Chapter 5

N umerical Results

5.1 Results for Testing the Generalized TVD

Algorithm

As discussed in section 3.2, we have developed a new numerical analysis technique
for this research: A generalized TVD algorithm (Nutaro, Riyavong and Ruffolo,
2000). To ensure that our new method is applicable to general advection type
problems, we performed test simulations of the transport of charged particles
under the influence of an Archimedean magnetic field. These particles undergo
several physical process (see more details in Ruffolo 1995). Next, the performance
of the numerical algorithm for the “planar shock” case has heen tested. The

results of these two case studies are known and well-established.



5.1 Results for Testing the Generalized TVD Algorithm b1
5.1.1 Without a shock

Before considering an oblique shock, we tested our methodology by reproducing
the results of previous work. In a previous comparison with other codes (Earl et
al., 1995), we found that a particularly strenuous test is whether the code properly
treats processes at early times, i.e., t <c T, the mean free time. Therefore, we
sought to reproduce previous results on the formation of coherent pulses of solar
cosmic rays after an instantaneous injection at a starting point 2 = 0, defined to
be 0.01 astronomical units (AU) from the (Ruffolo and Khumlumflert, 1995).

We started with the original 2-grid spacing, and then enlarged A2 to im-
prove the program running speed, and tested how much A2 could be increased
without seriously affecting the accuracy of the code. We considered the distri-
bution of protons of kinetic energy 46.8 MeV, corresponding to a momentum of
300 MeV c-1, where c is the speed of light. Figure (5.1) shows the mean pitch
angle cosine (/x) plotted vs. the distance traveled vt. To compare with the pre-
vious results (solid line), we started with A20 = AfivAt = 1.6 X 10“5 AU as in
the previous work ( symbols), where simulation is over 2 = 0 to 0.05 AU. We
then exploited the advantages of the TVD method by enlarging A2 to 10 times
(+ symbols) and 100 times larger (x symbols), while keeping A/x the same. We
found that when A2 = A 20, we obtain almost exactly the same results as previ-
ously. The results were slightly different when the grid size was enlarged, which

we believe to be caused by the strong focusing effect close to the
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Figure 5.1: Comparison of the evolution of the mean pitch angle cosine (/z) for
a coherent pulse of solar cosmic rays up to vt = 0.05 AU for A = 0.3 AU and
g = 1.5 from Ruffolo and Khumlumlert (1995) with Az = 1.6 X 10~5 (solid line)
and by the generalized TVD method with Az = 1.6 X 10-5 AU (o), 1.6 X 10-4

AU (+), and 1.6 X 10~3 AU (x).
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The results all converge at around 0.02 AU, which is very small for prac-
tical purposes, given the approximations in the model, and that to date all mea-
surements of solar cosmic rays have been at > 0.3 AU from the , While the
calculation speed is commensurately improved by 1 or 2 orders of magnitude
for the increased Az values. Therefore, unless very high accuracy is required
at such small radii, we conclude that this generalized TVD method can provide
acceptable results while reducing the run time by 1to 2 orders of magnitude.
The results of particle transport from the to Earth orbit (a radius of 1 AU)
were also examined. We set the simulation distance to be from z —0to 4 AU
for A = 2/25 and with other values as before. Figure (5.2) illustrates the pitch
angle-averaged F at Earth orbit vs. the distance traveled, = vt. The results
from previous work (Az0 = A/j,vAt = 0.0016) are indicated by solid lines, and
our new results with the TVD method for Az0 are indistinguishable at this scale.
Results are also shown for enlarged grid spacings 10 and 20 times bigger (dashed
and dotted lines, respectively) while AlJ, is the same. From Figure (5.2) we see
that the pitch angle-averaged F obtained for Az = 10Az0 s very similar to that
in previous work, with the exception of a slight offset at late times (which when
fitting observed data, would only affect the normalization). For Az = 20Az0,
we see evidence of numerical diffusion leading to an early arrival of particles for
the highest grid spacing, though at a level ~ 10-3 of the peak flux. Thus we
conclude that Az = 10Azo provides good accuracy, and gives us a factor of 10

improvement in run speed.
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Figure 5.2: Pitch angle-averaged density of solar cosmic rays at Earth orbit. The
simulation region is from 0 to 4 AU and Az =0.016 (dashed line) and 0.032 AU
(dotted line). The results from Ruffolo and Khumlumlert(1995) (Az = 0.0016)

are indicated by the solid line.



