การเตรียมพีล์มไบโอคอมพอสิตของแป้งมันสำปะหลังเสริมแรงด้วยคริสตัลลีนเซลลูโลล

นางสาววรวดี สุขัยยะ

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาวิทยาศาสตร์พอลิเมอร์ประยุกต์และเทคโนโลยีสิ่งทอ ภาควิชาวัสดุศาสตร์ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2551 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

PREPARATION OF BIOCOMPOSITE FILMS FROM CASSAVA STARCH REINFORCED WITH CRYSTALLINE CELLULOSE

Miss Voravadee Suchaiya

.

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Science Program in Applied Polymer Science and Textile Technology

Department of Materials Science

Faculty of Science

Chulalongkorn University

Academic Year 2008

Copyright of Chulalongkorn University

512204

Thesis Title	Preparation of Biocomposite Films from Cassava Starch	
	Reinforced with Crystalline Cellulose	
Ву	Miss Voravadee Suchaiya	
Field of Study	Applied Polymer Science and Textile Technology	
Thesis Principal Advisor	Associate Professor Duangdao Aht-Ong, Ph.D.	
Thesis Co-advisor	Asscoiate Professor Pranut Potiyaraj, Ph.D.	

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

5. Harrongbua Dean of the Faculty of Science

(Professer Supot Hannongbua, Dr.rer.nat.)

THESIS COMMITTEE

S. Chairman

(Associate Professor Saowaroj Chuayjuljit)

Unorf Len At - of . Thesis Principal Advisor

(Associate Professor Duangdao Aht-Ong, Ph.D.)

(Associate Professer Pranut Potiyaraj, Ph.D.)

Paipan Santuk External Member

(Asscosiate Professor Paiparn Santisuk)

(Asscosiate Professor Kawee Srikulkit, Ph.D.

วรวดี สุขัยยะ: การเตรียมฟิล์มไบโอคอมพอสิตของแป้งมันสำปะหลังเสริมแรงด้วยคริสตัลลีนเซลลูโลส. (PREPARATION OF BIOCOMPOSITE FILMS REINFORCED WITH CRYSTALLINE CELLULOSE) อ. ที่ปรึกษาวิทยานิพนธ์หลัก : รศ.ดร.ดวงดาว อาจองค์, อ.ที่ปรึกษาวิทยานิพนธ์ร่วม: รศ.ดร. ประณัฐ โพธิ ยะราช, 211 หน้า.

