ผลการกระตุ้นและยับยั้งของ TGF-β1 และ BMP2/4 ต่อคุณสมบัติของเชลล์ต้นกำเนิด กระจกตา

นางสาวศริยา แจ่มจันทร์

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาวิทยาศาสตร์การแพทย์ คณะแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2552 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

EFFECTS OF TGF- β 1, BMP2/4 AND THEIR ANTAGONISTS ON LIMBAL STEM CELL PROPERTIES

Miss Sariya Jamjun

×

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Science Program in Medical Science
Faculty of Medicine
Chulalongkorn University
Academic Year 2009
Copyright of Chulalongkorn University

Thesis Title	EFFECTS OF TGF- β 1, BMP2/4 AND THEIR ANTAGONISTS ON
	LIMBAL STEM CELL PROPERTIES
Ву	Miss Sariya Jamjun
Field of Study	Medical Science
Thesis Advisor	Assistant Professor Nipan Israsena Na Ayuthaya, M.D., Ph.D.
Acce	pted by the Faculty of Medicine, Chulalongkorn University in Partial
Fulfillment of the Rec	quirements for the Master's Degree
	Dean of the Faculty of Medicine
1)	Professor Adisorn Patradul, M.D.)
THESIS COMMITTEE	Chairman Associate Professor Poonlarp Cheepsunthorn, Ph.D.)
	Thesis Advisor Assistant Professor Nipan Israsena Na Ayuthaya, M.D., Ph.D.) Examiner Assistant Professor Kanya Suphapeetiporn, M.D., Ph.D.) Examiner
(4	Amornpun Sereemaspun, M.D., Ph.D.)
	Middle Lityanul External Examiner Professor Yindee Kitiyanant, D.V.M.)

ศริยา แจ่มจันทร์: ผลการกระตุ้นและยับยั้งของ TGF-β1 และ BMP2/4 ต่อคุณสมบัติของเซลล์ ต้นกำเนิดกระจกตา (EFFECTS OF TGF-β1, BMP2/4 AND THEIR ANTAGONISTS ON LIMBAL STEM CELL PROPERTIES) อ. ที่ปรึกษาวิทยานิพนธ์หลัก: ผศ.ดร.นพ.นิพัญจน์ อิศรเสนา ณ อยุธยา, 73 หน้า.