5.1 Results for Testing the Generalized TVD Algorithm 55

\ﬁ \B'q

\

downstream upstream

shock

Figure 5.3: Schematic depiction of the background fluid motion near an oblique,
planar, magnetohydrodynamic shock in the de Hoffmann-Teller frame. The shock
is stationary and the flow speed is 1 (upstream) or 2 (downstream) along the

magnetic field B\ or B2, respectively.

Finally, we note that this value of Az is still less than \vzAt\ for the
highest \n\ values, so 7 > 1, and our generalization of the TVD method is

necessary in order to obtain the level of accuracy that we require.

5.1.2 W ith an Oblique, Planar Shock

The distribution of particles encountering an oblique, planar shock (which for
our purposes is a pre-existing discontinuity in the fluid speed background) was
investigated using the new code. For more details of astrophysical implications,

and the underlying theory, the reader is referred to Ruffolo (1999).
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The results for steady state shock acceleration can serve to test the nu-
merical code. For this special case, since dF/dt —0, and we consider an ideal,
plane-parallel shock with straight magnetic field lines on either side (Figure (5.3)),
equation (1) in Ruffolo (1999) is substantially simplified, and separable solutions
for F(/i, z) on one side of the shock can be found by solving an eigenvalue equa-
tion for /i. Therefore the resulting F(/i, z) on either the upstream or downstream
side of the shock must be in the following form:

i an M, (1) pkn

1_—,uu—'u/(5 (z > 0, upstream)

n=0

F{nz) = <

V" MAn(k) knz ‘2 <o downstream),
|Z"“f'V| 1' .aUV. C2

where the Mn(/i) are eigenfunctions, anand bn are coefficients and kn —anA/(2v)
for eigenvalues an (Ruffolo, 1999; Kirk and Schneider, 1987); for u < 0 (flow
from upstream) these are such that ko = 0, kn < 0 for > 0, and kn > 0 for

< 0. In addition to the boundary conditions at z = oo, there is a complicated
boundary condition at the shock (z —0) relating F(/z) immediately upstream and
downstream (see 82 in Ruffolo (1999)). Therefore a numerical solution is required
to evaluate the coefficients an and bn. This numerical code was the first to solve
this fundamental problem for mildly relativistic particles. In addition, modeling
the shock acceleration of particles in the steady state serves as a test of the code,
because the numerical method (which makes no reference to the eigenfunctions or

eigenvalues) should yield a solution consistent with a linear combination of these
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specific separable solutions. Figure (5.4) shows the steady state solution for the
dependence of / on and 2 within +0.8A of the shock, and Figure (5.5) shows
the cross-section of / as function of p for z = £0.05A. The parameters used
(1 referring to upstream and 2 to downstream) were ¢ — 1 and 1.5, tan 91 —4
(9 = 75°), tan 92 —15.11 ( 2 = 86°), ! (along B)—2244 km/s, 2= 2185 km/s,
v —0.5¢, F ocp~s with 5= 1.956, Az/X —0.025, At = Az/v, and Ap = 2/95.
For these parameters and ¢ = 1, we have A = Vv/A [from equations (2) and (5)],
and the eigenvalues correspond to length scales of 1/k0 = oo, 1/ki = D/u =
—22.25A (upstream), 1/C-1 = 0.14A (downstream), 1/ic2 = —0.13A (upstream),
/A2 = 0.049A (downstream), I//c3 = —0.046A (upstream), and successively
shorter length scales. In accordance with the permitted length scales, Figure (5.4)
clearly shows that far from the shock, / is nearly constant downstream, and
upstream is given by a constant plus a weakly anisotropic term that varies as eU2/D
(with < 0). These large scale features agree with those expected in the diffusion
approximation (Ruffolo, 1999). One can also see deviations closer to the shock,
and the numerical results are quantitatively consistent with a superposition of
solutions of length scales 1// 0, 1/&1, 1/2) and 1/&3 (upstream) and I//c0, |/k-1,
and 1/k-2 (downstream); other eigenvalues correspond to length scales too fine
to be resolved in this simulation.

Figure (5.5) shows pitch angle distribution functions upstream (thick
lines) and downstream (thin lines) for ¢ — 1 (solid lines) and q — 1.5 (dashed

lines). In the downstream region, particles are redistributed in pitch angle be-
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Figure 5.5: Phase space density of particles in the steady state as a function of ji

near an oblique, planar shock with tan 91 =4 for g = 1 (solid lines) and ¢ = 1.5

(dashed lines) at 2 = 0.05A (upstream: thick lines) and 2 = —0.05A (downstream:

thin lines).
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cause of changes in pitch angle as particles cross the shock; the average flux
also increases slightly due to acceleration. It is worth noting that for a highly
obligue shock, most particles coming from upstream are in fact reflected, i.e.,
when |z < Y/l =B1/B2in the shock frame, or in the case of a strong, highly
obligue shock, for pitch angles more than 30° from the magnetic field direc-
tion. Another feature of Figures (5.4) and (5.5) is the sharp gradient in / at
P —0 for the case of g = 1.5. For this form of the pitch angle diffusion co-
efficient, (D(0) = AM®-5(1 —P2) tends to zero as P =Y 0. Since the /T-flux,
)1= —(<p’2) {dF/dp), is slowly varying in a near-equilibrium situation, the van-
ishing diffusion coefficient at ) = 0 is able to sustain an infinite gradient in F at
that value.