งานวิจัยนี้ศึกษาการเตรียมฟิล์มไบโอคอมพอสิตของแป้งมันสำปะหลังที่เสริมแรงด้วยคริสตัลลีน เซลลูโลสที่เตรียมจากวัตถุดิบทางการเกษตรคือ ชานอ้อย และกาบกล้วยด้วยวิธีการไฮโดรไลซิสด้วยกรด ้ซัลฟีวริกและกรดไฮโดรคลอริก โดยทำการศึกษา วิธีการ ขั้นตอน และภาวะที่เหมาะสมในการเตรียมคริสตัลลีน เซลลูโลสจากชานอ้อยและกาบกล้วย ผลการวิจัยพบว่า ความเข้มข้นของสารละลายโซเดียมไฮดรอกไซด์ที่ เหมาะสมในการกำจัดสิกนินของซานอ้อยและกาบกล้วยคือ 0.5 และ 1 โมลาร์ ตามลำดับ สำหรับภาวะที่ เหมาะสมในการฟอกขาวเส้นใยที่ได้จากชานอ้อยและกาบกล้วยคือที่ความเข้มข้นร้อยละ 6 ของไฮโดรเจนเปอร์ ออกไซด์ในสารละลายเบส กรดไฮโดรคลอริกและกรดซัลฟุริกที่ความเข้มข้น 2.5 นอร์มัล ถูกใช้สำหรับไฮโดรไล ซิสที่เวลาต่าง ๆ เพื่อเตรียมไมโครคริสตัลลีนเซลลูโลสด้วยการวัดค่าเฉลี่ยขนาดอนุภาค พบว่าเวลาที่เหมาะสม ้สำหรับไฮโครไลซิสเยื่ออ้อยและเยื่อกล้วยที่ได้คือ 60 และ 30 นาที ตามลำดับ ไมโครคริสตัลลีนเซลลโลสที่ เตรียมได้ และไมโครคริสตัลลีนเซลลูโลสทางการค้าถูกผสมลงในฟิล์มแป้งในปริมาณร้อยละ 0-40 โดยน้ำหนัก ของแป้ง พบว่าฟิล์มที่เสริมแรงด้วยไมโครคริสตัลลีนเซลลูโลสจะมีความใสน้อยกว่าฟิล์มที่ไม่ถูกเสริมแรงด้วย ้ไมโครคริสตัลลีนเซลลูโลส ความขุ่นของฟิล์มไบโอคอมพอสิตเพิ่มขึ้นเมื่อปริมาณของไมโครคริสตัลลีนเซลลูโลส เพิ่มขึ้น นอกจากนี้การเติมไมโครคริสตัลลีนเซลลูโลสลงในฟิลมแป้ง สามารถปรับปรุงค่าความทนต่อแรงดึงและ ้ค่ายังมอดุลัสของฟิล์มแป้งที่เติมพลาสติไซเซอร์ ค่าความทนต่อแรงดึง และ ค่ายังมอดุลัสสูงสุดของฟิล์มไบโอ คอมพอสิตที่เตรียมได้มีค่าในช่วง 10-15 เมกะปาสคาล และ 600 -800 เมกะปาสคาล ตามลำดับ ฟิล์มไบโอ ้คอมพอสิตมีความสามารถในการย่อยสลายมากกว่าฟิล์มแป้งที่เติมพลาสติไซเซอร์ อีกทั้งความสามารถในการ ้ย่อยสลายของฟิล์มเพิ่มมากขึ้นเมื่อขนาดและปริมาณของไมโครคริสตัลลีนเซลลูโลสเพิ่มมากขึ้น ซึ่งผลที่ได้ สอดคล้องกับผลของการดูดซึมน้ำของฟิล์มไบโอคอมพอสิต ฟิล์มไบโอคอมพอสิตที่เสริมแรงด้วยไมโครคริสตัล ลื่นเซลลูโลสของซานอ้อยที่เตรียมจากกรดไฮโดรคลอริก มีเสถียรภาพทางความร้อน สมบัติเชิงกล และ ้ความสามารถในการย่อยสลายที่ดีกว่าฟิล์มไบโอคอมพอสิตอื่น ๆ ที่เตรียมได้รวมทั้งฟิล์มแป้งที่เติมพลาสติไซ เซอร์

.

iv

4972469523 : MAJOR APPLIED POLYMER SCIENCE AND TEXTILE TECHNOLOGY KEY WORD: BIODEGRADABLE POLYMER / CASSAVA STARCH / CRYSTALLINE CELLULOSE

VORAVADEE SUCHAIYA : PREPARATION OF BIOCOMPOSITE FILMS FROM CASSAVA STARCH REINFORCED WITH CRYSTALLINE CELLULOSE. THESIS PRINCIPAL ADVISOR : ASSOC. PROF. DUANGDAO AHT-ONG, Ph.D., THESIS COADVISOR : ASSOC. PROF. PRANUT POTIYARAJ, Ph.D., 211 pp.

An environmentally friendly biodegradable composite films between plasticized cassava starch and crystalline cellulose from agricultural wastes were successfully prepared. Two types of agricultural wastes, bagasse and banana stem, were made into crystalline cellulose by acid hydrolysis using HCI and H_2SO_4 . The suitable condition for preparing crystalline cellulose from each agricultural waste was investigated. From the results, the suitable NaOH concentrations for delignification of bagasse and banana stem fiber were 0.5 M and 1 M, respectively. For bleaching, 6% H₂O₂ in alkali solution was the most appropriated condition for both pulps. HCl and H₂SO₄ at 2.5 N concentrations were used for hydrolysis at varied reaction time in order to obtain microcrystalline cellulose (MCC) with determined average particle size. The suitable reaction times for hydrolysis bagasse and banana stem were 60 and 30 min, respectively. The prepared crystalline cellulose as well as a commercial MCC were mixed, at 0-40 wt% (based on starch), with plasticized starch. The films containing MCC were less transparent than the one without MCC. The haze of biocomposite films readily increased with the increasing amount of MCC. The incorporation of MCC improved the tensile strength and Young's modulus of plasticized starch. In general, the maximum tensile strength and Young's modulus of the prepared film were as high as 10-15 MPa and 600-800 MPa, respectively. The biocomposite films showed higher degree of biodegradability comparing with the plasticized starch film. The biodegradability increased when the amount and the average particle size of MCC increased. These results are in agreement with the water absorption behavior of the films. Biocomposite film reinforcing with bagasse MCC prepared using HCI had better thermal stability, mechanical properties, and biodegradability than other prepared biocomposite and plasticized starch films.

