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Appendix A

Ferm i Acceleration

A.l Second Order Fermi Acceleration

The Fermi mechanism 1 was first proposed by Fermi in 1949 as a stochastic
means by which particles colliding with clouds in the interstellar medium could
be accelerated to high energies. We will consider two versions of the mechanism.
In this section, we consider Fermi's original version of the theory, the problems
it encounters and how it can be reincarnated in @ modern guise. The analysis
contains some features which are important for particle acceleration in general.
In Fermi's original picture, charged particles are reflected from ‘magnetic
mirrors’ associated with irregularities in the Galactic magnetic field. The mirrors
are assumed to move randomly with typical velocity V, and Fermi showed that
the particles gain energy statistically in these in these reflections. If the particles
only remain within the acceleration region for some characteristic time Tesc, a

power-law distribution of the particle energies is found.
Modified from Longair (199%4)
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Let us repeat Fermi's original calculation, in which the collision between
the particle and a mirror, or massive cloud, takes place such that the angle
between the initial direction of the particle and the normal to the surface of the
mirror is 0, as illustrated in Figure (A.1(a)). Let US work out the change of
energy of the particle in a single collision. It is important to carry out a proper
relativistic analysis.

We suppose the cloud is infinitely massive so that its velocity is unchanged
in the collision. The center of momentum frame is therefore that of the cloud

moving at the velocity V. The energy of the particle in this frame is
E'— v{E + VpcosO) (A1)
where

- Sr (A.2)
The Xcomponent of the relativistic three-momentum in the center of momentum
frame is
1 1 U N VE'
PX—P'cos® = Y (Peos9+ (A.3)
In the collision, the particle’s energy is conserved, Ehefore — E'after, and its
momentum in the Xdirection is reversed, PX — —p'2 Therefore, transforming

back to the observer's frame, we find
E'=  ME'+vyj (A4)

Substituting equations (A.l) and (A.3) in to equation (A.4) and recalling that
PxX/E —\vc0S 6/C2, we can find the change in energy of the particle

n +
Expanding to second order in v/c, we find

E' . E =AE=2"p | +2(A (A.6)
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Figure A.l: lllustrating the collision between a particle of mass 7L and a cloud
of mass M. (a) A head-on collision; (b) a following collision. The probabilities
of head-on and following collisions are proportional to the relative velocities of
approach of the particle and the cloud, namely, V+ V 0089for (a) and V=V cos 6
for (b). Since 2 ¢, the probabilities are proportional to 1+ (V/C)COSG, where

0< b< T
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We now have to average over the angle 9. Because of scattering by hydromag-
netic waves or irregularities in the magnetic field, it is likely that the particle is
randomly scattered in pitch angle between encounters with the clouds, and we
can therefore work out the mean increase in energy by averaging over the angle
Gin the expression (A.6). A crucial point is that there is a slightly greater prob-
ability of head-on encounters as opposed to the following collisions (Figure A.l).
It will be observed that the probability of encounters taking place at an angle of
incidence 8is given by exactly the same reasoning which led to rate of arrival of
photons at an angle 6in the our analysis of inverse Compton scattering. The only
difference is that the particles more at a velocity Vrather than c. For simplicity,
let us consider the case of a relativistic particle with V¢, in which case the
probability of collision at angle 9is proportional to 7i/[l + (V/c) COS0]. Recalling
that the probability of the pitch angle lying in the angular range 8to 8+ 9 is
proportional to sin 8dd, we find on averaging over all angles in the range O to 7

that the first term in expression (A.6) in the limit V— ¢ becomes
<2Vcos€> Y (gz) f_llx[l B (V/C)I]dz: . 2 (K)2 n
¢ Lo f_11[1+(V/c):c]d:r T8\ '
where X = cos8 Thus, in the relativistic limit, the average energy gain per

-3

This illustrates the famous result derived by Fermi that the average increase in

collision is

energy is only second order in vic. It is also immediately apparent that this
result leads to an exponential increase in the energy of the particle since the
same fractional increase occurs per collision. Before looking at this part of the
calculation a little more deeply, let US complete the essence of Fermi's original

argument. If the mean free path between clouds along a field line is L, the time
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between collisions is L/(CCOS(j)) , where () is the pitch angle of the particle with
respect to the magnetic field direction. We need to average cos@over the pitch
angle @to find the average time between collisions, which isjust 2L/c. Therefore,

we fine a typical rate of energy increase

£ 4 oo

It is assumed that the particle remains in the accelerating region for a character-

istic time Tesc. We now write down the diffusion-loss equation (19.13) and find

the solution for N(E) in equilibrium, that is,

- DVN+E [m N(E)] A + (A.10)