เซลล์ตันกำเนิดทุกชนิดต้องการสภาพแวดล้อมที่เหมาะสมต่อการอยู่รอดและคง คุณสมบัติของเซลล์ต้นกำเนิด (microenvironment หรือ niche) แม้ว่าในปัจจุบันงานวิจัยส่วนใหญ่เชื่อว่า เซลล์ตันกำเนิดของกระจกตาอยู่ในบริเวณ limbus อย่างไรก็ตาม ยังไม่ทราบแน่ชัดถึงกลไกการถ่ายทอด สัญญาณระดับโมเลกุลในการการควบคุมบทบาทของเซลล์ต้นกำเนิดเพื่อรักษาสมดุลของเซลล์ทั้งใน สภาวะปกติและสภาวะที่มีการบาดเจ็บหรือเสื่อมสภาพ ในงานวิจัยนี้ได้ศึกษาถึงผลของ TGF-β1 ซึ่งเป็น growth factor ที่มีบทบาทสำคัญในกระบวนการรักษาบาดแผลของกระจกตา จากการทดลองพบว่า TGF-β1 กระตุ้นให้เกิดการเปลี่ยนแปลง epithelial-to-mesenchymal transition (EMT) ของเซลล์กำเนิด ส่งผลให้เซลล์มีการเคลื่อนตัวและสูญเสียความสามารถในการแบ่งตัวของเซลล์ผิวกระจกตา ในทางตรงกันข้าม เมื่อมีการยับยั้งการส่งสัญญาณของ TGF-β ด้วย SB431542 (TGF-β inhibitor) พบว่ากลับช่วยคงคุณสมบัติของเซลล์ต้นกำเนิด นอกจากนี้ยังพบว่า TGF-β1 มีผลกระตุ้นการแสดงออก ของ BMP antagonists ได้แก่ noggin, gremlin, chordin และ follistatin ทั้งในชั้น epithelium และ stroma ของ limbus ทำให้สนใจที่จะศึกษาผลของ BMP signaling ภายใน limbal niche โดยสร้างเซลล์ พี่เลี้ยงให้มีการแสดงออกของ BMP4 (3T3-BMP4) และ noggin (3T3-Noggin) จากการศึกษานี้แสดงให้ เห็นว่า 3T3-BMP4 สามารถช่วยรักษาสภาพของเซลล์พร้อมกับการเพิ่มจำนวนอย่างรวดเร็วของเซลล์ผิว กระจกตา รวมถึงความสามารถในการแบ่งตัวและเกิดเป็นโคโลนีของเซลล์ต้นกำเนิดได้ดีกว่าการใช้ 3T3 feeders ทั่วไป อย่างไรก็ตาม แม้จะพบว่า 3T3-Noggin ช่วยเพิ่มความสามารถในการเกิดเป็นโคโลนีของ เซลล์ต้นกำเนิดกระจกตา ในขณะเดียวกันพบว่า noggin สามารถเหนียวนำการเกิด EMT ได้ส่วนหนึ่ง จึงทำให้ลดความสามารถในการเพิ่มจำนวนของ limbal epithelial cells เมื่อเพาะเลี้ยงไปได้ระยะเวลา หนึ่ง และจากการวิจัยนี้ยังพบว่า กลไกในการยับยั้ง EMT และการคงคุณสมบัติของเซลล์ผิวกระจกตา ของ BMP นั้นเกี่ยวข้องกับการส่งสัญญาณผ่าน transcription factors Id-1 และ Id-2 จากผลการวิจัยนี้ แสดงให้เห็นถึงบทบาทสำคัญในการควบคุมการถ่ายทอดสัญญาณในระดับโมเลกุลภายใน นำไปสู่การพัฒนาระบบการเพาะเลี้ยงเซลล์ต้นกำเนิดกระจกตาให้มีประสิทธิภาพและเพียงพอต่อการ นำไปใช้ปลูกถ่ายให้แก่คนไข้ที่สูญเสียการมองเห็นอีกจำนวนมาก

สาขาวิชา	วิทยาศาสตร์การแพทย์	ลายมือชื่อนิสิต	ศาริรา	เขาขาน	
ปีการศึกษา	2552	ลายมือชื่ออ.ที่ปรึกษ	าวิทยานิพนธ์	หลัก	

5074829630: MAJOR MEDICAL SCIENCE

KEYWORDS : LIMBAL STEM CELL / NICHE SIGNALING / BMP / $TGF-\beta$

SARIYA JAMJUN: EFFECTS OF TGF- β 1, BMP2/4 AND THEIR ANTAGONISTS ON LIMBAL STEM CELL PROPERTIES. THESIS ADVISOR: ASST. PROF. NIPAN

ISRASENA NA AYUTHAYA M.D. Ph.D. 73 pp.

