบริษัท CRS Robotic Inc

พารามิเตอร์ควบคุม:	ตำแหน่งวัตถุในรูปภาพในแนวนอน (บ) และแนวดิ่ง (v) และขนาดของวัตถุที่
	ปรากฏในรูปภาพ (A)
เป้าหมาย	u และ ∨ เป็นศูนย์ และ A เท่ากับ 4000
ความยาวช่วงก้าวเดิน:	0.005

Step Number	u (pixel)	v (pixel)	A (pixel ²)
1	-164	166	4059
2	-160	165	4030
3	-155	160	4064
4	-150	156	4029
5	-150	156	3982
6	-148	154	4020
7	-147	152	4066
8	-145	150	4107
9	-135	138	4128
10	-129	131	4111
11	-130	132	4221
12	-129	131	4088
13	-128	131	4055
14	-128	130	4021
15	-122	123	4056
16	-120	121	4112
17	-117	117	4165
18	-108	106	4141
19	-103	101	4128
20	-101	99	4076
21	-92	87	4101
22	-82	76	4112
23	-76	69	4146
24	-72	64	4099
25	-72	64	4075
26	-71	64	4119
27	-70	62	4158
28	-70	61	4195
29	-60	49	4201
30	-54	43	4236
31	-45	32	4300
32	-44	32	4259
33	-41	27	4305
34	-38	24	4283
35	-38	24	4223
36	-36	22	4172
37	-35	20	4141
38	-25	8	4211
39	-20	1	4195

ตารางที่ ข.4 ดารางข้อมูล

ผลการทดลองการควบคุมพารามิเตอร์รูปภาพของหุ่นยนต์จากบริษัท CRS Robotic Inc

ร**ูปที่ ข.1** ภาพที่บันทึกจากการทดลองควบคุมแขนกลด้วยรูปภาพ เรียงตามลำดับที่บันทึก

ตารางที่ ข.5	ดารางข้อมูล
--------------	-------------

Step Number	u	v
1	-113	-148
2	-110	-144
3	-107	-141
4	-104	-139
5	-102	-135
6	-99	-132
7	-97	-130
8	-94	-126
9	-91	-123
10	-89	-120
11	-86	-117
12	-83	-114
13	-81	-111
14	-78	-108
15	-76	-104
16	-73	-101
17	-71	-98
18	-68	-95
19	-66	-91
20	-63	-89
21	-61	-85
22	-59	-83
23	-56	-80
24	-54	-76
25	-51	-73
26	-49	-70
27	-46	-67
28	-44	-64
29	-41	-61
30	-38	-58
31	-36	-55
32	-34	-51
33	-31	-49
34	-28	-45
35	-26	-43
36	-23	-40
37	-21	-37
38	-19	-34
39	-17	-31
40	-14	-28
41	-12	-25
42	- 9	-22
43	-7	-19
1.1	- 4	-16

ภาคผนวก ค.

ตัวอย่างโปรแกรมควบคุมการทำงาน

ด้วอย่างโปรแกรมควบคุมการทำงานที่เขียนขึ้นจาก Visual C++ โดยมีส่วนประกอบ และรายละเอียดดังนี้

Untitled - KVIsion File Edit Vision System Robot Controller DEFINITION	Interface Force Control Visual Servo Help	
1	System Boot Initial Move Jacobian Iterative Move -X - System Threshold 120 0 Area 3656 u 34 Joint Pos 0.002494 -0.00433 Roundhess 0.502234 y 30 4 0 0 MI 0.002494622, -0.00433311, 0.000000000 0	3 8
	Exil DF matrix -9 1 -4 12 0 0005 0 0005 0 0.000432 -0.00057 0.000432 -0.00019 0.000432 -0.000432 -0.00019 0.00043 -0.00043 -0.00043 -0.00043 -0.00043 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004 -0.000	
For Holo, press F1	NU noncel Word - Dit. Mill RVision - Microsoft III C Unitided - RVision III C Er Station	22:09