We are interested in the steady-state solution and, hence, dN/dt —o. we are
not interested in diffusion and, hence, DVN = 0, and we assume there are no
sources, Q{E) —0. The energy loss term is D(E) = —lE/dt, which in our case is
- dE. Therefore, equation (A.10) reduces to

- i¢ aenN €>1- A-n >

Differentiating and rearranging this equation, we find

dNE) = (1+J \ N(E
i -\ ey E A1
Therefore
N(E) = constant X E~X (A.13)

where X =1+ (aTeC}L. It can be seen that we have succeeded in deriving a

power-law energy spectrum.,
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A.2 Particle acceleration in strong shocks: The

first order Fermi acceleration

We can rewrite the essence of the Fermi mechanism in a rather simpler fashion if
we let E = /3E0 be the average energy of the particle after one collision and p be
the probability that the particle remains within the accelerating region after one
collision. Then, after k collisions, there are N = NOPk particles with energies

E =EOpk. If we eliminate k between these quantities,

k) 1 A
and hence
np/in0
g pesi 19

In fact, this value of N is N(> E) since this number reach energy E and some

fraction of them go on to higher energies. Therefore
N{E)dE = constant X £-i+(inJ7M)d£ (A.16)

It is clear in this formulation that we have again recovered a power law. To
make the equivalence between the first and second versions of Fermi acceleration
complete, we see that, from Equation (A.13) and the definition of P, P= 1+
(@8/M), where @/M is the increment in energy per collision and P is related to T.

In the version ofthe of the Fermi mechanism described in previous section,
a is proportional to (F/c)2, because of the decelerating effect of the following
collisions.

The original version of Fermi's theory is therefore known as Second order
Fermi acceleration and clearly is a very slow process. We would do much better

if there were only head-on collisions. In this case, the energy increase is A E/E «
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2vic, thatis, first orderin vic, and, appropriately, this is called first order Fermi
acceleration.

A very, attractive version of first order Fermi acceleration in the presence
of strong shock waves was discover independently by a number of workers in the
late 1970s. The papers by Axford, Leer and Skadron (1977), Krymsky (1977),
Bell (1978) and Blandford and Ostriker (1978) stimulated an enormous amount of
interest in this process for the many environments in which high energy particles
are found in astrophysics. There are two different ways of tackling the problem,
one starting from the diffusion equation for the evolution of the momentum dis-
tribution of high energy particles in the vicinity of a strong shock (for example,
Blandford and Ostriker (1978)) and the other, a more physical approach, in which
the behavior of individual particles is followed (for example, Bell (1978)). | will
adopt Bell's version of the theory, which makes the essential physics clear and
indicates why this version of first order Fermi acceleration results remarkably
naturally in a power-law energy spectrum of high energy particles.

To illustrate the basic physics of the acceleration process, let us consider
the case of a strong shock, for example, that caused by a supernova explosion,
propagating through the interstellar medium. A flux of high energy particles is
assumed to be present both in front of and behind the shock front. The particles
are considered to be of very high energy, and so the velocity of the shock is
very much less than the velocities of the high energy particles. The key point
about the acceleration mechanism is that the high energy particles hardly notice
the shock at all, since its thickness will normally be very much smaller than the
gyroradius ofa high energy particle. Because of turbulence behind the shock front
and irregularities ahead of it, when the particle pass through the shock in either
direction, they are scattered so that their velocity distribution rapidly becomes

isotropic on either side of the shock front. The key point is that the distributions
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are isotropic with respect to the frames of reference in which the fluid is at rest
on either side of the shock.

Let us consider the case of a strong shock. This is the case, for example,
for the material ejected in supernova explosions, where the velocities can be up to
about 104km -1, compared with the sound and Alfven speeds of the interstellar
medium, which are at most about 10 km -1. In the case of a strong shock,
the shock wave travels at a highly supersonic velocity CS, where CSis the
sound speed in the ambient medium Figure (A.2(a)). It is often convenient to
transform into the frame of reference in which the shock front is at rest, and then
the upstream gas flows into the shock front at velocity W= and leaves the
shock with a downstream velocity 2 (Figure A.2(b)). The equation of continuity

requires mass to be conserved through the shock, and so
pm = P2V2 (A.17)

In the case of a strong shock, PIfP1 —(7 + 1)/(t —1), where 7 is the ratio
of specific heats of the gas. Taking 7 = 5/3 for a monatomic of fully ionized gas,
we find Pl pi —4, and so V2= \V\.