.

ACKNOWLEDGEMENTS

The author would like to thank many people for kindly providing the knowledge of this study.

And, the most important thing for this completed thesis is the advice and professional aid of my advisors and co-advisor. I would like to express gratitude and appreciation to Associate Professor Dr. Duangdao Aht-ong, and Associate Professor Pranut Potiyaraj.

I wish to express my grateful thank to Associate Professor Saowaroj Chuajuljit, chairman of thesis committee for her valuable advice, I also would like to express my appreciation to Associate Professor Paiparn Santisuk, Associate Professor Kawee srikulkit, thesis committee members for their invaluable suggestion and guidances.

I truly thank many helping hands throughout my study including Mr. Thapparat Pechsung, and other students in the Department of Materials science, Chulalongkorn University for facility.

Finally, I would like to express my greatest appreciation to my family for their support and encouragement.

CONTENTS

PAGE

Abstract in Thai	iv
Abtract in English	V
Acknowledgements	vi
Contents	vii
List of Tables	xii
List of Figures	xiv
Abbreviations	xix

I. Introduction		
II. Literature Review		
2.1 Degradable Plastic	5	
2.2 Biodegradable Polymer	5	
2.3 Native Starch	8	
2.3.1 Amylose	9	
2.3.2 Amylopectin	10	
2.3.3 Gelatinization	12	
2.3.4 Cassava starch	14	
2.4 Starch Base Film	15	
2.5 Natural Fiber		
2.5.1 Cellulose	21	
2.5.2 Other Composition	23	
2.5.3 Polymorphism of Cellulose	24	
2.6 Crystalline Cellulose Preparation	26	
2.6.1 Hydrolysis	26	
2.7 Degree of Polymerization (DP)	30	

2.8 Starch biocomposite Film	32
2.9 Agricultural Waste	33
2.9.1 Bagasse	33
2.9.2 Banana Stem	34
2.10 Tensile Properties	34
2.11 Biodegradation	36

III. Experimental Section	
3.1 Material and Chemical	42
3.2 Instrument	42
3.3 Experimental Procedure	42
3.3.1 Crystalline Cellulose Preparation	42
3.3.2 Biocomposite Film Preparation	43
3.4 Selection of Condition for Crystalline Cellulose Preparation	43
3.4.1 Delignification Condition	43
3.4.1.1 Themogravimetric Analysis	43
3.4.2 Bleaching Condition	43
3.4.2.1 Whiteness of Pulp	43
3.4.2.2 Thermogravimetric Analysis	44
3.4.2.3 Average Particle Size	44
3.4.2.4 Morphological study	44
3.4.3 Hydrolysis Condition	44
3.4.3.1 Average Particle Size	44
3.4.3.2 Morphological Study	45
3.4.3.3 Degree of Polymerization (DP)	45
3.5 Characterization of Selected Microcrystalline Cellulose	47
3.5.1 Crystallinity	47

ix

3.5.2 Thermalgravimetric Analysis	47
3.6 Evaluation of Biocomposite Film	48
3.6.1 Physical Appearance of Biocomposite Film	48
3.6.1.1 Appearnce	48
3.6.1.2 Morphological	48
3.6.1.3 Haze	48
3.6.2 Tensile Properties	48
3.6.3 Themal Properties	48
3.6.1.1 Thermogravimetric Analysis	48
3.6.1.2 Differential Scanning Calorymetry	49
3.6.4 Water Absorpsion	49
3.6.5 Biodegradation Test	49
IV. Results and Discussion	52
4.1 Selection of Condition for Crystalline Cellulose Preparation	52
4.1.1 Delignification Condition	52
4.1.1.1 Dhusiaal Appagrapag	
	52
4.1.1.2 Themogravimetric Analysis	52 55
4.1.1.2 Themogravimetric Analysis	52 55 59
4.1.1.2 Themogravimetric Analysis 4.1.2 Bleaching Condition 4.1.2 Physical appearance	52 55 59 59
4.1.1.2 Themogravimetric Analysis 4.1.2 Bleaching Condition 4.1.2.1 Physical appearance 4.1.2.2 Whiteness	52 55 59 59 60
4.1.1.2 Themogravimetric Analysis 4.1.2 Bleaching Condition 4.1.2 Physical appearance 4.1.2.2 Whiteness 4.1.2.3 Thermogravimetric Analysis	52 55 59 60 62
 4.1.1.1 Physical Appearance	52 55 59 60 62 65
 4.1.1.1 Physical Appearance	52 55 59 60 62 65 65
 4.1.1.1 Physical Appearance	52 55 59 60 62 65 65 68

