Chapter 3

Problem Solving M ethodologies:

N umerical M ethods

Most numerical methods for solving Fokker-Planck equations fall into two broads
classes: Monte Carlo simulations (Valleau and W hittington, 1976) and finite dif-
ference methods (the basic concept of the finite difference will be explained in
more detail in Appendix C). Actually, the finite difference schemes are computa-
tionally very efficient and produce accurate solutions. They are, however, more
difficult to implement because they have various stability constraints (Park and
Petrosian, 1996 and references therein). Although Monte Carlo simulations are
relatively easy to implement, the computational cost can be very expensive, be-
cause a very large sample size may needed in order to obtain an acceptably low
statistical error. To obtain good accuracy without needing to use a very high

performance computer system, the appropriate method for us to use is the finite
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difference method.

We numerically simulate the transport of energetic charged particles (e.g.,
cosmic rays) in space, momentum, and pitch angle using a Fokker-Planck equation
that includes various transport processes (Equation (2.12)) and the effect of a
variable fluid speed to first order in { /c) (Ruffolo, 1995).

In this chapter, we will describe the essential numerical methods and the
basic ideas relevant to the finite difference schemes we use in our simulations.
Most of all, we would like to introduce the concept used to simplify a complex
multi-dimensional partial differential equation to be solvable. After that, we
present descriptive details about a generalized scheme that we had developed for
the hyperbolic (convection) problems solving and the shock treatment will be

described finally at the end of this chapter.

3.1 The Operator Splitting Technigue

As we have seen in the previous chapter, the kind of a multi-dimensional transport
equation we are concerned with is so complicated that one is unable to solve it
analytically (for general boundary conditions). An appropriate numerical method
is the only possible way to solve this. This section introduces a powerful technique
to handle a complex multi-dimensional linear partial differential equation.

Our simulations deal with solving Equation (2.12) by means of a finite

difference method. We exploited the concept of the “operator splitting” tech-
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nique, or “fractional steps” as it is also called (Park and Petrosian, 1996; and
the references therein: Richtmyer and Morton, 1967, Chap. 8; Press et al. 1992,
Chap. 19). Operator splitting is not a distinct method for solving the Fokker-
Planck equation itself but it is only a way of reducing a larger problem into a
series of smaller solvable ones. It solves a partial differential equation with a J

differential operator (Cj)
— = CW+cru+t ..+ Ej-iu+ Cju, (3.1)
using a sequence of J finite difference operators (Cj) to get
= Ljlj-i..L2Liu. (3.2)

Each finite difference operator Lj solves the differential equation du/dt =

n

Cju by advancing the solution At in time from "to ™lusing ",;1= Cjun.
We rely on the operator splitting technique to implement a finite differ-
ence method over our rectangular simulation domain. The numerical method is
a substantially modified version of that of Ruffolo (1995). That is, in a small
enough time step, we group the right hand side of the transport equation into
3 groups, involving derivatives with respect to r, p, and p, and then update

F (t,p, r,p) for each part consecutively.

In practice, the sequence of steps we used is as follows:

1. Update F for //-changing processes over a time At/2.
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2. Update F for p-changing processes (deceleration) over a time At.

3. Update F for r-changing processes (streaming and convection) over a time

At. Crossing of a shock is also treated in this step.
4. Update F for /l-changing processes over another At/2.

Note that /l-changing processes are treated twice for At/2 each at the
beginning and end. The reason why their treatment is split into two parts is be-
cause their symmetric treatment in time improves the convergence of the method
to second order in At. (Every second term disappears in the Taylor series for the
error, which is computed with respect to f + At/2.) Steps 2 and 3 do not need
to be split because these operations commute to a reasonable approximation.

Actually, we adopted the advantages of the numerical solving pattern and
some useful routines used by Ruffolo (1991, 1995). Hence, in steps 1 and 4, we
update the distribution function with half the effect of the pitch angle scattering
and adiabatic focusing term in Equation (2.12), so that the distribution function

would evolve according to
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This is repeated in step 4 to account for the second half. The scattering and

r

focusing processes generate a //-flux, 1l between each pair of neighboring grid

points, /[ arid n+ A/l. First, we have to specify boundary condtions at the edges
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of the (t,p,r,p) domain. As p -* £1, we require the p flux,

Sn(tp,rp) = Vo ( PVU costim  pu | 39 ., ON F(tp,r.0)

kK v - * -+

o df) ALECE B (3.4)

to vanish so that no particles “flow” to the nonphysical region where |fj| > L
Using Equation (3.4) and the finite-difference approximation for derivatives, we

ohtain
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where P = p + Ap/2 and F' = (EVE)F = [L —(pvu)/c2]F. The effective
scattering coefficient, peff(p), used by Ng and Wong (1979) with a finite difference

method to solve the transport equation numerically, can be written as (Ruffolo

1991, 1995)

