พฤติกรรมของผนังกำแพงคอนกรีตเสริมเหล็กที่มีการจัดเรียงเหล็กเสริมรับแรงเฉือนในแนวทแยง เนื่องจากแรงกระทำตามแนวแกนและทางด้านข้างแบบวัฏจักร

นาย สมบูรณ์ เชี่ยงฉิน

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรดุษฏีบัณฑิต สาขาวิชาวิศวกรรมโยธา ภาควิชาวิศวกรรมโยธา คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2548 ISBN 974-53-2790-5 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

I25201967

BEHAVIOR OF REINFORCED CONCRETE WALLS WITH DIAGONAL WEB REINFORCEMENT SUBJECTED TO AXIAL AND CYCLIC LATERAL LOADINGS

Mr. Somboon Shaingchin

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Program in Civil Engineering Department of Civil Engineering Faculty of Engineering Chulalongkorn University Academic year 2005 ISBN 974-53-2790-5 Copyright of Chulalongkorn University

481930

Thesis Title	Behavior of Reinforced Concrete Walls with Diagonal Web
	Reinforcement Subjected to Axial and Cyclic Lateral Loadings
Ву	Mr. Somboon Shaingchin
Field of Study	Civil Engineering
Thesis Advisor	Professor Panitan Lukkunaprasit, Ph.D
Thesis Co-advisor	Assistant Professor Chadchart Sittipunt, Ph.D

Accepted by the Faculty of Engineering, Chulalongkorn University in Partial

Fulfillment of the Requirements for the Doctor's Degree

DL Lawermin Dean of the Faculty of Engineering

(Professor Direk Lavansiri, Ph.D.)

THESIS COMMITTEE

た デンマン Chairman

(Associate Professor Suthum Suriyamongkol, D.Eng.)

..... Thesis Advisor

(Professor Panitan Lukkunaprasit, Ph.D.)

 \sim

(Assistant Professor Chadchart Sittipunt, Ph.D.)

maras Member

(Associate Professor Amorn Pimanmas, Ph.D.)

A.t. Member

(Assistant Professor Anat Ruangrassamee, Ph.D.)

สมบูรณ์ เชี่ยงฉิน : พฤติกรรมของผนังกำแพงคอนกรีตเสริมเหล็กที่มีการจัดเรียงเหล็กเสริมรับ แรงเจือนในแนวทแยงเนื่องจากแรงกระทำตามแนวแกนและทางด้านข้างแบบวัฏจักร. (BEHAVIOR OF REINFORCED CONCRETE WALLS WITH DIAGONAL WEB REINFORCEMENT SUBJECTED TO AXIAL AND CYCLIC LATERAL LOADINGS) อ. ที่ปรึกษา : ศ.ดร.ปณิธาน ลักคุณะประสิทธิ์, อ.ที่ปรึกษาร่วม : ผศ.ดร.ขัชชาติ สิทธิพันธุ์ จำนวนหน้า 101 หน้า. ISBN 974-53-2790-5.

การเสริมเหล็กรับแรงเอือนในแนวทแยงเป็นที่ยอมรับว่าช่วยให้พฤติกรรมการรับแรงเอือนของผนังกำแพง คอนกรีตเสริมเหล็กดีขึ้น แต่ยังต้องมีการศึกษาเพื่อให้เข้าใจถึงกลไกนั้นซึ่งเป็นวัตถุประสงค์ของการศึกษานี้ เพื่อ ศึกษาพฤติกรรมของผนังกำแพงคอนกรีตเสริมเหล็กที่เสริมเหล็กรับแรงเอือนในแนวทแยง จึงได้ทดสอบตัวอย่างผนัง กำแพงคอนกรีตเสริมเหล็กจำนวน 6 ตัวอย่าง ด้วยแรงกระทำทางด้านข้างแบบวัฏจักร ตัวแปรในการศึกษาคือ ปริมาณและการจัดเรียงเหล็กเสริมรับแรงเอือนและระดับแรงตามแนวแกน วิธีการไฟในท์อิลลิเมนต์ได้นำมาใช้ในการ ทำนายเส้นล้อมรอบของความสัมพันธ์ระหว่างแรงและการเคลื่อนตัวทางด้านข้างแบบวัฏจักรที่ได้จากการทดสอบ โดยพิจารณาผลของการโก่งเดาะของเหล็กเสริมในเลาด้านนอกต่อความสามารถในการบีบรัดของเหล็กปลอกและผล ของความแตกต่างของความสัมพันธ์ระหว่างความเค้นและความเครียดในคอนกรีตหุ้มและคอนกรีตที่ถูกบีบรัดในเสา ด้านนอก