Х

4.1.3.2 Morphological of Microcrystalline	
Cellulose	69
4.1.3.1 Average Particle Size and Particle Size	
Distribution	73
4.1.3.1.1 Effect of hydrolysis time	73
4.1.3.1.2 Effect of acid use	73
4.1.3.3 Degree of Polymerization (DP)	76
4.1.3.3.1 Effect of hydrolysis time	76
4.1.3.3.2 The Effect of acid use	77
4.2 Characterization of Selected Microcrystalline Cellulose	79
4.2.1 Crystallinity	79
4.2.2 Thermogravimetric Analysis	81
4.2.2.1 The Effect acid Use	81
4.2.2.2. The Effect of MCC type	81
4.3 Evaluation of Biocomposite Film	84
4.3.1 Physical Appearance	84
4.3.1.1 Appearance	84
4.3.1.2 Morphological	92
4.3.1.3 Haze	101
4.3.2 Tensile Properties	104
4.3.2.1 Tensile Strength	104
4.3.2.2 Young's Modulus	108
4.3.2.3 Elongation at Break	111
4.3.3. Thermal Properties	114
4.3.3.1 Thermogravimetric Analysis	114
4.3.3.2 Differential Scanning Calorymetry	118
4.3.4 Water Absorpsion	124

4.3.5 Biodegradation	126
4.3.5.1 Physical appearance	126

- 4.3.5.1.1 Appearance...... 126

V. Conclusions	146
References	150
Appendix	153
Biography	211

LIST OF TABLES

PAGE

Table 2.1	Granule size distribution of variousstarch	8
Table 2.2	Chemical composition of cassava starch	15
Table 2.3	Chemical constitutents of bagasse	33
Table 2.4	Chemical constitutents of banana stem	34
Table 3.1	Experimental instruments	42
Table 4.1	TGA data of untreated and delignified bagasse fibrils	56
Table 4.2	TGA data of untreated and delignified banana stem fibrils	58
Table 4.3	TGA Data of chemical treated and untreated bagasse	63
Table 4.4	TGA Data of chemical treated and untreated banana stem	64
Table 4.5	Average particle size of bleached bagasse and banana stem pulp	68
Table 4.6	SEM micrographs of BG MCC hydrolyzed at 2.5 N HCI and 2.5 N	
	H_2SO_4 at various time	70
Table 4.7	SEM micrographs of BS MCC hydrolyzed at 2.5 N HCI and 2.5 N	
	H_2SO_4 at various time	71
Table 4.8	SEM micrograph of BG and BS MCC hydrolyzed at 2.5 N HCl and	
	2.5 N H_2SO_4 for 30 min and CM MCC	72
Table 4.9	Average particle size of BG MCC at various hydrolysis reaction	
	times	75
Table 4.10	Average particle size of BS MCCat various hydrolysis reaction	
	times	75
Table 4.11	Average particle size and degree of polymerization of CM	
	MCC	75
Table 4.12	Degree polymerization of hydrolyzed Bagasse and banana stem	78
Table 4.13	The suitable hydrolysis condition of BG and BS MCC	78
Table 4.14	TGA data of the selected microcrystalline cellulose	83
Table 4.15	TGA data of plasticized starch and biocomposite films	117
Table 4.16	The melting temperature and heat of fusion of the plasticized starch	
	and biocomposite films	120

			xiii
			PAGE
Tab	e 5.1	Conclusion data of physical, mechanical, thermal properties, and	
		biodegradable of biocomposite films	149

