Chapter 2

Transport Equation

2.1 TheoreticalInvestigation: The Fokker-Planck

Equation

Here, our attention is focused on the theory of charged particle motion in a
random magnetic field in which a charged particle undergoes scattering from the
magnetic irregularities, including the effects of a moving medium, the average
magnetic field geometry and some energy loss processes (Ruffolo, 1995). However,
it can be shown that under certain conditions this type of kinetic theoretical
approach is equivalent to the Brownian motion approach (Einstein, 1906; Tajima,
1989), in which a test particle feels a fluctuating disturbance and executes a
random relaxation process. The Brownian motion may be described by a Fokker-

Planck equation (Chandrasekhar 1943). The details of these two approaches and
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Figure 2.1: Schematic diagram of an (ideal) traveling interplanetary (spherical)
shock in the heliosphere (not to scale). This shock may be driven by a coronal

mass ejection (CME).

their relationship maybe found in Rosenbluth & d. (1957).

A standard approach to formulating the transport problem is the Fokker-
Planck equation, which is solved in order to find the phase space distribution
or a related quantity. Skilling (1975) provided a general transport equation (his
Equation (4)) describing the behavior of charged particles under the above cir-
cumstances, valid for a wind speed much lower than the speed of light. Our
situation of interest is a special case. Figure (2.1) depicts the (ideal) spherical

shock geometry, possibly driven by a CME propagating outward from the
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The magnetic field configuration is shown more clearly in Figure (2.2).

mggnetic ffeld lines

downstream

upstream

Figure 2.2: Average magnetic field lines near a spherical shock. Here the fluid
inside a moving shock boundary is compressed (downstream), changing the (av-

erage) magnetic field configuration.
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The equation of Skilling (1975) can be written as (Chuychai 1999).
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where, F(t,n,r,p) = dN/(d/irdrdp), is a distribution function related to the
phase space density, f(t,X,p), by F = 27ni2p2/. We use F (following Ng & Wong
1979) because we can easily design the numerical finite difference method to
strictly conserve this quantity (corresponding to conservation of particles) during
streaming and convection (first term of the right hand-side of Equation (2.1)).
Also, P is the pitch angle cosine of a moving particle relative to the average
magnetic field, v is the particle speed, U is the fluid velocity, ¢ is the speed of
light, t is time, t is a unit vector along the mean magnetic field line, p is the
particle momentum (magnitude), 2 is a spatial coordinate and <p(p) is the pitch
angle scattering coefficient. Actually, following Ruffolo (1995) P, P and V are
defined in the local solar wind frame while the other variables are in the solar
fixed frame for convenience.

Here we modify Equation (2.1) (as a prototype to be adjusted) to suit the

spherical shock case. Hence, for our shock geometry and magnetic field configura-
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tion, we have to derive the terms UIEV-E, V-U and diijdUjldXi- However, before
going deeper in detail, the next two sections will present some basic information

underlying the calculation of these quantities.

2.1.1  Solar Wind

Our simulations should be applicable, not only for a specific astrophysical situa-
tion, but also for spherical shocks in general. Since we want to study the effects
of adiabatic deceleration and adiabatic focusing, it is necessary to specify some
parameters in order to perform our simulations. In this case, we assume that
the plasma does not flow along magnetic field lines but flows radially (or almost
radially) outward from the (or astar), as is typical for a solar or stellar wind.
Furthermore, the solar wind (or stellar wind) speed is almost constant outside the
source surface, with most of its acceleration having taken place closer to the

By this point of view, we decided to use the fluid flow velocity as a vector which
has a constant magnitude, radially flowing out from the center of the sphere as

follows:

U, 6,4 = Uswér (22)

where USWis the solar wind speed and & is the radial unit vector.
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2.1.2 Archimedean Spiral Magnetic Field