Now let us consider the high energy particles ahead of the shock. Scat-
tering ensures that the particle distribution is isotropic in the frame of reference
in which the gas is at rest. [t is instructive to draw diagrams illustrating the
dynamical situation so far as typical high energy particles upstream and down-
stream of the shock are concerned. Let US consider the upstream particles first.
The shock advances through the medium at velocity , but the gas behind the
shock travels at a velocity (3/4) relative to the upstream gas (Figure A.2(c)).
When a high energy particle crosses the shock front, it obtains a small increase

in energy of the order AE/E ~ ulc, as we will show below. The particles are
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then scattered by the turbulence behind the shock front so that their velocity
distributions become isotropic with respect to that flow.

Now let us consider the opposite process of the particle diffusing from
behind the shock to the upstream region in front of the shock (Figure A.2(d)).
Now the velocity distribution of the particles is isotropic behind the shock, and,
when they cross the shock front, they encounter gas moving towards the shock
front, again with the same velocity, (3/4) . In other words, the particle under-
goes exactly the same process of receiving a small increase in energy A E crossing
the shock from downstream to upstream as it did in traveling from upstream to
downstream. This is the clever aspect of this acceleration mechanism. Every time
the particle crosses the shock front it receives an increase of energy - there are
never crossing in which the particles lose energy - and the increment in energy is
the same going in both directions. Thus, unlike the standard Fermi mechanism
in which there are both head-on and following collisions, in the case of the shock
front, the collisions are always head on and energy is transferred to the particles.
The beauty of the mechanism is the complete symmetry between the passage of
the particles from upstream to downstream and from downstream to upstream
through the shock wave.

Let us now be somewhat more quantitative about the actual process of
acceleration. By simple arguments, due originally to Bell (1978), we can work out
both /3and p for this cycle. First, we evaluate the average increase in energy of
the particle on crossing from the upstream to the downstream sides of the shock.
The gas on the downstream side approaches the particle at a velocity V —\
and so, performing a Lorentz transformation, the particle’s energy when it passes

into the downstream region is

E' = 7v(E + pxV) (A.18)
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where we take the Xcoordinate to be perpendicular to the shock. We assume that
the shock is non-relativistic, V <c ¢, V= 1but that the particles are relativistic,
so that we can write E = o, p)X—(E/C) cos#. Therefore,

AE =pVcos#,  ~n = —cosk (A.19)

We now seek the probability that the particles which cross the shock
arrive at an angle # per unit time. This is a standard piece of kinetic theory. The
number of particles within the angles #to #+d# is proportional to sin #d#, but the
rate at which they approach the shock front is proportional to the X component
of their velocities, ccos#. Therefore the probability of the particle crossing the
shock is proportional to sin#cos#d#. Normalizing so that the integral of the
probability distribution over all the particles approaching the shock is equal to

unity, that is, those with #in the range 0 to 7r/2, we find
P(O) = 2sin# cos #d# (A.20)

Therefore, the average gain in energy on crossing the shock is

(~t)=CJ/ [2c0s2(sin9<M=3¢c (A'20)

The particle’ velocity vector is randomized without any energy loss by
scattering in the downstream region and it then recross the shock, as illustrated
in Figure (A.2(d)), when it gains another fractional increase in energy | (V/C) S0
that, in making one round trip across the shock and back again, the fractional

energy increase is, on average,

=) . (A.22)

A_E> 4V

Consequently,

E 4V
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in one round trip.

To work out the escape probability p, we use a clever argument due to
Bell (1978). According to classical kinetic theory, the number of particles crossing
the shock is \NC, where N is the number density of particles. This is the average
number of particles crossing the shock in either direction, since, as noted above,
the particles scarcely notice the shock. Downstream, however, the particles are
swept away, or “advected”, from the shock because the particles are isotropic in
that frame. Referring to Figure (A.2(b)), it can be seen that the particles are
removed from the region of the shock at a rate NV —\NU. Thus, the fraction
of the particles lost per unit time is \NUANC —ulc. Since we assume that

the shock is non-relativitistic, it can be seen that only a very small fraction of

the particles is lost per cycle. Thus, p = | —( /C). This solves the problem
since we need In/? and InP to insert into expression (A.16). Therefore, since
InP =1In (I-f) =-£ and In/3=1In(l+ & =Y we find

In P

and, hence, the differential energy spectrum of the high energy particles is
N(E)dE oc E~ZE (A.25)

