REFERENCES

- Baxter, A., Dillon, M., Taylor, K.D.A., Roberts, G.A.F. (1992) Improved method for i.r. determination of the degree of N-acetylation of chitosan. <u>International</u> <u>Journal of Biological Macromolecules</u>, 14, 166-169.
- Borcia, G., Anderson, C.A., and Brown, N.M.D. (2003) Dielectric barrier discharge for surface treatment: Application to selected polymers in film and fibre form. <u>Plasma Sources Science and Technology</u>, 12(3), 335-344.
- Borcia, G., Anderson, C.A., and Brown, N.M.D. (2006) Surface treatment of natural and synthetic textiles using a dielectric barrier discharge. <u>Surface and Coatings Technology</u>, 201, 3074-3081.
- Carneiro, N., Souto A.P., Silva, E., Marimba, A., Tena, B., Ferreira, H., and Magalhaes, V., (2001) Dyeability of corona-treated fabrics. <u>Coloration Technology</u>, 117(5), 298–302.
- Chaker, M., Moisan, M., and Zakrzewski, Z. (1986) Microwave and RF surface wave sustained discharges as plasma sources for plasma chemistry and plasma processing. <u>Plasma Chemistry and Plasma Processing</u>, 6(1), 79-96.
- Chu, Paul K., (2006) Plasma surface treatment of artificial orthopedic and cardiovascular biomaterials. <u>Surface and Coatings Technology</u>, 201, 5601– 5606.
- Conrads, H., and Schmidt, M. (2000) Plasma generation and plasma sources. <u>Plasma Sources Science and Technology</u>, 9, 441-454.
- De Geyter, N., Morent, R., Leys, C., (2006) Surface modification of a polyester non-woven with a dielectric barrier discharge in air at medium pressure. <u>Surface and Coatings Technology</u>, 201, 2460-2466.
- De Geyter, N., Morent, R., Leys, C., Gengembre, L., and Payen, E., (2007) Treatment of polymer films with a dielectric barrier discharge in air, helium and argon at medium pressure. <u>Surface and Coatings Technology</u>, 201(16-17), 7066-7075.

- Denes, F.S., and Manolache, S., (2004) Macromolecular plasma-chemistry: an emerging field of polymer science. <u>Progress in Polymer Science</u>, 29, 815-885.
- Dunn, E.T., Li, Q., Grandmaison, E.W., and Goosen, M.F.A. (1997) Applications and properties of chitosan, <u>Applications of Chitin and Chitosan</u> (M.F.A. Goosen, Ed.); Technomic Publishing Company, Inc., Lancaster, PA, 3-29.
- Esena, P., Riccardi, C., Zanini, S., Tontini, M., Poletti, G., and Orsini, F. (2005) Surface modification of PET film by a DBD device at atmospheric pressure. <u>Surface and Coatings Technology</u>, 200, 664 – 667.
- Esena, P., Zanini, S., and Riccardi, C. (2008) Plasma processing for surface optical modifications of PET films. <u>Vacuum</u>, 82, 232-235.
- Fang, S.W., Li, C.F., and Shih, D.Y.C. (1994) Antifungal activity of chitosan and its preservative effect on low-sugar candied kumquat. <u>Journal of Food</u> <u>Protection</u>, 56(2), 136-140.
- Fridman, A., Naster, S., Kennedy, L.A., Savaliev, A., and Mutaf-Yardimci O. (1999) Gliding arc discharge. <u>Journal of Progress in Energy and</u> <u>Combustion Science</u>, 25, 211-213.
- Fridman, A., and Kennedy, L. A. (2004) <u>Plasma Physics and Engineering</u>: Taylor & Francis.
- Gupta, M.C., and Yang, S. (2004) Surface modification of polyethyleneterephthalate by an atmospheric-pressure plasma source. <u>Surface and Coatings</u> <u>Technology</u>, 187, 172–176.
- Hadwiger, L.A., Kendra, D.F., Fristensky, B.W., and Wagoner, W. (1986)
 Chitosan both activates genes in plants and inhibits RNA synthesis in fungi.
 <u>Chitin in Nature and Technology</u> (R. Muzzarelli, C. Jeuniaux, and G.W. Gooday, Eds.); New York; Plenum Press, 209-214.
- Hudson, S.M., and Smith, C., (1998) Polysaccharide: chitin and chitosan: chemistry and technology of their use as structural materials. <u>Biopolymers from</u> <u>Renewable Resources</u> (D.L. Kaplan, Ed.); New York; Springer-Verlag, 96-118.

