DEVELOPMENT OF NOVEL CARBON FOAM DERIVED FROM PHENOL-ETHYLENEDIAMINE BENZOXAZINE PRECURSOR

Somkiat Sreewanichwipat

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University 2009

522041

11111111

Thesis Title:	Development of Novel Carbon Foam Derived from Phenol-
	Ethylenediamine Benzoxazine Precursor
By:	Somkiat Sreewanichwipat
Program:	Polymer Science
Thesis Advisors:	Dr. Thanyalak Chaisuwan
	Asst. Prof. Sujitra Wongkasemjit

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

..... College Dean (Asst. Prof. Pomthong Malakul)

Thesis Committee:

Thanyalde Chaisuwe

(Dr. Thanyalak Chaisuwan) Sigilio Wergkase

(Assoc. Prof. Sujitra Wongkasemjit)

B. Kitiyanan_

(Asst. Prof. Boonyarach Kitiyanan)

B. Km

(Asst. Prof. Bussarin Ksapabutr)

ABSTRACT

5072018063:	Polymer Science Program
	Somkiat Sreewanichwipat: Development of Novel Carbon Foam
	Derived from Phenol-Ethylenediamine Benzoxazine Precursor
	Thesis Advisors: Dr. Thanyalak Chaisuwan, and Asst. Prof. Sujitra
	Wongkasemjit 56 pp.
Keywords:	Benzoxazine monomer/ Carbon foam/ Organic foam/
	Polybenzoxazine/ Blowing agent/AZD or ACD

Carbon foam is prepared by using phenol-ehtylenediamine benzoxazine as an organic precursor and azodicarbonamide (AZD) as a blowing agent. The effects of AZD concentration and polymerization rate on the porous structure and density of organic foams have been investigated. From DSC results, it has been found that the exothermic peaks of organic foam have shifted to lower temperature when the AZD concentration is increased. It is believed that AZD also acts as catalyst for benzoxazine ring-opening polymeriazation.

บทคัดย่อ

สมเกียรติ ศรีวานิชวิพัฒน์ : การพัฒนาโฟมของการ์บอนที่ทำมาจากสารตั้งตัน ฟีนอล เอทิลลีนใดเอมีน เบนซอกซาซีน (Development of Novel Carbon Foam Derived from Phenol-Ethylenediamine Benzoxazine Precursor) อ.ที่ปรึกษา: คร.ธัญญลักษณ์ ฉายสุวรรณ์ และ รองศาสตราจารย์ คร.สุจิตรา วงษ์เกษมจิตต์ 56 หน้า

โฟมของการ์บอน สามารถเตรียมมาจาก ฟีนอล เอทิลลีนไคเอมีน เบนซอกซาซีน กับ เอ โซไดการ์โบนนาไมด์ ซึ่งเป็นสารที่ทำให้เกิดฟองก๊าซ ผลของความเข้มข้นของเอโซไดการ์โบนา ไมค์ และ อัตราการให้ความร้อนการบ่มฟีนอลเอทิลลีนไดเอมีน เบนซอกซาซีน มีผลต่อโครงสร้าง, ความหนาแน่นของโฟมของออร์แกนนิค ถูกตรวจสอบ ผลของ DSC แสดงให้เห็นว่า อุณหภูมิการ บ่มของ ฟีนอล เอทิลลีนไดเอมีน เบนซอกซาซีน ขยับไปทางอุณหภูมิที่ต่ำกว่าจากเดิม เมื่อเพิ่มความ เข้มข้นของสารที่ทำให้เกิดฟองก๊าซ ผลของ DSC ทำให้เชื่อว่าสารทำให้เกิดฟองก๊าซ ทำหน้าที่เป็น ตัวเร่งปฏิกิริยาในพอลิเมอไรเซชั่นแบบเปิดวงของพอลิเบนซอกซาซีน

ACKNOWLEDGEMENTS

The author would like to thank Dr. Thanyalak Chaisuwan, his advisor, who not only originated this work, but also gave his continuous supports, good suggestions, intensive recommendations and for the help, patience, encouragement she has shown during his one year in her research group.

He would like to express his appreciation to Associate Professor Sujitra Wongkasmjit for the strong supports, worth advices, her kindness and concerns during her stays in PPC. He would like to show gratitude to co-advisor.