This is the result we have been seeking. It may be objected that we have obtained
a value of 2 rather than 2.5 for the exponent of the differential energy spectrum,
and that problem cannot be neglected. However, the reason that this mechanism
has excited so much interest is that, for the first time, there are excellent physical
reasons why power-law energy spectra with a unique spectral index should occur
in diverse astrophysical environments. In this simplest version of the theory, the
only requirements are the presence of strong shock waves and that the velocity

vectors of the high energy particles be randomized on either side of the shock. It
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is entirely plausible that there are strong shocks in most sources of high energy
particles, supernova remnants, active galactic nuclei and the diffuse components

of extended radio sources.
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Figure A.2: The dynamics of high energy particles in the vicinity of a strong
shock wave, (a) A strong shock wave propagating at a supersonic velocity,
through stationary interstellar gas with density P, pressure Pi and temperature
T\. The density, pressure and temperature behind the shock are P>, P>and T2,
respectively, (b) The flow of interstellar gas in the vicinity of the shock front in
the reference frame in which the shock front is at rest. In this frame of reference,
the ratio of the upstream to the downstream velocity is VWV2 = 7+ hysa —=1).
For a fully ionized plasma, 7 = 5/3 and the ratio of these velocities is |/ 2= 4
as shown, (c) The flow of gas as observed in the frame of reference in which
the upstream gas is stationary and the velocity distribution of the high energy
particles is isotropic, (d) The flow of gas as observed in the frame of reference
in which the downstream gas is stationary and the velocity distribution of high

energy particles is isotropic.



Appendix B

Finite D ifference M ethod

Difference schemes can be developed using Taylor seriesl. This approach is es-
pecially useful for deriving finite difference approximations of exact derivatives
(both total derivatives and partial derivatives) that appear in differential equa-

tions.

-2 il +1 2

Figure B.I: Discretized Xspace.

Difference formulas for functions of a single variable, for example f(X),

can be developed from the Taylor series for a function of a single variable:
f(X) = fo+1 1oAx + \f" oAX2+ .+ A [ (n)joAxn+ .. (B.I)

where 0 = / (x0),/'(x 0), and so on. The continuous spatial domain D(X) must

be discretized into an equally spaced grid of discrete points, as illustrated in

IrThis part was copied from Hoffman (1992).
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Figure (B.l). For the discrete grid,
f(xi) = ft (B.2)

where the subscript | denotes a particular spatial location. The Taylor series
for f(X) at grid points surrounding point | can be combined to obtain difference
formulas for f'(XI), efc.

Difference formulas for functions of several variables, for example / (X, t),
can be developed from the Taylor series for a function of several variables. For

the two-variable function f(X,t), the Taylor series is give by

f(x2) = fo+ (fx\0Ax + ft\CAY)
+ 2ffxxloAx2+ 2fxt\0AXAL + fttloAt2) + ..
+ (XoAXn+ ..+ /( )tjoAtn) + .. (B.3)

where f0 = (x0,t0), ()1 denotes dnf/dXn, and so on. The continuous domain
D(X,t) must be discretized into an orthogonal equally spaced grid of discrete
points (I, ) (I'and are the spatial and time indices) can be combined to obtain
difference formulas for fX, ft, €fc.

For partial derivatives of f(X,t) with respect to I,f = t0 =constant,
At =0, and Equation (B.3) becomes

fix, to) = fo + fxloAx + -fxxl0AX2+ .. + —( )10Axn + .. (B.4)

Equation (B.4) is identical in form to Equation (B.l), where /'|o corresponds to
/110, €C. The partial derivative f100f the function f(X,t) can be obtained from
Equation (B.4) in exactly the same manner as the total derivative /'jo of the
function f(X) is obtained from Equation (B.l). Since Equation (B.l) and B.4 are

identical in form, the difference formulas for /'jo and f10are identical if the same
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discrete grid points are used to develop the difference formulas. Consequently,
difference formulas for partial derivatives of a function of several variables can be
derived from the Taylor series for a function of a single variable. To emphasize
this concept, the following common notation for derivatives will be used in the

development of difference formulas for total derivatives and partial derivatives:
) = X (8.5)

AIOM)) = [ (8.6)

In asimilar manner, partial derivatives of f(X, t) with respect to t can be obtained

from the expression
f(xon =fo+fllo&t+ -ftt\QAL2+ .+ —/(ntjoatn + .. (B.7)

Partial derivatives of f(X, {) with respect to { are identical in form to total deriva-
tives of f(t)with respect to . This approach does not work for mixed partial
derivatives, suah as fXt- Difference formulas for mixed partial derivatives must
ba determined directly from the Taylor series for several variables. The Taylor

series for the function / (x), Equation (B.l), can be written as

f o —fo+ IxJoAx + - fXiloAx2+ ..+ Ajl(n)x|oAxn + .. (B.8)

f{X) = fo+ XloAx + -IxxjoAx2+ ..+ —F( XoAx" + Rnwa (B.9)

The Taylor formula with remainder is where the remainder term Ri+1is given

by
Rntt= yil(,+L1(F)A I"+1

where X0< £< X0+ Ax.
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n+l
1 ? } n
n-1
-2 -1 i i +1 i+2
>

Figure B.2: Discretized X{ space.