Interplanetary magnetic field (IMF) lines have the shape of an Archimedean spiral
(often called the parker spirar after E. Parker, who was the first to explain the
average IMF structure; Parker, 1958) when we look toward the solar equatorial
plane from the solar North pole. The Archimedean spiral field in a spherical

coordinate system can be written as:

B = Bo{ t - (23)

and the magnitude of the magnetic field is

(IHA

where 8o is a constant and r = usw/(fI Sin#), is a characteristic winding radius
of the Archimedean spiral.
Next, we definei = s I8 I, to be aunit vector outward along the magnetic

field line. Clearly, by Equations (2.3) and (2.4) we obtain

vV .

and (see also Figure (2.3))

or t
yIR2+ 12 VR2+ 12

= costl) ér + Sin /) &y, (26)

where ))is the “garden hose” angle between 1 and f. Another characteristic scale
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length is the focusing length, L ——B/(dB/dz), where Zis the spatial distance

along the field line. It can be shown that

r(r2+ RX'2
LR+ 2R (21)

2.1.3 Specifying Terms in the Fokker-Planck Equation for

a Spherical Shock

In the next step, we will provide some expressions for terms in Equation (2.1) as

follows:

e V -1term

The divergence of | can be expressed as

0'-0-1]

A

BV-E-B-VB
B2

]| (since V -B =0)

oV -Uterm

The divergence of solar wind is
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2 :
= (2-9)
o Uol term
From Equations (2.2) and (2.6) we will directly get
Uef — Urn(cosIpé + sin e,
= coslp (2-10)
« £ dUjjdxi term
n the same way as expressed above we also get
Eif]-"-= sin2xp—. (2-11)

Substitute Equations (2.2), (2.6), (2.8), (2.9), (2.10), and (2.11) back into Equa-
tion (2.1) and using the assumption that the local solar wind speed and £do not
depend on time (du/dt = o, dl/dt = 0), we obtain our final transport equation.

In summary, the desired Fokker-Planck equation that describes the par-

ticle transport is:
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where derivation of all terms to the right is implied, and
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e (o) = 0N/ (dpdpdr) is the density of particles in a given

magnetic flux tube,

{ s the time in the fixed frame,

[ is the radius,

o Is the pitch angle cosine in the fluid frame,

V s the particle speed in the fluid frame,
is the solar wind speed in the fixed frame,
is the “garden-hose” angle between B and f,

L(r) = —BI(dB/ds) is the focusing length,

which as the arclength along s ,

is the pitch angle scattering coefficient, and

p IS the particle momentum in the fluid frame.

However, from Equation (2.1) a more general form of the Fokker-Planck
equation can also be written as (Ruffolo, 1995)

dF i <Ar> ] d ] d d

dt dr J dp LAt \] dp 2 dp c ] }
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Comparing this equation with Equation (2.12) term by term, we found that

(2 ! s P22 C0S2y (2.14)
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where this equation represents r and the so-called Fokker-Planck coefficient which
is the description of the spatial transport velocity of charged particles we are
concerned with. The first term on the right hand-side is particle streaming speed
while the second term is the convection speed due to fluid flow and the last one
is the relativistic correction term. Hence, this term is the overall speed of the
particles we are considering in a magnetic flux tube. The next term is the effect

of

(Alr) Vv <1 N ;wucosd)) i pu

at ol (1*gsin2w> (1-V), (219

(_‘2 r

where this is the /i term, which is the pitch angle changing rate due to the
both effects of adiabatic focusing (the first term of the right hand-side) and the
divergence of the solar wind velocity component along | (second term). The last

term is

(Ap) <1 —3u® sin?y 1-— ;12)
= pu o~ .
At 2 T r

This term is [, which is the momentum changing rate due to the divergence of

the solar wind.
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Figure 2.3: Schematic illustration of the “garden hose” angle Ip, which is the angle
between the magnetic field line (along the unit vector i) and the radial vector I,
where R— (1 sin 0) is the characteristic winding radius of the Archimedean

spiral.
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