= 2L(z)(L ~ fi2A*nh{v[I{p + Ap/2) -1{p - Apl2)]/[2AL{z)]Y (3'6)

where
I( =sgn(/i)yL. (3.7)
The p-Uux can be calculated using F at the start of the step (explicitly), at the
end of the step (implicitly), or alternatively explicitly and implicitly for better

stabillity and accuracy (Crank and Nicolson, 1947); this well-known method is

called the “Crank-Nicolson” method. Using the last approach, the code first
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solves the coupled explicit equations,

AA 'Spin + Ap/2) - - Afjb/2)'
Cl e rw - (Jl)) Spin + Ap/ )Ap 1 jhl2) (38)

for each grid point , then solves the implicit equations,

A\ D+ ANR) - (M- AGR) W
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and repeats the processes for a total of explicit and implicit substeps. Each
substep represents a time increment of At/(4n), so these 2 steps account for
scattering and focusing over half of At. The number is repeatedly doubled
until the resulting flux changes by less than the preset absolute tolerance or the
preset relative tolerance.

In step 2, we update the distribution function with the effect of adiabatic
deceleration, which is the systematic decrease in p due to the divergence of the
fluid flow. The splitting equation concerning the deceleration process alone can

be written as

dF(t, ,r.,p) 9, (1 — 3u* sin? 9 e ia

dt 8—1) (i X r T

) F(t, p,r,p). (3.10)

Again, in this step, we adopted the solving methodology from Ruffolo (1995). By

this way, the above equation can be written as

0 1 0
aF(t,/t,",p) = T—da_ppF(t’UﬂaP): (3'11)

where the deceleration time, Td, is given by

1 1 —3u? sin?vy  1-—p?
—:u< e ’j>. (3.12)

Td 2 r T
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This in turn gives US

PF(M.p) = ), 51

for a fixed reference momentum Po, which has the solution
DFE(t + At,p,r,p) - p eAtTdF(t, p,z,p eAt/Td). (3.14)

Then the solution can be solved directly (for more details see Ruffolo (1995)).
In step 3 we implement TVD differencing (Sweby, 1984; explained in
detail in the next section), tested and modified for a general Courant number
(Nutaro, Riyavong and Ruffolo, 2000), and treat particles crossing the shock,
allowing USto properly deal with a gradually varying cos p or a discontinuous
. Other steps remain the same as in Ruffolo (1995). Away from a shock, step 3

for updating F for r-changing processes involves solving
-~F (t,p,r,p) = -*-  IVcosi>+ U - F(pr,p). (315

where vr = (pvcoslp+ —p2v2ucos2lp/c2) represents the spatial velocity of the
particle guiding center as viewed in the fixed frame.

Note that in practice, the independent variable r will be replaced by 2 in
our program. In the next section we will use 2 instead of r as a spatial coordinate

to reduce any confusion about notation.
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3.2 The Implementation ofa Generalized TV D

Algorithm

The term “total variation diminishing (TVD) method” was first presented by
Harten (1983) for an oscillation-free scheme. The total variation (TV) of a func-
tion  (X) is defined by

du

TV o o (3.16)

SOthe TV of the numerical solution is defined accordingly by

V(= (3.17)

where i and are spatial and time indices respectively, and the principal require-

ment of such a method is
TV( ntl) < TV( 1. (3.18)

Thus such a method is called total variation diminishing (TVD). The motivation
for this requirement is to avoid creating new maxima or minima of the function in
each time step. A unified description of several independently proposed, second-
order accurate TVD schemes was provided by Sweby (1984). The TVD schemes
employ flux limiters, and are related to the flux corrected transport (FCT) tech-
nique of Boris and Book (Boris and Book, 1973; Boris et al. 1973; Zelesak, 1979),
although differing in the respect of being essentially one-step procedures as op-

posed to the two-step FCT. The purpose of flux limiting/correcting is to produce

| 4/1 044 6
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a high resolution scheme without the spurious oscillations associated with the
more classical second order schemes.

The TVD scheme that we employ is Roe’s superbee limiter (Roe, 1983),
which gives remarkably sharp profiles for the linear advection equation. Of the
various schemes, this one provides the most aggressive antidiffusion that is consis-
tent with the conditions of Sweby (1984). For some applications, this scheme can
yield profiles that are too sharp (Jeng and Payne, 1995; Arora and Roe, 1997) but
for our application the aggressive anti-diffusion is advantageous because the key
goal is to avoid numerical diffusion. Of various the schemes reviewed by Sweby
(1984), this scheme gave the most accurate solution for sharp pulses. In any case
the choice of a TVD scheme, i.e., the choice of the flux limiter, is not critical, as
evidenced by Hatzky’s successful application (Hatzky 1996) of van Leer's method
(van Leer, 1974).