The infinite Taylor series Equation (B.8) and the Taylor formula with
remainder Equation (B.9) are equivalent. The error incurred by truncating the
infinite Taylor series after the nth derivative is exactly the remainder term of the
nth-order Taylor formula. Truncating the Taylor series is equivalent to dropping
the remainder term of the Taylor formula. Finite difference approximations of
exact derivatives can be obtained by solving for the exact derivative from either
the infinite Taylor series or the Taylor formula, and then either truncating the
Taylor series or dropping the remainder term of the Taylor formula. These two

procedures are identical. The terms that are truncated from the infinite Taylor
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series, which are identical to the remainder term of the Taylor formula, are called
the truncation error of the finite difference approximation of the exact derivative.
In most cases, our main concern is the order of the truncation error, which is
the rate at which the truncation error approaches zero as AX — 0. The order
of the truncation error, which is the order of the remainder term, is denoted by

the notation O(AXN). Consider the equally spaced discrete finite differnce grid

t
o ntl
8
g 1

Figure B.3: Discretized 1 space.

illustrated in Figure (B.2). Choose point | as the base point and write the Taylor

series for fl+1and /j_ L
fitr=fi + /xitaz + MXXIAX2+ MXXXItAZ3+ MxxxxliAx4+ .. (B.II)

fi-1—f ~ix|jax + =xx|jAj; —glxxx|iAx + ~/xxxx|iAx —.. (B.12)
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Subtracting fI-1 from fi+1 gives
fl+1- fi-1 = 2/x|jAx + A IxxxliAz3+ .. (B.13)
Letting the /111 term be the remainder term and solving for fX\ yields
Ali=[+2"1 —- 1,K)Ax2

where £ 1 < f < Xi+1. Equation (B.14) is an exact expression for fX|i. 1f the
remainder term is dropped, which is equivalent to truncating the infinite Taylor
series, Equations (B.Il) and (B.12), Equation (B.14) yields a finite difference
approximation of fx\- Adding fl+1and fi-1gives

fle1+ fi- 1= 2fl + TxxjAx2+ — IxxxliAx4+ .. (B.15)
Letting the /111 term be the remainder term and solving for fXXV yields
Uiz — - L/, (C)AX

Equations (B.14) and (B.16) are centered-difference formulas. They are inher-
ently more accurate than one-sided difference formulas. Equations (B.14) and
(B.16) are difference formulas for spatial derivatives. Difference formulas for time
derivatives can be developed in a similar manner. The time dimension can be
discretized into a discrete temporal grid, as illustrated in Figure (B.3), where the

superscript  denotes a specific value of time. Thus,
f( =t (B.17)
Choose point  as the base point, and write the Taylor series for f ntl and [n_1:
[H= 7+ finAt+ 1, A f2+ ..

— =y AL A (2 (B.19)
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Letting the term ftt be the remainder term and solving Equation (B.18) for yields
[.1" =

where th < T < tn+l. Equation (B.20) is a first-order forward-difference formula
for ft\n. Subtracting /" -1 from fnl gives

r+l- T =20 ]A t+ 1/,,1-At3+..
Letting the fttt term be the remainder term and solving for ft\nyields

fr= At2 (B.22)

where Equation (B.22) is a second-order centered-difference formula for
ft\n. Centered-difference formulas are inherently more accurate than one-sided
difference formulas, such as Equstion (B.20).

Differnce formulas of any order, based on one-sided forward diffences,
one-sided backward differences, centered differences, nonsymmetrical differences,
elC., can be obtained by different combinations of the Taylor series for / (x) or
f(t) at various grid points, Higher-order difference formulas require more grid

points, as do formulas for higher-order derivatives.



Appendix C

Source Code Program

field.c: This program provides some useful functions used in main program.

*

u ust 000
change argdmen(% term2 in several routine

il “%41’28880

B I{}l] g correc |on following QA treatment
cﬁ?zd enratio0 R

f cont.c — December 3rd, 1999.
Ngl\(l)sf tIOIP]g enrat|oO -> energy ratio, is called by elementsO.

2r?r) g@ﬁ rlcaz s 0Ehe cg rrect versmd of field.xxx
ast ﬁm ?8%4 999

n?/o ﬁmatlon to sun sphceor a(i shock case.