- Huh, M.W., Kang, I.-K., Lee, D.H., Kim, W.H., Park, L.S., Min, K.E., and Seo, K.H. (2001) Surface characterization and antibacterial activity of chitosan-grafted poly(ethylene terephthalate) prepared by plasma glow discharge. <u>Journal of Applied Polymer Science</u>, 81, 2769-2778.
- Hwang, J.-K., Kim, H.-J., Yoon, S.-J., and Pyun, Y.-R. (1998) Bactericidal activity of chitosan on *E. coli*, <u>Advances in Chitin Science</u>, Vol. III (R. H. Chen and H. C.Chen, Eds); Rita Advertising Co. Ltd., Taiwan, 340-344.
- Kogelschatz, U., (2003) Dielectric-barrier discharges: Their history discharge Physics, and industrial applications. <u>Plasma Chemistry and Plasma Processing</u>, 23(1), 1-46.
- Kruapong, A. (2000) Partial Oxidation of Methane to Synthesis Gas in Low Temperature Plasmas. M.S. Thesis, Chulalongkorn University, Bangkok.
- Latkany, R., Tsuk, A., Sheu, M.-S., Loh, I.-H., and Trinkaus-Randall, V. (1997)
 Plasma surface modification of artificial corneas for optimal epithelialization. Journal of Biomedical Materials Research, 36(1), 29-37.
- Lieberman, M.A., and Lichtenberg, A.J., (1994) <u>Principles of Plasma Discharges and</u> <u>Materials Processing</u>. New York; Wiley.
- Liu, X.F., Guan, Y.L., Yang, D.Z., Li, Z., and Yao, K.D. (2001) Antibacterial action of chitosan and carboxymethylated chitosan. Journal of Applied <u>Polymer Science</u>, 79, 1324-1335.
- Liu, H., Du, Y., Wang, X., and Sun, L. (2004) Chitosan kills bacteria through cell membrane damage. <u>International Journal of Food Microbiology</u>, 95, 147-155.
- McQuarrie, D.A., Rock, P.A. (1987) General Chemistry, New York: Freeman.
- Meister, J. (2000) <u>Polymer Modification : Principles. Technique and Application.</u> New York: Maarcel Dekker.
- Mittal, K.L., ed. (1994) Polymer Surface Modification: Relevance to Adhesion.

Muzzarelli, R.A.A. (1977) Chitin. New York; Pergamon Press.

- Onsuratoom, S. (2008) Silver Coating on Woven PET Surface Modified by Using DBD Plasma Technique for Antimicrobial Property Improvement M.S. Thesis, Chulalongkorn University, Bangkok.
- Park, W.J., Yoon, S.G., Jung, W.S., and Yoon, D.H. (2006) Effect of dielectric barrier discharge on surface modification characteristics of polyimide film. <u>Surface and Coatings Technology</u>, 201, 5017–5020.
- Roberts, G.A.F. (1992) Chitin Chemistry. Macmillan Press Ltd., London.
- Salmon, S., and Hudson, S.M. (1997) Crystal morphology, biosynthesis, and physical assembly of cellulose, chitin, and chitosan. <u>Journal of</u> <u>Macromolecule Science, Part C</u>, 37(2), 199-276.
- Simor, M., Rahel, J., and Emak, M. (2003) Atmospheric-pressure plasma treatment of polyester nonwoven fabrics for electroless plating. <u>Surface and Coatings</u> <u>Technology</u>, 172, 1-6.
- Sudardshan, N.R., Hoover, D.G., and Knorr, D. (1992) Antibacterial action of chitosan. <u>Food Biotechnology</u>, 6(3), 257-272.
- Takahashia, T., Imaia, M., Suzukia, I., Sawai, J., (2007) Growth inhibitory effect on bacteria of chitosan membranes regulated with deacetylation degree. <u>Biochemical Engineering Journal</u>, 40, 485-491.
- Tsai, G.-J., and Su, W.-H. (1999) Antibacterial activity of shrimp chitosan against *Escherichia coli*, Journal of Food Protection. 62(3), 239-243.
- Ulrich, K. (2003) Dielectric-barrier discharges: their history, discharge physics, and industrial applications. <u>Plasma Chemistry and Plasma Processing</u>, 23(1), 1-46.
- Wang, W., Bo, S., Li, S., and Qin, W., (1991) Determination of the Mark-Houwink equation for chitosans with different degree of deacetylation. <u>International</u> <u>Journal of Biological Macromolecules</u>, 13, 281-285.
- Zhang, X., and Bai, R., (2003) Mechanisms and kinetic of humic acid adsorption onto chitosan-coated granules. <u>Journal of Colloid and Interface Science</u>, 264, 30-38.