ผลการทดสอบบ่งชี้ว่าตัวอย่างที่เสริมเหล็กรับแรงเจือนแบบปกติ มีการวิบัติแบบการอัดแตกของคอนกรีต ในส่วนของผนัง ขณะที่ตัวอย่างที่เสริมเหล็กรับแรงเจือนในแนวทแยงมีการวิบัติแบบการดัดที่มีค่าความเหนียว มากกว่า เนื่องจากเหล็กเสริมรับแรงเจือนในแนวทแยงช่วยลดการเคลื่อนตัวทางด้านข้างเนื่องจากแรงเจือนและการ เลื่อนตัวที่ฐาน จึงทำให้ความสามารถในการสลายพลังงานของตัวอย่างที่เสริมเหล็กรับแรงเจือนในแนวทแยงมี มากกว่าตัวอย่างที่เสริมเหล็กรับแรงเจือนแบบปกติร้อยละ 23 ที่การเคลื่อนตัวด้านข้างร้อยละ 1.5 ของความสูงของ ตัวอย่าง ตัวอย่างที่เสริมเหล็กรับแรงเจือนแบบผสมระหว่างการเสริมเหล็กในแนวทแยงที่ช่วยเพิ่มประสิทธิภาพกับ การเสริมเหล็กแบบปกติที่มีความง่ายที่ใช้ปฏิบัติในงานก่อสร้างได้นำเสนอ

ผลการวิเคราะห์ด้วยวิธีไฟไนท์อิลลิเมนต์ยืนยันว่าเหล็กเสริมรับแรงเฉือนในแนวทแยงช่วยลดค่า ความเครียดในคอนกรีตที่ส่วนผนังต้องรับร้อยละ 23 เมื่อเทียบกับตัวอย่างที่เสริมเหล็กรับแรงเฉือนแบบปกติที่การ เคลื่อนตัวสูงสุด ทำให้การวิบัติแบบการอัดแตกในผนังไม่เกิดขึ้น

สูตรอย่างง่ายสำหรับการออกแบบเพื่อป้องกันการวิบัติแบบการอัดแตกของคอนกรีตในส่วนของผนังตาม มาตรฐาน ACI318-05 ให้ค่าที่ต่ำเกินไปโดยเฉพาะในตัวอย่างที่เสริมเหล็กรับแรงเฉือนในแนวทแยง เพื่อให้การ ทำนายการวิบัติแบบการอัดแตกของคอนกรีตในส่วนของผนังดีขึ้น วิธีการวิเคราะห์หน้าตัดที่พิจารณาผลของแรง เฉือนได้นำเสนอ ซึ่งวิธีนี้จะพิจารณาทั้งการวิบัติแบบการดัดและการอัดแตกของคอนกรีตในส่วนของผนัง

ภาควิชาวิศวกรรมโยธา	ลายมือชื่อนิสิต
สาขาวิชาวิศวกรรมโยธา	ลายมือชื่ออาจารย์ที่ปรึกษา
ปีการศึกษา 2548	ลายมือชื่ออาจารย์ทีปรึกษาร่วม

4271824821 : MAJOR CIVIL ENGINEERING

KEY WORD: REINFORCED CONCRETE / WALLS / DIAGONAL REINFORCEMENT / CYCLIC LOADING / CONFINED CONCRETE / BUCKLING EFFECT

SOMBOON SHAINGCHIN: BEHAVIOR OF REINFORCED CONCRETE WALLS WITH DIAGONAL WEB REINFORCEMENT SUBJECTED TO AXIAL AND CYCLIC LATERAL LOADINGS. THESIS ADVISOR : PROF.PANITAN LUKKUNAPRASIT, Ph.D, THESIS COADVISOR : ASST. PROF. CHADCHART SITTIPUNT, Ph.D, [101]pp. ISBN 974-53-2790-5.