The upstream distributions provide another visible manifestation of par-
ticle acceleration near the shock. We can see that upstream distributions increase
with Pup to P« 0.7. This is because the greatest acceleration occurs for particles
reflected with the greatest change in pitch angle (Figure (5.6)).

For the greater [) values, / drops sharply. The reason is that given
our assumption of conservation of the magnetic moment, particles with P >
Y|\ —BxXB2 or 0.85 in this case, have come from downstream. A similar drop
in / has been called a “deficit cone” (Nagashima € ., 1992) or “loss cone” effect
(Bieber and Evenson, 1997) for the case of galactic cosmic ray (GCR) depletion at
high P upstream of an interplanetary shock, which is due to the paucity of GCR

coming from downstream. Simulations with this code (Ruffolo, 1999) provided
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Figure 5.6: Illustration of particle transport near an idealized, oblique shock.
The directions of motion of particles in the Z- plane are indicated by the arrows.
Vertical arrows indicate pitch angle scattering, horizontal arrows indicate stream-
ing. and arrows near the shock indicate the changes in f during transmission or

reflection.
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the first detailed explanation of this observed effect, which may help to provide

advanced warning of space weather effects at Earth (Bieber and Evenson, 1997).

5.2 Steady State Spherical Shock Acceleration

In a steady state, an equilibrium is reached in the evolution of the particle dis-
tribution function in terms of position (r), pitch angle (p), and momentum (p)
In practice, the radial distance I is related to the simulation distance 2 by the
relation 2 —I —rle where IS is the shock radius, located at the middle of the
simulation length L. By this point of view, 2= 0 at the shock and Z < 0 (Z >0)
is the downstream (upstream) side. In our simulations, we assume that the mo-
mentum dependence is given by F oc P~S, so we can find the value of 6 that yields
a steady state for F in terms of Z and P. Figure (5.7) indicates the flux balance
that determines C) Far away from the shock, we can use the diffusive approxima-
tion (Ruffolo, 1999) to say that the net 2-flux far downstream is dominated by
convection, and by this assumption we can set SZ= 2fo, where 2is the fluid
speed in the downstream side and Fo= (F)[L the average distribution function
over P at the boundary (the first spatial 2 cell in the simulation). This boundary
condition is not designed for a spherical geometry, but it should be applicable
to a good approximation when L « I Far upstream we approximate that
there is a balance between convection toward the shock and diffusion away, so

that 2 = U\FU, where FUis the far upstream distribution of F. In practice
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Figure 5.7: Schematic diagram shown the balance ofspatial and momentum fluxes

in diffusive shock acceleration (Ruffolo, 1999).

we set this value to be zero; hence, there is only a net outflow of particles from
the shock in the downstream direction. This is balanced by the P flux, 3, due
to acceleration from the lower momenta to the momentum of interest, as well
as from the momentum of interest to the upper momenta, for the appropriate
steady state power-law index, . In practice, we do not exactly know what the
appropriate 5is, so we first estimate a possible 6 value and then perform the
simulation. By using visualization tools (in this case the IDL package), one can
monitor the behavior of the particles in our simulation space as well.

We present results in terms of the intensity | = F/2nI2 which is an

experimentally measured quantity and is approximately conserved as particles
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Figure 5.8: The time evolution of JA¥e vs. spatial distance z for 5 = 1 Each

frame represents a time interval of 1039.9375 min.

cross the shock.

Figure (5.8) shows an example of a bad 6 value (where we set 5= 1.0).
From the figure we can see the time evolution snapshots from left to right and
top to hottom; the first figure shows the initial condition. The charged particle
intensity is averaged over ]ave for each spatial grid point tends to decrease
while at the beginning it is set to 1 everywhere. Note that the normalization is
to ]ave = 1 at the leftmost (downstream) boundary. The test tells US that the
total intensity in the simulation region decreases with time, and one can interpret

that the spectral index value is not high enough for the appropriate balance as
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in Figure (5.8). In this way the spectral index was adjusted again and again (as
estimated by means of linear interpolation) until a steady flux is achieved in the
simulation.

