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Ethylene oxide is a valuable chemical feedstock in producing many
industrial chemicals, such as ethylene glycol, solvents, antifreezes, and adhesives.
Hence, the partial oxidation of ethylene to ethylene oxide, so-called ethylene
epoxidation, has been of great interest in many global research studies. In this work,
the epoxidation of ethylene under a cylindrical dielectric barrier discharge (DBD)
reactor was initially studied to find the optimum operating conditions and then was
compared with that under a parallel DBD reactor. For the cylindrical DBD system, it
was found that the ethylene oxide yield increased with decreasing O=/C.H. molar
ratio, under the o - -lean condition, and decreasing feed flow rate; however, there were
optimum applied voltage and input frequency to obtain the highest ethylene oxide
yield. The highest ethylene oxide yield of 2.41% was achieved when an 0./C.H.
molar ratio of 0.25:1 (1:4), an applied voltage of 15 kv, an input frequency of 500
Hz, a feed flow rate of 50 cms/min, and electrode gap distance of 5 mm were used.
Under these optimum conditions, the power consumption was found to be 12.72x10'
s ! olecule of ethylene oxide produced. The optimum conditions were used to
comparatively investigate the epoxidation performance with the parallel DBD
system. It was found that at the optimum conditions, the cylindrical DBD system still
exhibited higher epoxidation performance. Therefore, the cylindrical DBD system
was found to exhibit a high potential to produce ethylene oxide from ethylene
epoxidation reaction.
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