He wishes to thank his thesis committee Associate Professor Boonyarach Kitiyana and Dr. Bussarin Ksapabutr for their suggestions and invaluable guidances.

His thanks are also to all Sujitra and Thanyalak group's group members both her seniors and his friends for their helps, good suggestions, friendship and all the good memories.

He would like to thank PPC ; the National Center of Excellence for Petroleum, Petrochemicals, and Advanced Materials ; Ratchadapisek Sompote Research Funds, Chulalongkorn University for financial support of this research.

Last, but not least, he thanks his family for giving his life, for educating and unconditional support to pursue his interests and also for their love and encouragement.

TABLE OF CONTENTS

Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	iv
Acknowledgements	v
Table of Contents	vi
List of Schemes	ix
List of Tables	x
List of Figures	xi
Abbreviations	xiv

CHAPTER

I INTRODUCTION

PAGE 1

PAGE

II	LITERATURE REVIEW	2
	2.1 Polybenzoxazine	2
	2.2 Blowing agents	5
	2.2.1 Physical blowing agents (PBAs)	5
	2.2.2 Chemical blowing agents (CBAs)	5
	2.2.2.1 Inorganic blowing agents	7
	2.2.2.2 Organic blowing agents	7
	2.3 Foams	8
	2.3.1 Classification of cellular polymer	9
	2.3.1.1 Closed cell foams	9
	2.3.1.2 Opened cell foams	10
	2.3.2 Principle of foam formation	12
	2.3.2.1 Bubble formation	12
	2.3.2.2 Bubble growth	14
	2.3.2.3 Bubble stabilization	16

	2.3.3 Cellular structure	17
	2.3.4 General properties of cellular polymer	19
	2.4 Carbon foams	24
Ш	EXPERIMENTAL	25
	3.1 Materials	25
	3.1.1 Phenol	25
	3.1.2 Ethylenediamine	25
	3.1.3 Para-formaldehyde	25
	3.1.4 Azodicarbonamide (ADC or AZD)	25
	3.2 Equipment	25
	3.2.1 Fourier Transform Infrared Spectroscopy (FTIR)	25
	3.2.2 Differential Scanning Calorimetry (DSC)	25
	3.2.3 Scanning Electron Microscope (SEM)	26
	3.2.4 Mechanical and Physical Properties Testing	26
	3.2.5 Thermogravimatic Analysis (TGA)	26
	3.2.6 Bruuauer-Emmett-Teller (BET)	26
	3.3 Methodology	26
	3.3.1 Preparation of Phenol-ethylenediamine monomer	26
	3.3.2 Preparation of Organic foams	27
	3.3.3 Preparation of Carbon foams	27
IV	DEVELOPMENT OF NOVEL CARBON FOAM	
	DERIED FROM PHENOL- ETHYLENEDIAMINE	
	BENZOXAZINE PRECURSOR	28
	4.1 Abstract	28
	4.2 Introduction	29
	4.3 Experimental	30
	4.3.1 Materials	30
	4.3.2 Measurements	30
	4.3.3 Methodology	31
	4.4 Results and Discussion	32

CHAPTER		PAGE
IV DEVELOPMENT OF NOVEL CARBON FOA	Μ	
DERIED FROM PHENOL- ETHYLENEDIAN	AINE	
BENZOXAZINE PRECURSOR		
4.5 Conclusions		47
4.6 Acknowledgement		47
4.7 References		48
V CONCLUSIONS AND RECOMMENDATION	S	50
REFERENCES		51
APPENDIX	Ŧ Ĕ	53
Appendix A DSC of P-eda mixed wt% of AZD		53
CURRICULUM VITAE	-	55

LIST OF SCHEMES

SCHEME		PAGE
	CHAPTER III	
3.1	Azodicarbonamide	25
3.2	Phenol-ethylenediamine benzoxazine precursor	27
	CHAPTER IV	
4.1	Azodicarbonamide	30
4.2	Phenol-ethylenediamine benzoxazine precursor	31
4.3	Decomposition reaction of AZD	35

LIST OF TABLES

TABLE		PAGE	
	CHAPTER IV		
4.1	Thermogravimetric analysis results of poly(p-eda) and organic	41	
	foams		
4.2	Surface area of carbon foam made from 20 wt% of AZD	44	