APPENDICES

Determination of Molecular Weight of Chitosan

Concentration	Time (second)			
(g/100ml)	1	2	3	Average
0.0000	109.31	109.72	109.09	109.3733
0.0125	122.97	123.22	123.16	123.1167
0.0250	137.88	137.97	138,00	137.9500
0.0500	172.75	172.22	172.19	172.3867
0.0750	208,28	208.25	208.50	208.3433
0.1000	248.94	249.03	249.91	249.2933

 Table 1 Running time of solvent and chitosan treated 1st solution

Table 2 Data of relative viscosity (η_{rel}) , specific viscosity (η_{sp}) , and reduced viscosity (η_{red}) of chitosan solution with various concentrations

.

Concentration (g/100 ml)	η_{rel}	η_{sp}	η_{red}	$ln[\eta_{rel}]/c$
0.0000	1.0000	0	-	-
0.0125	1.1257	0.1257	10.0524	9.4692
0.0250	1.2613	0.2613	10.4511	9.2850
0.0500	1.5761	0.5761	11.5226	9.0995
0.0750	1.9049	0.9049	12.0651	8.5923
0.1000	2.2793	1.2793	12.7929	8.2386

Figure 1 Plot of reduced viscosity (η_{sp}/c) and $\ln((\eta_{rel})/c)$ versus concentration of chitosan solution: • = (η_{sp}/c) and o = $\ln((\eta_{rel})/c)$.

$$[\eta] = (6.59 \times 10^{-5}) M^{0.88}$$

where $[\eta]$ = intrincsic viscosity

M = viscosity-average molecular weight

Interception: $[\eta] = 9.703$

From calculation;

$$M^{0.88} = (9.703)/6.59 \times 10^{-5} = 1.47 \times 10^{5}$$

0.88 logM = log[1.47 × 10⁵]
log M = 5.87
M = 7.46 × 10⁵

The viscosity-average molecular weight of chitosan obtained from calculation was 7.46×10^5 g/mol.

Concentration	Time (second)			
(g/100ml)]	2	3	Average
0.0000	109.31	109.72	109.09	109.3733
0.0125	123.85	123.56	123.59	123.6667
0.0250	138.25	138.12	138.28	138,2167
0.0500	171.90	171.75	171.84	171.8300
0.0750	206.00	206.22	206.25	206.1567
0.1000	245.78	245.90	245.78	245.8200

Table 3 Running time of solvent and chitosan treated 2nd solution

Table 4 Data of relative viscosity (η_{rel}) , specific viscosity (η_{sp}) , and reduced viscosity (η_{red}) of chitosan solution with various concentrations

Concentration (g/100 ml)	η_{rel}	η_{sp}	η _{red}	$\ln[\eta_{rel}]/c$
0.0000	1,0000	0	-	-
0.0125	1.1307	0.1307	10.4547	9.8258
0,0250	1.2637	0.2637	10.5486	9.3622
0.0500	1.5710	0.5710	11.4208	9.0348
0.0750	1.8849	0.8849	11.7985	8.4516
0.1000	2.2475	1.2475	12.4753	8.0983

Figure 2 Plot of reduced viscosity (η_{sp}/c) and $\ln((\eta_{rel})/c)$ versus concentration of chitosan solution: $\bullet = (\eta_{sp}/c)$ and $\circ = \ln((\eta_{rel})/c)$.

$$[\eta] = (6.59 \times 10^{-5}) M^{0.88}$$

where $[\eta]$ = intrincsic viscosity

M = viscosity-average molecular weight

Interception: $[\eta] = 10.030$

From calculation;

$$M^{0.88} = (10.030)/6.59 \times 10^{-5} = 1.52 \times 10^{5}$$

0.88 logM = log[1.52 × 10⁵]
log M = 5.89
M = 7.75 × 10⁵

The viscosity-average molecular weight of chitosan obtained from calculation was 7.46×10^5 g/mol.

