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ABSTRACT

4892008063:  Polymer Science Program
Tuspon Thanpitcha: Synthesis and Characterization of Polyaniline
Nanoparticles by using Template Technique.
Thesis Advisors: Assoc. Prof. Ratana Rujiravanit and
Prof. Alexander M. Jamieson 206 pp.
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Various morphologies of polyaniline (PANI) nanoparticles, including
nanofibrils, dendites, and spheres, were synthesized by oxidative polymerization of
aniline in the presence of different types of templates those are chlorophylin,
carboxymethyl chitin (CM-chitin), and partially cross-inked carboxymethyl chitin,
respectively. The pristine PANI nanoparticles are obtained after removing the
templates by simply washing with specific solvents. Contrary, irregularly-shaped
aggregates with a diameter greater than . gm are obtained by using the conventional
method (without the addition of templates). Molecular characterizations (including
UV-vis, FTIR, TGA, and XRD) suggest an identical structure between PANI
synthesized with and without templates. The morphology and size of the synthesized
PANI products are also dependent on various parameters, e.g. structure of the
template materials, the ratio of monomer to template, and the synthetic conditions.
CM-chitin template can be applied to synthesize a spherical shape of polypyrrole
(PPY) nanoparticles as well. In a preparation of nanocomposite films, it is further
explored that the synthesized PPY nanoparticles are better dispersed in the CM-chitin
matrix than that ofthe conventional particles. Rheological measurements indicate that
the addition of PPY nanoparticles can decrease the viscosity of alginate. In contrast,
the increase of suspension viscosity is observed when adding the larger size of
conventional PPY in alginate. The distinct rheological behaviours are influenced by
the size of PPY nanoparticles aswell & the electronic state of PPY nanoparticles.
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