~

LIST OF FIGURES

Figure 2.1	Propotion of plastic industry in Thailand	4		
Figure 2.2	Carbondioxide was reused by renewablresource			
Figure 2.3	Classification of biodegradable polymer			
Figure 2.4	SEM Micrographs of (a) potato (b) cassava and (c) corn starch			
	granule	8		
Figure 2.5	Chemical structure of amylose molecule	9		
Figure 2.6	Representative partial structure of amylose			
Figure 2.7	Helical structure of amylose			
Figure 2.8	Chemical structure of amylopectin molecule			
Figure 2.9	Representative partial structure of amylopectin			
Figure 2.10	Cluster model of amylopectin			
Figure 2.11	Structure of amylopectin contribute to the "Growth rings"	.12		
Figure 2.12	Gel network of starch	14		
Figure 2.13	Film clarity as indicated by % light transmittance at 650 nm			
	of difference starch sources	15		
Figure 2.14	Fringed micelle theory of cellulose	21		
Figure 2.15	Chemical structure of cellulose	22		
Figure 2.16	Chemical structure of starch and cellulose			
Figure 2.17	Axial projection of the structure of (A) native cellulose (cellulose I)			
	and (B) regenerated cellulose II	25		
Figure 2.18	Projection of the plane in cellulose I	25		
Figure 2.19	Schematic representation of mild and drastic hydrolysis of			
	cellulose	26		
Figure 2.20	Stress-strain behavior of polymer material	35		
Figure 3.1	Schematic of the multilayer of soil burial test	50		
Figure 3.2	Flow chart of the experimental	51		
Figure 4.1	Photographs of (a) untreated banana stem and (b-d) treated			
	banana stem with 0.5 M, 1 M, and 2 M NaOH	54		
Figure 4.2	Photographs of (a) untreated banana stem and (b-d) treated			
	banana stem with 0.5 M, 1 M, and 2 M NaOH	50		

XV

Figure 4.3	TGA curves of untreated and delignified bagasse fibrils with	
	difference NaOH solution concentrations	56
Figure 4.4	TGA curve of untreated and delignified banana stem fibrils with	
	difference NaOH solution concentrations	58
Figure 4.5	Photographs of bleached bagasse pulp at various H_2O_2	
	concentrations	59
	Photographs of bleached banana stem pulp at various $\rm H_2O_2$	
	concentrations	59
Figure 4.5	Whiteness and yellowness of bleached bagasse pulp at various	
	H ₂ O ₂ concentrations	61
Figure 4.7	Whiteness and yellowness of bleached banana stem pulp at	
	various H ₂ O ₂ concentrations	61
Figure 4.9	TGA curve untreated, delignified, and bleached bagasse	
	sample	63
Figure 4.10	TGA curve of untreated banana stem sample, delignified and	
	bleached banana stem sample	64
Figure 4.11	SEM micrographs of bleached bagasse at (a) 1, (b) 2, (c) 3, (d)	
	4, (e) 5 min at magnificationx 500, and (f) 5 min at magnification	
	X1500	66
Figure 4.11	SEM micrographs of bleached banana stem at (a) 1, (b) 2, (c) 3,	
	(d) 4, (e) 5 min at magnification x500, and (f) 5 min at	
	magnification x1000	67
Figure 4.13	X-ray diffraction patterns selected microcrystalline cellulose	80
Figure 4.14	TGA thermograms of the selected microcrystalline cellulose	83
Figure 4.15	Biocomposite films reinforced with HCI-BG MCC at (a) 0, (b) 5,	
	(c)10, (d)15, (e)20, (f)25, (g)30, and (h) 40 wt%	87
Figure 4.16	Biocomposite films reinforced with H_2SO_4 -BG MCC at (a) 0, (b)	
	5, (c)10, (d)15, (e) 20, (f)25, (g)30, and (H) 40 wt %	88
Figure 4.17	Biocomposite films reinforced with HCI-BS MCC at (a) 0, (b) 5,	
	(c)10, (d)15, (e) 20, (f)25, (g)30, and (h)40 wt %	89