Concentration	Time (second)			
(g/100ml)	1	2	3	Average
0.0000	109.31	109.72	109.09	109.3733
0.0125	121.28	121.16	121.18	121.2067
0,0250	133.66	133.47	133.82	133.6500
0.0500	160.81	161.06	161.19	161.0200
0.0750	191.24	191.15	191.16	191.1833
0.1000	225.25	225.75	225.53	225.5100

Table 5 Running time of solvent and chitosan treated 3rd solution

Table 6 Data of relative viscosity (η_{rel}) , specific viscosity (η_{sp}) , and reduced viscosity (η_{red}) of chitosan solution with various concentrations

Concentration (g/100 ml)	η_{rel}	η_{sp}	η _{red}	$ln[\eta_{rel}]/c$
0.0000	1.0000	0	-	-
0.0125	1.1082	0.1082	8.6650	8.2184
0.0250	1.2220	0.2220	8.8785	8.0183
0.0500	1.4722	0.4722	9.4441	7.7352
0.0750	1.7480	0.7480	9.9721	7.4462
0,1000	2.0618	1.0618	10.6184	7.2360

Figure 3 Plot of reduced viscosity (η_{sp}/c) and $\ln((\eta_{rel})/c)$ versus concentration of chitosan solution: • = (η_{sp}/c) and o = $\ln((\eta_{rel})/c)$.

$$[\eta] = (6.59 \times 10^{-5}) M^{0.88}$$

where $[\eta]$ = intrincsic viscosity

M = viscosity-average molecular weight

Interception: $[\eta] = 8.331$

From calculation;

 $M^{0.88} = (8.331)/6.59 \times 10^{-5} = 1.26 \times 10^{5}$ 0.88 logM = log[1.26 × 10⁵] log M = 5.10 M = 6.27 × 10⁵

The viscosity-average molecular weight of chitosan obtained from calculation was 6.27×10^5 g/mol.

Concentration	Time (second)			
(g/100ml)	1	2	3	Average
0.0000	109.31	109.72	109.09	109.3733
0.0125	118.93	118.92	118.98	118.9433
0.0250	129.15	128.84	129.03	129.0067
0.0500	151.47	151.64	151.38	151.4967
0.0750	176.78	176.65	176.85	176.7600
0.1000	204.99	204.89	204.98	204.9533

 Table 7 Running time of solvent and chitosan treated 4th solution

÷.

Table 8 Data of relative viscosity (η_{rel}), specific viscosity (η_{sp}), and reducedviscosity (η_{red}) of chitosan solution with various concentrations

Concentration	η_{rel}	η_{sp}	η _{red}	$ln[\eta_{rel}]/c$
(g/100 ml)				
0.0000	1.0000	0	-	-
0.0125	1.0875	0.0875	6.9999	6.7104
0.0250	1.1795	0,1795	7.1803	6.6039
0.0500	1.3851	0.3851	7.7027	6.5159
0.0750	1.6161	0.6161	8.2149	6.4003
0.1000	1.8739	0.8739	8.7389	6.2802

Figure 4 Plot of reduced viscosity (η_{sp}/c) and $\ln((\eta_{rel})/c)$ versus concentration of chitosan solution: • = (η_{sp}/c) and o = $\ln((\eta_{rel})/c)$.

$$[\eta] = (6.59 \times 10^{-5}) M^{0.88}$$

where $[\eta]$ = intrincsic viscosity

M = viscosity-average molecular weight

Interception: $[\eta] = 6.741$

From calculation;

$$M^{0.88} = (6.741)/6.59 \times 10^{-5} = 1.02 \times 10^{5}$$

0.88 logM = log [1.02 × 10⁵]
log M = 5.69
M = 4.90 × 10⁵

The viscosity-average molecular weight of chitosan obtained from calculation was 4.90×10^5 g/mol.