LIST OF FIGURES

FIGURE		PAGE
	CHAPTER II	
2.1	Synthesis and thermal ppolymerization of a benzoxazine	3
	monomer	
2.2	Comparison of the network structure of a bisphenol-A	4
	based polybenzoxazine and linear aliphatic diamine-	
	based polybenzoxazine.	
2.3	Structure and nomenclature used for the series of linear	4
	aliphatic diamine-based benzoxazine monomer	
2.4	Closed cell foam structures (a) discrete cells dispersed in	10
	foam, e.g. syntactic foam (b) cells in contact with each	
	other, e.g. expanded polystyrene foam	
2.5	Idealised representation of open cell foam structure	10
2.6	Schematic representation of the gas structure element	11
2.7	Schematic representation of cellular structures at different	15
	stages of foam expansion	
2.8	A pentagonal dodecahedron cell structure	17
2.9	Representation of cell elongation during foam rise	18
2.10	Schematic representation of open cell deformation	20
2.11	Schematic representation of close cell deformation	21
2.12	Typical compressive stress-strain curve for flexible foams	21
2.13	Typical compressive stress-strain curve for rigid foams	22
2.14	Effect of polymer composition on the compressive	23
	behavior of some polymeric foams with densities of 32	
	kg·m ⁻³ (A) PS foam, (B) PE foam, (C) latex rubber foam	
	CHAPTER IV	

xi

PAGE

	CHAPTER IV	
4.2	SEM micrographs of organic foam with: 1(a), 5(b), 10(c)	33
	and 20 wt%(d) of AZD prepared at the heating rate of	
	3.00°C/min	
4.3	Maximum exothermic temperature as a function of AZD	34
	concentrations	
4.4	SEM micrographs of organic foams with 10 wt% of	36
	AZD, 0.50(a), 0.75(b), 1.00(c), 2.00(d) and	
	3.00(e) °C/min	
4.5	Maximum exothermic temperatures as a function of AZD	37
	concentrations	
4.6	Effect of AZD contents on the density of organic foams	38
	(prepared heating rate of 1.00°C/min)	
4.7	Effect of heating rate on the density of organic foams	38
	(prepared with 10 wt% of AZD)	
4.8	Specific compressive strength (SpC) and maximum	39
	compressive strength of organic foam at varied	
	concentration of AZD	
4.9	Specific compressive strength (SpC) and maximum	40
	compressive strength of organic foams wih 10 wt% of	
	AZD varied heating rates	
4.10	TGA of organic foams prepared at heating rate of	41
	1.00°C/min and varied contents of AZD	
4.11	SEM micrographs of the carbon foams with 10 wt% of	42
	AZD (a-e) at various heating rate from 0.50-3.00°C/min	
4.12	SEM micrographs of the carbon foams with 20 wt% of	43
	AZD (a-e) at various heating rate from 0.50-3.00 °C/min	
4.13	Isotherm of carbon foam made from organic foam with	44
	20 wt% of AZD and 1.00°C/min	

FIGURE

FIGURE

PAGE

	CHAPTER IV		
4.14	Isotherm of carbon foam made from organic foam with	45	
	20 wt% of AZD and 3.00°C/min		
4.15	PSD of carbon foam made from organic foam with 20	46	
	wt% of AZD and 1.00°C/min		
4.16	PSD of carbon foam made from organic foam with 20	46	
	wt% of AZD and 3.00°C/min		

ABBREVIATIONS

ADC	azodicarbonamide
ATBN	amine-terminated butadiene-acrylonitrile rubber
AZD	azodicarbonamide
BA	blowing agent
CBA	chemical blowing agent
CFC	chloroflurocarbon
CTBN	carboxyl-terminated butadiene-acrylonitrile rubber
DSC	differential scanning calorimeter
EPS	expanded polystyrene
FTIR	fourier transform spectroscopy
P-eda	phenol-ethylenediamine benzoxazine
PTFE	polytetrafluoroethylene
PCL	polycapolactone
PBA	physical blowing agent
PC	polycarbonate
PF	phenol
PS	polystyrene
PSD	pore size distributon
PU	polyurethane
pPVC	poly(vinyl chloride)
SEM	scanning electron microscopy
SpC	specific compressive strength
TGA	thermalgravimatic analysis
Tg	transition temperature