It is widely accepted that diagonal web reinforcement improves the shear behavior of structural walls. However, the real mechanism leading to such an improved behavior is yet to be investigated, which is the main objective of this study. Six reinforced concrete structural wall specimens were subjected to cyclic loading in order to study the influence of diagonal web reinforcement. The experimental parameters included the amount and configuration of reinforcing bars in the web and axial load level. The finite element procedure was used to predict the envelope curve of the cyclic hysteresis loops obtained from the experiments, taking into account the effects of buckling of longitudinal bars on the behavior of confined concrete and the difference in stress-strain characteristics of the cover and core concrete through the boundary columns.

The conventionally reinforced wall failed due to web crushing with an abrupt drop in load capacity, whereas the walls reinforced with diagonal web reinforcement failed in a more ductile mode. Test results clearly indicated that the diagonal web reinforcement reduced the shear and sliding displacement components. The specimens with diagonal web reinforcement exhibited less pinching in the hysteresis loops than the conventional one. Consequently, the energy dissipation capacity of the former was superior to the latter by about 23% at drift ratio of 1.5%. An alternative web reinforcement configuration which combines the superior performance of the diagonal reinforcement and the simplicity of placement of the conventional type was also proposed.

Finite element analyses confirm the effectiveness of diagonal web reinforcement in reducing the compressive strain in the critical concrete strut in comparison with the conventional one. The reduction is about 23% at the ultimate drift ratio of the latter, thereby deferring web crushing with enhanced performance.

The web crushing strength provided by ACI318-05 code gives over-conservative estimates of the shear strength of walls with diagonal web reinforcement. To better account for web crushing, a sectional analysis procedure considering shear effect is proposed, with flexural and web crushing mechanisms considered in the procedure.

		/	~ ~
DepartmentCivil Engineering	Student's signature	ストレフレ	
Field of studyCivil Engineering	.Advisor's signature	4/14	2
Academic year 2005	Co-advisor's signature	\sim	

ACKNOWLEDGEMENTS

First, I would like to thank my research supervisor, Prof. Panitan Lukkunaprasit, for his experienced suggestions, kindness, continuous support and patience while doing research. I wish to express to him all my gratitude. I would also like to thank Prof. Sharon L. Wood and Asst. Prof. Chadchart Sittipunt for their valuable comments.

Great appreciation goes to Thailand Research Fund (TRF) for the Royal Golden Jubilee Ph.D. Program scholarship. With this fund, I had an opportunity to study at the University of Texas at Austin for 8 months. This was very useful in broadening my experience and exchanging knowledge with Prof. Sharon L. Wood who is an expert in this research topic.

My sincere thanks go to my friends and colleagues for their help in conducting experiments. They include Jaruek Teerawong, Assawin Wanitkorkul, Passagorn Chaiviriyawong, and Tayagorn Jaruchaimontri.

Finally, special thanks go to my family for their support throughout this endeavor.

TABLE OF CONTENTS

Page

		-
Abstract (T	ai)	iv
Abstract (E	glish)	v
Acknowled	ements	vi
Table of co	tents	vii
List of table	5	ix
List of figu	es	x
Chapter I In	roduction	1
1.1	General Behavior of Structural Walls Subjected to	
	Cyclic Loading	1
1.2	Literature Review	4
1.3	Problem Statements and Objectives	7
1.4	Outlines	8
Chapter II	xperiment	9
2.1	Test Specimens	9
2.2	Test Setup and Procedure	11
2.3	Test Results	12
	2.3.1 Crack patterns and failure modes	13
	2.3.2 Influence of diagonal web reinforcement	16
	2.3.3 Lateral load capacity	17
	2.3.4 Energy dissipation and viscous equivalent damping ratio	19
	2.3.5 Strain in web reinforcement	20
	2.3.6 Performance of the wall with mixed web reinforcement	21
	2.3.7 Effect of axial load on inelastic behavior of walls	21
2.4	Summary	22
Chapter III	Finite Element Analysis	23
3.1	Finite Element Formulation	23
3.2	Iterative Method	25
3.3	Finite Element Model	26
3.4	Material Model for Reinforcing Steel	29
3.5	Material Model for Concrete	32