Figure 5 C1s XPS spectra of woven PET.

Figure 6 C1s XPS spectra of PET film.

Figure 7 N1s XPS spectra of chitosan-coated PET film (a) PET film coated with 0.5 % chitosan concentration, and (b) PET film coated with 2.0% chitosan concentration.

Figure 8 SEM images of PET film (a) without chitosan coating, (b) non-plasma treatment with 1.0% chitosan coating, and (c) plasma treatment with 1.0% chitosan coating.

a.) Chitosan 0.5%, with 85% DD

b.) Chitosan 1.0%, with 85% DD

Figure 9 Effects of concentration of chitosan solutions and degree of deacetylation (%DD) on clear zone distance for *S. aureus*. For a. and b., the woven PET is submerged in chitosan solutions with 85% degree of deacetylation and in c. and d. the woven PET is submerged in chitosan solutions with 98% degree of deacetylation.

b.) Chitosan 1.0%, with 85% DD

c.) Chitosan 0.5%, with 98% DD

d.) Chitosan 1.0%, with 98% DD

Figure 10 Effects of concentration of chitosan solutions and degree of deacetylation (%DD) on clear zone distance for *E.coli*. For a. and b., the woven PET is submerged in chitosan solutions with 85% degree of deacetylation and in c. and d. the woven PET is submerged in chitosan solutions with 98% degree of deacetylation.

Chitosan concentration	Number of washing cycle	Amount of chitosan on
(a/100 ml)	(Times)	woven PET (wt. of
(g/100 m)	(Times)	chitosan (mg/g of sample)
	0	12.104
	1	10.902
	2	9.497
0.5	3	8.131
	4	8.090
	5	8.117
	0	22.620
	1	20.360
	2	17.641
1	3	15.605
	4	15.640
	5	15.617
	0	27.174
	1	23.749
	2	20.360
2	3	18.294
	4	18.357
	5	18.388

 Table 9 Effect of the number of washing cycle on amount of chitosan on woven PET

Chitosan concentration (g/100 ml)	[Chitosan] after digestion (mg)	[Chitosan] on woven PET (wt. of chitosan (mg/g of sample)
0.1	0.4034	2.025
0.2	1.1301	5.745
0.5	2.423	12.104
0.75	3.392	17.545
1	4.523	22.621
2	5.411	27.302
3	5.572	27.688
4	5.598	27.730

Table 10 Amount of chitosan on woven PET at various chitosan concentrations.

 Table 11 Effect of the temperature on coating on amount of chitosan on woven PET

Chitosan concentration	Temperature	Amount of chitosan on
(g/100 ml)	(°C)	woven PET (wt. of chitosan (mg/g of sample)
0.1	Room temp. (25 °C)	2.025
	50	2.018
0.5	Room temp. (25 °C)	12.100
	50	12.190
1.0	Room temp. (25 °C)	23.100
	50	22.620

CURRICULUM VITAE

Name: Ms. Pannee Sophonvachiraporn

Date of Birth: November 5, 1980

Nationality: Thai

University Education:

1999-2003 Bachelor Degree of Medical Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand

Working Experience:

2003-2007 Position: Medical Technologist Company name: Yanhee International Hospital

Proceedings:

- Sophonvachiraporn, P., Rujiravanit, R., Chavadej, S., Sreethawong, T., and Tokura, S. (2008, August 19-20) Surface modification of woven PET by dielectric barrier discharge (DBD) plasma technique for antimicrobial property improvement. <u>Proceedings of Thai-Japan Joint Symposium on Advances in</u> <u>Materials Science and Environmental Technology</u>, Bangkok, Thailand.
- Sophonvachiraporn, P., Rujiravanit, R., Chavadej, S., Sreethawong, T., and Tokura, S. (2009, April 22) Chitosan coating on a woven PET surface modified by DBD plasma technique for antimicrobial property improvement. <u>The 15th PPC</u> <u>Symposium on Petroleum, Petrochemicals. and Polymers</u>, Bangkok, Thailand.