Note that in early work with  —0 and vz —/Jy, i.e., neglecting processes
such as convection and deceleration, Equation (3.15) could be solved exactly by
simply moving the distribution function from one z-grid point to another (Ruffolo,
1991):

F(t + At, 1Ap, z,p) = F(t, 1Ap, z —iAz,p), (3.19)
where i labels the /i-grid points, p, = 1Ap, and Az = ApvAt. In this case the
Courant number 7 = vz At/Az was the integer i, and with no finite-difference ap-

proximation, there was no numerical diffusion. For a non-zero (but still small) ,

this approach was modified (Ruffolo, 1995) by occasionally moving the distribu-
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tion forward by an additional step, Az. Thus numerical diffusion was still absent,
and a sharp pulse or gradient in the distribution function could be maintained
intact. While this method also gave the proper convection speed on average, it
led to a somewhat irregular distribution function and still required the very small
grid spacing A2 = A/j,vAt, leading to a slow run time.

The TVD method offers the possibility of a smoother and more accurate
solution, and avoiding the assumption V. > used in previous work. However,
standard implementations of TVD imply a limitation on the Courant number,
7 = ViAt/Az, so that 0 < 7 < 1. For this application, we want to be able
to set 7 > 1in order to use a smaller Az, either for greater flexibility, for a
comparison with previous results for Az = A/ivAt, or for improved numerical
accuracy. In fact, our results will show that while Az can be increased to values
much higher than those used in Ref. 18, leading to a faster running speed, actually
setting Az > VZAt (7 < 1) yields an unacceptable error for some cases of interest.
Therefore, we have developed a generalization of the TVD routine to allow a
general value of 7, which can also vary with position.

Let us first consider the case where V2 is independent of z. In our general-
ized TVD technique, we first move F by an integral number of steps, ¢, which is
obtained by rounding 7 downward. For example, if 7 = 3.4, F is moved forward

by 3 z-grid points. Then the remainder ' =7 —g (0.4 in this case) is between 0
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and 1 and is accounted for by the usual TVD differencing:
Fe<- Fe-g- -", etl2+  '1-1/2 (3-20)

where Setirz denotes the flux from 2-cell i to 1 + 1due to ' and is calculated

from

etl/2 = VI+l/2Fi-g + < 41/2(1 —11+1/2) (Fe-g+l ~Ft-g) <Pt-gi (3-21)

where ‘etll2and vi+12are 'and vz = 'Az/At, respectively, atz = Z£+ A1/2,

and ifl is Roe’s superbee limiter (Roe, 1983) given by

0 re <0

2re O<re<05

1 05<77 <1 (3.22)
re l<re<?

2 re >2

for re = (Fe —Fe-\)/(Fet\ —Fe). Note that fe — 1 corresponds to the Lax-
Wendroff technique (Lax and Wendroff, 1960), which converges to second order
in A2;in choosing fe that is sometimes different from unity, the TVD methods
sacrifice convergence speed (then converging to first order in Az) for the guarantee
(Equation (3.18)) that no new minima or maxima are introduced by the second
(anti-diffusive) term on the right hand side of Equation (3.20).

Next, we should consider variations in vz and hence 7 as a function of 2.

In the generalized method described above, variations within the range 0 < ' < 1
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are acceptable as in the standard implementation of TVD, but what if 7 crosses
an integral value, i.e., g (the greatest integer < 7) changes from one point to the

next? To take this possibility into account, F over a time step At is updated by

e £ R g ey St 323

Lm —i-g.

where g'|'(c/_) is the rounded-down integer corresponding to 7M-112 (7*-1/2)- This
formula is subject to the constraint that g+< (? + L if g+—g + 1 we interpret
the sum to be zero. In practice that constraint can often be avoided by reducing
At, and in physical situations where vz(z) is discontinuous, one should use a
special treatment such as that described shortly.

It is straightforward to demonstrate the consistency of this generalized
TVD method, ie., that in the limits At — 0 and Az —» 0 one recovers Equa-
tion (3.15). A detailed discussion of the consistency of standard TVD methods
Is given by Sweby (1984). Consistency of the present method can also be demon-
strated by means of Taylor series expansions, assuming that f* = d2f/dz2 and
dvz/dz exist in the region of interest. Note that 77 = 1 —[f"(zi)/f'(zi)\ Az +
0(Az2), s0in the limit of a small step size the flux limiter (fit is given by 1 or 77,
This limit also implies that g+ m=  or < + 1. An important step in the Taylor
series analysis is to recognize that gAz/At = V2 —Vvz.