Before the real oblique shock simulation was performed, we also tested
our methodology for the case of a parallel shock @1 = # = 0; Qs the angle
between a magnetic field line and the shock normal and 1 (2) indicates the up-
stream (downstream) side) to reproduce results of Ruffolo (1999). In that case
our simulation could reproduce the same results for the same parameters, since
our transport equation can be reduced to the same equation as used in that
circumstance.

For the oblique case, we consider the SIrONg shock case where the compres-
sion ratio IC= 4.0 and the relation between #1,#2, and the fluid speeds upstream

and downstream is set as follows:

tan eo |

(51)
where is the fluid speed. By this relation we use ! = 1600 km/s, corresponding
to 2= 400 km/s on the downstream side. The incident magnetic field e1 —
75° corresponds to e2 = 86.16° on the compressed downstream side. Note that
in the solar ecliptic plane under a realistic Archimedean spiral magnetic field
configuration this event is occurs at a distance 15.8 AU, where this parameter

was directly calculated from the equation

tan 6 —¥¢' | (5.2)
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where 0 = 2.52 X 10~6radian -1 is the solar rotation rate. We considered protons
with speeds Vcorresponding to a momentum of 499.61 MeV/c. We used a grid
spacing of Az/A= 0.02 and A/r = 2/15. For convenience, we set VAt — Az and
At = 0.415975 min (simulation time). Our simulation length L = 5.0 AU; hence,
the outer boundaries were placed at Z= $2.5A.

Figures (5.9-5.10) are the time evolution plots ofjaBagainst the spatial
distance, z, from the initial condition to a nearly steady state, where we set
(= 1.0. According to Chapter 2, (Jcontrols the form of the scattering coefficient:
(—1s for isotropic scattering and —1.5is in the range of 1.3 to 1.7 inferred by
Bieber € d. (1986) for actual interplanetary scattering. For the first simulation,
we neglected the effects of adiabatic deceleration and set 6 —2.0. Figure (5.10)
is an overlay plot ofj'a\/E vs. z showing the approach to a steady state in the
time evolution where the final time reached is 1039.9375 min. Figure (5.11) is
a surface plot of j(z,/x) for our momentum of interest at the final stage of the
simulation. We will clearly see that near the shock boundary the particle intensity
jumps suddenly and decays toward zero far upstream. As mentioned earlier, ]ae
was normalized to 1 at the leftmost (downstream) boundary. We see that Jave IS
nearly constant and approaches unity at the boundary.

In the next step, we take the effect of adiabatic deceleration into account
by using the same parameters as previously. Figures (5.12- 5.14) are plotted in
the same manner as Figure (5.9 - 5.11) for comparison.

For the more realistic situation occurring in our solar system (the only
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for = 1 The particle intensity in our flux tube is first set equal to a constant at the beginning of the simulation.
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Figure 5.11: Surface plot showing the distribution of the particle density j in [I - z space for g = 1.0 and no adiabatic

deceleration effect.
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Figure 5.14:

Same as Figure (5.11) but including the adiabatic deceleration.
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place where cosmic ray acceleration can be studied I SitU), we now set = 15 as
appropriate for the interplanetary magnetic field (IMF). Other parameters were
the same. Figures (5.15 - 5.17) neglected the effect of adiabatic deceleration while
Figures (5.18 - 5.20) considered this effect again.

Figure (5.21) compares the spatial dependence ofthe pitch angle-averaged
particle density, (])[l for steady state particle acceleration near a shock (at 2 = 0)
for = 1.0 with no effect of deceleration (solid line) and when the adiabatic effect
is included (dashed line). For = 1.5, we plot the two lower lines, the upper one

obtained when no deceleration effect is taken into account.
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Figure 5.1G: Like Figure (5.10) for ¢ = 1.5 and no deceleration effect.
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Figure 5.17: Like Figure (5.11) for 0= 1.5 and no deceleration effect.
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Figure 5.18:

Like Figure (5.12) for q
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Figure 5.19: Like Figure (5.13) for = 1.5 and including the deceleration effect, 0



Figure 5.20:

Like Figure (5.17) for ¢ = 1.5 and taking the effect of adiabatic deceleration into account.
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5.2 Steady State Spherical Shock Acceleration 80
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Figure 5.21. Graphs of (]) vs. Zfor = 1 (upper group) and (= 1.5 (lower
group) where within each group the higher curve is for neglecting the adiabatic

deceleration effect and the lower curve is for including it.
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