Q_

3

TC |rpe
wnstream region at any location z.
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oAb

4t 4T Iﬁé‘sn{%dwxr noc
d](?ed ﬁetam VW), thetapfvsw

f kink.c — April 8, 1999.
Added %r%uments to diffcoeff and findpbO for compatibility with latest
varwind.t.

VWS speed

9édhgrbrd9n{nlt@”te gég ! hF éc?gelacgl wind)
% rame, résg I|9e

f kink.c — December 16, 1998.
R e o B 0 ™ W renvero
f kink.c — May 18, 1997,

Hgnnra%ds out unnecessary #define variables and other cosmetic

f kink.c — November 28, 1996.

Rl e Og“t gl
e solar wind IS constant on either Si

Newr utine: betaswcO -> solar wind speed /
paral to z ?para ?el to % P

WARNING. If decgleration is needed when arwind,c,
be sure to modcltey declelnralteo accor\évlhng % g ﬁevne\yv\”def used in deceio.

Derived from f_arc.c of July 12th, 1995,
and Ruffol

y an;éomen% g Téﬁf’:ﬁc:ﬂ

#include  <math.h>

#define Ulmin. +

%gg[iﬁg %FXBH (3(;{?%1 fij;sbo HO 6 E)“ EFSIQTQEY\?ISW stream.c

- 001 : d/ |
fdefine  BETAU  0.0013333 b ave og&g@@gmem | stream

#define  THETAM 1.50377 s+
#define  THETAP 1.30899

IJN\A

—_

X 1 l 9 .
s gco 2 g <zsh (radians) */
S ockfe ngle a z>zsh (radians) */

#define  Omega 2.519479%-6 [* the self solar rotation rate
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dl
Gotble Pnzuzs%”p““ﬁpq

double al, a2, mu, out;
double antideriv2();
for (out 0,0,mu= -1, O+muEtep ‘mu<l.0;mut=mustep)

= 0.2
aI aﬁ'%%&ﬁd%w?rrﬂusmstep % 1))
return(out);
>
* diffcoeff

s AR TR T

NOTE: THIS 1S NOT GOOD FOR g = 2.

*
—

gouB e d|ffcoeffgmu muste\}) aoverv q rv vsw)
ouble ‘mu, mustep, ‘aover I

double al, a2, out, arg, focuslength

Q00BlE  AnAIeR Y2 itengtho 2, 1 length()

rl\:/2 mu+muste /2
L i sﬁe g

gth

i+ antideriv2
This routine contains the antiderivative of the inverse of

119

mustep [2.0) | tanh(arg);
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(the diffusion coefficient divided by ampl*(I-mu*mu)).
j Note: this formula is not appropriate for q = 2.0 or 3.0,
Bl g
{ void nrerrorQ;
if (g == 2.0) nrerrorC'antideriv: g = 2.0");
; return(mu*pow(fabs(mu),1.0-q)/(2.0-q));

[* mudot

XB‘%B%RWEBCMLATES THE RATE OF INCREASE OF mu DUE TO

For the straight magnetic fields considered here,

¥
N
GRG0,
ouble & “ud; [* 80 ti”t,ﬁa g}%t er for Archimedian spiral in up and

ownstrea

*
QOHBS Fgl |VtY§c z, f length(), arclengthO;

z =arclength(r ),
focuslength = f_length(z,vsw);

out +9E %?vvﬂff R R (R IS
ouf *= -mu*mu)iv;
S return(out),

[* arclength

FINDS_ THE PATHENGTH ALCNG AN IDEAL PARKER FIELD FROMI THE SN

For this conf|(r1urat|on we do not consider the radius,
S0 We set

]
g B|e arclength r
S return( ZOFFSET);

= radius
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E%AlﬁéVmgﬁg-lLENGTH ALONG AN IDEAL PARKER FIELD FROM THE SUN,

For this confurluratlon We do not consider the radius,
S0 We Set

*

/
ag B|e rad|us

S return(z + ZOFFSET);

[* cospsi

AV SR AAELE € e N T Rl Vool

x|
e oo
gouB|er pdown “R_ud, out;
hOE rgdrla[J I&j]
omu%_ ) sqrtf? 2? ud + rer));
} returnfout);
[* dsecdz

d(sec(psi))/dz is zero for this configuration.