PAGE

Figure 4.18	Biocomposite films reinforced with H_2SO_4 -BS MCC at (a) 0, (b) 5,	
	(c)10, (d)15, (e) 20, (f)25, (g)30, and (h)40 wt%	90
Figure 4.19	Biocomposite films reinforced with CM MCC at (a) 0, (b) 5, (c)10,	
	(d)15, (e) 20, (f)25, (g)30, and (h)40 wt%	91
Figure 4.20	SEM micrographs of biocomposite film reinforced with HCI-BG	
	MCC at (a) 0, (b) 5, (c)10, (d)15, (e) 20, (f) 25, (g) 30, and (h) 40	
	wt%	96
Figure 4.21	SEM micrograph of biocomposite film reinforced with $\rm H_2SO_4\text{-}BG$	
	MCC at (a) 0, (b) 5, (c)10, (d)15, (e) 20, (f) 25, (g), 30 and (h) 40	97
	wt%	
Figure 4.22	SEM micrograph of biocomposite film reinforced with HCI-BS	
	MCC at (a) 0, (b) 5, (c)10, (d)15, (e) 20, (f) 25, (g) 30 and (h) 40	
	wt%	98
Figure 4.23	SEM micrograph of biocomposite film reinforced with $\rm H_2SO_4\text{-}BS$	
	MCC at (a) 0, (b) 5, (c)10, (d)15, (e) 20, (f) 25, (g) 30 and (h) 40	
	wt%	99
Figure 4.24	SEM micrographs of biocomposite films reinforced with CM MCC	
	at (a) 0, (b) 5, (c)10, (d)15, (e) 20, (f) 25, (g) 30, and (h) 40 wt%	100
Figure 4.25	The percent haze of biocomposite films at various concentrations	
	of microcrystalline cellulose	103
Figure 4.26	Tensile strength of plasticized starch and biocomposite film	
	reinforcing with bagasse and commercial microcrystalline	
	cellulose	107
Figure 4.27	Tensile strength of plasticized starch and biocomposite film	
	reinforcing with banana stem and commercial microcrystalline	
	cellulose	107
Figure 4.28	Young's modulus of plasticized starch and biocomposite film	
	reinforcing with bagasse, and commercial microcrystalline	
	cellulose	110
Figure 4.29	Young's modulus of plasticized starch and biocomposite film	

xvi

xvii

PAGE

122

reinforcing with banana stem, and commercial microcrystalline

- Figure 4.33 TGA curves of plasticized starch film and biocomposite film reinforcing with banana stems and commercial microcrystalline
- cellulose.....117Figure 4.34DSC thermograms of biocomposite film reinforcing with HCI-BG
- Figure 4.36 DSC thermograms of biocomposite films reinforcing with HCI-BS
- MCC.....122Figure 4.37DSC thermograms of biocomposite films reinforcing with H_2SO_4 -

BS MCC.....

- Figure 4.39Water absorption of plasticized starch and biocomposite films.....125Figure 4.40Physical appearance of biocomposite films reinforcing with HCI-
BG MCC after burial test......128Figure 4.41Physical appearance of biocomposite films reinforcing with
- Figure 4.42 Physical appearance of biocomposite films reinforcing with HCI-

	BS MCC after burial test	132
Figure 4.43	Physical appearance of biocomposite films reinforcing with	
	H_2SO_4 -BS MCC after burial test	133
Figure 4.44	Physical appearance of biocomposite films reinforcing with cm	
	мсс after burial test	134
Figure 4.45	SEM micrographs of the surface of biocomposite films reinforced	
	with HCI-BG microcrystalline cellulose after soil burial test for 6	
	days	136
Figure 4.46	SEM micrographs of the surface of biocomposite films reinforcing	
	with H_2SO_4 -BG microcrystalline cellulose after soil burial test for 6	
	days	137
Figure 4.47	SEM micrographs of the surface of biocomposite films reinforcing	
	with HCI-BS microcrystalline cellulose after soil burial test for 6	
	days	138
Figure 4.48	SEM micrographs of the surface of biocomposite films reinforcing	
	with H_2SO_4 –BS microcrystalline cellulose after soil burial test for	
	9 days	139
Figure 4.49	SEM micrographs of the surface of biocomposite films reinforcing	
	with CM microcrystalline cellulose after soil burial test for 9	
	days	140
Figure 4.50	%weight loss of biocomposite film reinforcing with commercial	
	microcrystalline cellulose	143
Figure 4.51	%weight loss of biocomposite film reinforcing with HCI-BG	
	microcrystalline cellulose	144
Figure 4.52	%weight loss of biocomposite film reinforcing with $\rm H_2SO_4\text{-}BG$	
	microcrystalline cellulose	144
Figure 4.53	%weight loss of biocomposite film reinforcing with HCI-BS	
	microcrystalline cellulose	145
Figure 4.54	%weight loss of biocomposite film reinforcing with $\rm H_2SO_4\text{-}BS$	
	microcrystalline cellulose	145

-

ABBREVIATIONS

HCI-BG	:	Hydrolyzed bagasse from HCI
H₂SO₄-BG	:	Hydrolyzed bagasse from H_2SO_4
HCI-BS	:	Hydrolyzed banana stem from HCI
H₂SO₄-BS	:	Hydrolyzed banana stem from H_2SO_4
СМ	:	Commercial microcrystalline cellulose
MCC	:	Microcrystalline cellulose
XRD	:	X-Ray diffractometer
SEM	:	Scanning elelctron microscope