In all cases, Equation (3.15) is reproduced for the point of interest, (tn,zi),
with error O(At) +0(Az) or O(At) + 0(Az2). As mentioned earlier, for the case

where g+= g' —g the convergence is only to second order in Az when |p= 1,
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e, for both Ift-g (used in U2, according to Equation (3.21)) and tpt-g-1 (used
in ‘e 12). Otherwise the convergence is to first orderin Az. When g+ = ¢_+ 1,
the convergence is also to first order. However, when 0+ = ¢ —1, the order of
convergence again depends on whether Ifis Lorr. If (ft-g-+i (used in &+1/2) and

1 (used in 'e_12) are both 1 or both the corresponding value of r, then the
convergence is to first order; otherwise the convergence is to second order because
of the symmetry of the resulting formula for Ft-

Our tests have shown that there is no noticeable change in performance
for ' values near 0 or 1, so the generalized TVD method does give US freedom
to use any continuous function vz(z) and any Az. Next, we consider the case
of a discontinuity in vz(z), which we treat by means of special matching condi-
tions at the discontinuity. Physically, this situation often corresponds to a shock
discontinuity in a fluid flow. Here, we discuss our implementation of this TVD
method for the problem of energetic charged particle transport across an oblique
magneto-hydrodynamic shock. As described in section 1, this situation is impor-
tant for modeling the acceleration of charged particles (cosmic rays) throughout
the universe, which in most cases is believed to occur at a shock, as well as the
effect of the shock on existing cosmic rays.

Considering the solution of the transport Equation (2.12), in the frame-
work of operator splitting, step 3 corresponds to spatial motions (streaming +
convection), so the treatment of particles crossing the shock is naturally included

in this step (see next section). We treat the transport of particles from a given cell
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by considering whether the particles encounter the shock during a time increment

At. If not, then we use the generalized TVD scheme as above.

3.3 Spherical Shock Treatment

The transport problem concerning a shock is special because of the drastic change
in the fluid speed, magnetic field, etc., in a very thin layer between the upstream
and downstream sides, which we treat as a discontinuity in our model. The
physical parameters on either side are not the same. The TVD scheme is no
longer appropriate for the particles encountering the shock. We need some special
assumptions or mechanisms to describe particles crossing the shock. Here, we
exploited the basic idea following Ruffolo (1999).

The older literature has discussed two mechanisms, the first-order Fermi
acceleration (Fermi 1954 Parker 1958) (see more details in Appendix A) and
the shock drift mechanism (Schatzman, 1963), in which particles drift along an
oblique shock front due to the sharp gradient in the magnetic field, and this drift
is along the direction of the electric field so that particles can gain a substantial
amount of energy in one encounter with the shock.

More recently, it has been shown that the distinction between these two
mechanisms vanishes under a transformation to an appropriate frame of reference
which is called the de Hoffmann-Teller (shock) frame (de Hoffmann and Teller,

1950). The electric field is zero in this frame. The entire energy change due to
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both mechanisms is accounted for by transforming the particle momentum from
the local fluid frame into the shock frame, considering the energy-conserving
shock encounter in the shock frame, and then transforming the momentum into
the new local fluid frame (Decker, 1983; Riyavong, 1996; Ruffolo, 1999).

In practice, the spatial simulation length is divided into two sides down-
stream (r < rsh, where rshis the shock radius) and upstream (r > rsh), where
the shock is stationary and forms a radial boundary between these two regions.
Actually, we will suppose that the shock boundary is thin; it should be much less
than the gyroradius of a charged particle. If particles encouter the shock, we first
perform a Lorentz transformation of p and p into the shock frame. In general,
for a static magnetic field, F = qv X B is perpendicular to V, so the rate of doing
work on the particle, F ¢V, is zero; thus the momentum in the shock frame is
conserved throughout the encounter. Ruffolo (1999) used the common approxi-
mation that the magnetic moment p2(1 —p2)/ (2meB) is conserved as particles
cross or are reflected by shock (Decker, 1983). Here we instead exploit a hy-
brid orbit-finite difference treatment of oblique shock acclereation (Sanguansak
and Ruffolo, 1999), which numerically calculates energetic particle orbits near
an oblique shock for a grid of momentum-space coordinates, without using the
assumption of magnetic moment conservation. In this way, the transport equa-
tion on either side of the shock, which incorporates streaming, convection and
pitch angle scattering and also includes adiabatic focusing and deceleration, is

solved using a well-tested finite difference code. Finally, we perform a Lorentz
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tranformation of p and p back into the local wind frame.

Note that the TVD algorithm effectively splits a cell into fractions of
particles destined to move to two different spatial locations. Here apply a similar
method, since when particles cross the shock, some particles might be transported
to quite different p values as well. Note that for the nonrelativistic fluid speeds
and energetic cosmic ray particle speed considered here, the fractional change in
momentum for an individual shock encounter is not large. In other work, this
numerical method has been applied for a grid of p points. Here we have treated
one p value and simply assumed F ocp-7, through there are problems with this

assumption when u/v is not small (Ruffolo, 1999).
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