*

/
ag B|e dsecdz
return 0 0);
}
[ *

zenith

FD A Y e R YO AERRESHE (AR ™

For this conflguratbon We do not consider the radius,
50 we set zenith =

*

/
%8 B|e zemth

return O 0);
>

[* dzdt .
The Fokker-Planck coefficient, Delta z / Delta t.
x|

double dzdt(bet,mu,z,vsw)
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?ouble bet, mu, z, vsw;
g B|e vlvwfo ,cospsi()

v=het*C;
out= mu v¥cospsi(z,vsw)+relvwf(z,vsw

(mu* muR *(v*rewavlevsws cos;}m (z,vsw)*cospsi(zlvsw))/ (C*C);
return(out);

[* relvwf is the velocity of the wind RELATIVE TO THE FIXED FRAVE +/

%ouge relvwf(z,vsw)
oudle z, vsw;

double  radiusO, out:

8 <SRk
| Gout = -BETAU*C,
return(out);

i+ relvws is the velocity of the wind RELATIVE TO THE SHOXK */
[* ng need fo use r right?

goug(i relvwsfz vstg

ouble z, vsw;

double out:

TPk

| 6out = -BETAUC,
return(out);

V

Bl sl

——0 *

double out:

D

| eou? = -BETAU*C;

return(out);

[* thetam
Return the angle between the magnetic field and the shock normal
for z just <zsh (in radians).
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é/gﬂme thetam (vsw)

5 return(THETAM),

[* thetap
eturn. the an tzetweeré the magnetic field and the shock normal
or z just > In radians).

QISHBP thetap vsw)

S return(THETAP),

[* decelrate

For this confi(%uratmn {here is no deceleration away from the shock.
8 Plevious motion We S¢
ecelrate(xxx) = -p<delta p/delta t>

e decelrate(sz,mu,vsw)
ez, mu, V3w,

U
[

g!jel cogs si0, radius(), r;
; . rnP g\’gc];gzps%?z vs 05*5c Z g ,v(s?)w%m(l(’m)r%*u*mu)/r)))

/ ?um[ %rame to utI 1%} ntehrgyr I%hgffltggdpfargtrﬁgle- Sggég){n”@ éh%i#t?gilon term.

/
ao B| enratlo mu,z,v VSw)
0 . VSW

J
ouB|
ou

M

e

>

e
e
P nd reI%u*v felvwf (z,vsw)/ (o¢));

" This routine calculates focusing length

i S

3°“B|8 F?‘u |us% R_ud, out;

E% d =T upégwn (z,vsw);
out= (r * (R_ud*R ”8 ’QQ udSGRt (R ud*% ud +r*r)) /

(R™U ud+r*r
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return(out) ;

*
i/ This routine calculates Archimedian constant in Up and downstream
aou |e r uedown Z,VSW)

ou

double refvwfO:

[* R:.vsw/?me a sin(th ta)r
define theta 15 angle rel. to| solar N-ipole
and as nke at we“are In solar ecliptic plane
$0..sIn(theta)== 1

return(fabs(relvwf(z,vsw?f/Omeg );



Appendix D

Shock waves

A quantitative analysis 1will be presented only for ordinary gas dynamic shocks
for which B — 0. This analysis will show that a gas goes from being supersonic
upstream of the shock to subsonic downstream of the shock. We now have the

following conservation relations:

[y} = 0 (D.1)
[pu2+p; = 0 (D.2)
(\puz, 7. ]B u] -0 (D.3)
Equation (D .l) is equivalent to
Wy -zpu, of = Bz ) (D 4)

1 P

where we have introduced the ratio Zs = p2/Pi which is the density “jump” or
“shock ju m p across the shock. The velocity jump is inversely proportional to

Zs Equations (D.2) and (D.3) can also be written in terms of the upstream and
Copied from Cravens 1997
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downstream values of the fluid variables (see Figure D.l):

PIUV + P il (.9

LPWZ + 1= (gi"2+ 7_7 P2 2 (.6)

Let us suppose that all the upstream variables, p, 1, and Pi are known.
Then Equations ( .4)-(D.6) constitute three equations that can be used to solve
for the three unknowns, p2, 2)and p2. In fact, p2, 2, and p2can all be found in

terms of the upstream sonic Mach number m\. We have

wi=""and Mo P2 ()

Pi 1P2

where 7 = specific heat, Equations ( .4)-(D.6) can be solved to obtain

2/ ) Il 2
17+ 1+ @+ \ M 08)
Hence, from Equation ( .4) the shock jump zsis
S [+]
Z’_PK|~_ Uz-_ -1+ jk (09)

We can also use these results to find the pressure jump, which is

p2= 2TMI- (7- 3

P 741 (b-10)
Equations ( .8)-(D.10) are called the Rankine-Hugoniot relations.
Formi =1, we have 2/ != lepi —p2/P1 = 1; there is no shock and

the flow stays sonic ( = cs). We cannot have MI < 1 But for m1 > 1 we
have zs > 1, indication that the density increases and the flow speed decrease
across the shock (see Figure D .l). Naturally, the mass flux must remain constant
across a steady-state shock in order to prevent mass build-up (or loss) at the
discontinuity surface. Because the flow decelerates at the shock there is com-

pression. Compression and slowdown are associated with an increase in pressure
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Figure D.l: Schematic of shock wave showing the jump in density and a drop in

velocity.
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(and temperature). The temperature jump across the shock can be derived from
Equation (D.10) and a suitable equation of state. For ordinary air, p = PRTn,
but for a plasma P = pe -f Pi = pMi-(Te + Tj), where rrii using the ion-acoustic
speed, which includes both T€and Tij.