3.6 Verification of Material Models	34
3.7 Influence of Diagonal Web Reinforcement	36
3.8 Strain and Stress Distributions	38
3.9 Summary	38
Chapter IV Simplified Procedure for Walls Considering Web Crushing	40
4.1 Sectional Analysis with Shear Effect	40
4.2 The Results of Sectional Analysis with Shear Effect	41
Chapter V Conclusions	43
Tables	45
Figures	50
References	
Appendices	
Appendix A Test Setup of Applied Lateral Force	95
Appendix B Test Setup of Axial Force	96
Appendix C Test Setup of Fixing the Specimen to Testing Floor	97
Appendix D Concrete Models	98
Vita	101

LIST OF TABLES

Tab	les	Page
2.1	Reinforcement details and material properties	46
2.2	Summary of test results	46
2.3	Shear deformation	47
2.4	Lateral load capacity	47
3.1	Required lateral tie stiffness	48
3.2	Reinforcement properties	48
3.3	Buckling strength of web bars	48
3.4	Concrete properties	49

LIST OF FIGURES

Figur	es	Page
1.1	Example of relationship between lateral load and lateral displacement	51
1.2	Energy dissipation in one cycle	51
1.3	Failure characteristics	51
2.1	Dimensions of specimens	52
2.2	Reinforcement details	52
2.3	Splice detail of specimen WCD170	53
2.4	Overview of test setup	53
2.5	Displacement history	54
2.6	Position of LVDT's and average shear displacement computation	54
2.7	Comparison of crack patterns of wall specimens	55
2.8	Wall specimens at failure	56
2.9	Load-displacement hyteresis	57
2.10	Displacement components	60
2.11	Displacement components as percentage of total displacement	66
2.12	Transformation of strains in concrete at the base and adjacent to the	
	boundary element	67
2.13	Energy dissipation	68
2.14	Equivalent viscous damping ratio	68
2.15	Strain responses of web reinforcement	69
3.1	Nonlinear analysis algorithm	70
3.2	Global, principal, and crack directions	71
3.3	Stress-strain relationships of reinforcing bars in tension	72
3.4	Stress-strain relationships of reinforcing bars in compression	73
3.5	Modified Dhakal and Maekawa model for web bars with elastic	
	buckling of specimen WD200	74
3.6	Unconfined and confined concrete models	74
3.7	Concrete model in tension	74
3.8	Confined concrete model including buckling effect	75
3.9	Confined concrete model including buckling effect and cover concrete	
	spalling	75

Figures	
Finite element models	76
Load-displacement relationships (FEA vs Experiment)	77
Load-displacement relationships of specimens using the same material	
properties of specimen WC150	80
Reaction in horizontal direction of specimen WC150	81
Reaction in horizontal direction of specimen WD150 [*]	82
Compressive strain in concrete strut of element 76	83
Distributions of strains in concrete of specimen WC150 at the section of	
the base	84
Distributions of stresses in concrete of specimen WC150 at the section	
of the base	85
Flowchart for sectional analysis with shear effect	86
Moment-curvature relationships from sectional analyses	87
Load-displacement relationships from sectional analyses	88
	Finite element models Load-displacement relationships (FEA vs Experiment) Load-displacement relationships of specimens using the same material properties of specimen WC150 Reaction in horizontal direction of specimen WC150 Reaction in horizontal direction of specimen WD150 [*] Compressive strain in concrete strut of element 76 Distributions of strains in concrete of specimen WC150 at the section of the base Distributions of stresses in concrete of specimen WC150 at the section of the base Flowchart for sectional analysis with shear effect Moment-curvature relationships from sectional analyses Load-displacement relationships from sectional analyses