รูปที่ ค.1 ตัวอย่างโปรแกรมควบคุม

- ส่วนที่ 🛈 แสดงภาพที่กล้องดิจิตัลบันทึกได้ กรอบสี่เหลี่ยมแสดงบริเวณที่ประมวลรูปภาพ
- ส่วนที่ ② แสดงปุ่มสั่งการควบคุมโปรแกรม
- ส่วนที่ ③ แสดงพารามิเตอร์รูปภาพที่ประมวลได้จากภาพที่บันทึก
- ส่วนที่ ④ แสดงขนาดการปรับตำแหน่งแขนกล
- ส่วนที่ (5) แมดริกซ์ DQ ที่สร้างขึ้นจากการพิจารณาการสั่งการเคลื่อนที่
- ส่วนที่ 6 แมตริกซ์ DF ที่สร้างขึ้นจากการพิจารณาการเปลี่ยนพารามิเตอร์รูปภาพ
- ส่วนที่ 🕖 🛛 จาโคเบียนที่ประมาณขึ้นจาก DQ และ DF
- ส่วนที่ ⑧ คำสั่งที่ส่งไปให้กับดัวควบคุมหุ่นยนต์เพื่อสั่งการเคลื่อนที่

ภาคผนวก ง.

ประมวลภาพเครื่องมือและอุปกรณ์ในการทดลอง

 แขนกลแบบ Articulated ของบริษัท CRS Robotic Inc รุ่น A255 พร้อมชุดควบคุม สำหรับ เป็นตัวอย่างแขนกลอุตสาหกรรม เพื่อทดสอบวิธีการควบคุมด้วยกล้องดิจิดัล วิธีการควบคุม แรง และวิธีการควบคุมแบบผสมระหว่างแรงและรูปภาพ แขนกลมีความอิสระเท่ากับ 5 สามารถสั่งการควบคุมแบบตำแหน่งผ่านทาง RS232

รูปที่ ง.1 หุ่นยนด์อุดสาหกรรม

การดิดอุปกรณ์วัดแรงและกล้องดิจิตัลไว้ที่ปลายแขน อุปกรณ์วัดแรงเป็นแบบผลึก
 Piezoelectric สามารถวัดแรงได้สูงสุด 50 นิวดัน ส่วนกล้องดิจิตัลเป็นกล้องทีวีวงจรปิด
 ขาว-ดำ ทั่วไป ไม่สามารถปรับโฟกัสและหน้ากล้องอัดโนมัดิ

รูปที่ ง.3 การดิดอุปกรณ์วัดแรงและกล้องดิจิตัล

 ดัวควบคุมที่สร้างขึ้นเพื่อใช้ในการทดลองควบคุมแรง สามารถควบคุมหุ่นยนด์ได้ 3 ข้อต่อ พร้อมกัน มีจอแสดงผลแสดงดำแหน่งของข้อต่อ

รูปทึ ง.4 ตัวควบคุมที่สร้างขึ้น

 หุ่นยนด์จุฬาฯ 2 เป็นหุ่นยนด์ SCARA แบบ 6 แกน ที่สร้างขึ้นในห้องปฏิบัติการควบคุม เป้าหมายต่อไปที่จะทดลองควบคุมด้วยกล้องดิจิดัล และการควบคุมแบบผสมระหว่างแรง กับรูปภาพ

ร**ูปที่ ง.5** หุ่นยนต์จุฬาฯ 2

ประวัติผู้วิจัย

นาย รัชทิน จันทร์เจริญ เกิดวันที่ 8 พฤษภาคม 2513 ที่จังหวัดนครราชสีมา สำเร็จการ ศึกษาปริญญาตรีวิศวกรรมศาสตร์บัณฑิต สาขาวิศวกรรมเครื่องกล จุฬาลงกรณ์มหาวิทยาลัย ในปีการศึกษา 2534 และสำเร็จการศึกษา M.S.M.E จากมหาวิทยาลัยแห่งรัฐโอเรกอน ประเทศ สหรัฐอเมริกา ในปี 2537 จากนั้นเข้าศึกษาต่อในหลักสูตรวิศวกรรมศาสตร์ดุษฏีบัณฑิต ที่ภาค วิชาวิศวกรรมเครื่องกล คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย เมื่อปี 2538