The hypersonic limits of the Rankine-Hugoniot relations can be found by
taking the limit M 2—¥o0;

Wi Zs—— ilz_»;*'.} (= 4for 7 = 5/3), (D .II)
The maximum shock jump for 7 = 5/3, is 4, but the maximum pressure jump is
infinite:
: v
lim~ = -» D.12
2P T+1 (0.12)

For supersonic flow upstream of the shock, the downstream flow must be subsonic,
as we can see by rearranging the Rankine-Hugoniot relation to get

7 (T-1M? +2
M2 2TM - (T7-1)-

(0.13)
Clearly, this equation shows that the downstream gas flow is subsonic (M2< 1)
for upstream gas flow that is supersonic (|\/|| > 1). The hypersonic limit of the
downstream Mach numberis (M| — (7 —1)/(2'y)), which is equal to 1/5 for an
ideal monatomic gas with 7 = 5/3.

Gas flow across a shock is thermodynamically irreversible; that is, the
et change of entropy is positive and nonzero. The quantity pjpl is related to
the entropy per unit mass (or SPECific entropy). Specific entropy is a constant
for small perturbations such as typical sound waves. The flow is then said to be

isentropic. However, the specific entropy increases across a shock:



12

Irreversible “dissipation” of bulk kinetic energy (pu2) into thermal energy ()
takes place inside the shock discontinuity. This dissipation is related to collisions
in an ordinary shock wave, but in space plasmas, the shocks are collisionless, and
the nature of the dissipation mechanism hecomes tricky. Nonetheless, shock do
exist in space and thus dissipation must be present, albeit associated with mi-
croscopic plasma instabilities and waves (i.e., small-scale structure in the plasma
and fields) rather than ordinary collisions.

We have just analyzed ordinary gas shocks, but what about MHD shocks
in general? The conservation relations are much messier if we ratain the magnetic
field terms. However, for parallel shocks (B 1 ) the field again drops out of
the equations and we re-obtain the Rankine-Hugoniot relations for an ordinary
shock. But, asjust discussed, the dissipation mechanism for parallel, collisionless
shocks in space plasma is problematic (and not very efficient). Parallel shocks
observed in space are not really discontinuities but appear as quite thick layers
that had considerable plasma turbulence associated with them, as required for
the dissipation.

Dissipation for collisionless perpendicular shocks (B 1 ) is more efficient
than for parallel shocks and is associated with ion gyration. The shock thickness
for this category of shock is roughly equal to an ion gyroradius. The MHD version
ofthe Rankine-Hugoniot relations can be found from the appropriate conservation
relations but will not be shown here. However, just as for ordinary shocks, the
density increases and the velocity decreases across the shock. The change in the

magnetic field can be written with Bn=0(and = , B = i?(as:

Bi= B2 or i1 2:P’i‘--zs. (D.15)

The magnetic field jump is the same as the density jump. The general case is

not simple but the hypersonic limit is the same as for ordinary shocks, ZS =



1

(7+ D)I(7- 1)

Obligue MED shacks (in which the magnetic field is neither parallel to nor
perpendicular to the flow) are even more complicated than perpendicular shocks.
There are even two types for oblique shocks, one associated with slow-mode MHD
waves and one associated with fast-mode waves. (Perpendicular MHD shocks are
associated only with the fast/magnetosonic mode.) For the oblique fast-mode
shock wave, the density increases and the flow speed decrease across the shock,
as before, an oblique fast-mode shock: thus, the direction of B must change
across the shock front.

Many examples of shocks in space plasmas exist:

1. Collisionless fast-mode MHD shocks in the solar wind flow called planetary
bow shocks have heen observed hy spacecraft at all the planets in the solar

system except Pluto.

2. Shocks called interplanetary shocks have heen observed in the solar wind.
These are not associated with planets but with transient solar phenomena

or with interaction of slow and fast "streams” in solar wind.

3. A shock called the heliosphere termination shock is thought to exist at the
outer boundary of the heliosphere, where the solar wind runs up against

the interstellar medium.

4. Slow-mode MHD shocks are thought to be present in the Earth’s magneto-

tail.
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