Stem cells maintenance and function in vivo are controlled by various factors provided by its unique local microenvironment or niche. Although the concept that corneal epithelial stem cells reside mainly in the limbus region has been widely accepted, the molecular mechanism how limbal niche signals govern limbal epithelium stem cells (LESCs) behavior during tissue homeostasis and corneal injury is not well understood. Here we showed that transforming growth factor beta (TGF- β), one of the most important growth factors in corneal wound healing triggered epithelial-to-mesenchymal transition change in LESCs resulted in cells adopted migratory phenotype and lost capability to generate corneal epithelial cells. Inhibition of TGF- β signaling by SB431542, in contrast, promoted stem cell maintenance. TGF-β1 also stimulated expression of BMP antagonists, especially noggin, in limbal stromal fibroblasts and limbal epithelium. To analyze the effect of niche derived BMP signals, we compared the capability of regular 3T3, 3T3 overexpressing BMP4 and noggin feeder systems in maintaining LESCs and studied how each feeder type affected gene expression profile of limbal epithelium. Our data demonstrated that 3T3-BMP4 had superior capability in maintaining epithelial progenitor phenotype, LESCs proliferation and increasing colony forming efficiency (CFE) compared with control 3T3. Although 3T3-Noggin increased clonogenic potential of primary LESCs, it partially promoted EMT change resulted in a marked reduction in their ability to generate epithelial cells upon serial passages. The effect of BMP4 in preventing EMT change and promoting epithelial phenotype maintenance probably be mediated by transcription factors Id-1 and Id-2, inhibitors of differentiation. Our data suggested that modulating niche signals could eventually lead to a way to improve the method for ex vivo expansion of LESCs for therapy.

Field of Study: Medical Science	Student's Signature	Sariya	Jamjun
Academic Year: 2009	Advisor's Signature	11:	

ACKNOWLEDGEMENTS

The author wishes to express her deep gratitude and sincere appreciation to her advisor, Assistant Professor Nipan Israsena, M.D., Ph.D. Department of Phamacology, Faculty of Medicine, Chulalongkorn University, for his continuous encouragement, invaluable guidance and moral support throughout this research period. Appreciation is also extended to the committee members: Associate Professor Poonlarp Cheepsunthorn, Professor Yindee Kitiyanant, Assistant Professor Kanya Suphapeetiporn, and Dr. Amornpun Sereemaspun, for their support, advice, and discussion which were of great help in completion this study.

The author would like to convey special thanks and sincere appreciation to Dr. Usanee Reinprayoon, M.D., Fellow of the corneal unit, Ophthalmology Department and the Department of Ophthalmology Teams Faculty of Medicine, Chulalongkorn University for the section of limbal tissue samples.

The author is extremely thankful to all Stem Cell and Cell Therapy Research Unit members for their kindness, worth-while suggestions and help, friendship and all good memories.

Special thanks are extended to Mr. Preecha Ruangvejvorachai and Miss Wanlapa Wongtabtim, Department of Pathology, Faculty of Medicine, Chulalongkorn University for their precious support and advice about tissue section and immunostaining techniques.

Finally, the author expresses her greatest appreciation to her parents who continue to be a source of spirit and strong encourangement to her.

CONTENTS

	Page
Abstract (Thai)	IV
Abstract (English)	V
Acknowledgements	VI
Contents	VII
List of Tables	IX
List of Figures	Χ
List of Abbreviations	XII
Chapter	
I. Introduction	1
Background and Rationale	1
2. Research Questions	4
3. Objectives	4
4. Hypothesis	4
II. Background and Related Literatures	5
1. Stem cells	5
2. Limbal epithelial stem cells	5
3. Putative limbal eoithelial stem cells-associated molecular markers	8
3.1. Putative LESC markers	8
3.1.1. ATP-binding cassette transporter (ABCG2)	8
3.1.2. Δ Np63α	9
3.1.3. Integrin $\alpha 9$	9
3.1.4. Cytokeratin K19	9
3.1.5. N-cadherin	9
3.1.6. CCAAT/enhancer binding protein $oldsymbol{\delta}$	10
3.2. Corneal epithelial differentiation markers	10
3.2.1. Cytokeratin K3 and K12	10
3 2 2 Conneyin 43 (Cv/3)	10

	VIII
4. Limbal epithelial stem cell niche	10
5. Niche signaling in limbal epithelial stem cells	12
5.1. Wnt/β-catenin signaling	13
5.2. Notch signaling	13
5.3. Bone morphogenetic protein (BMP) signaling	15
5.4. Transforming Growth Factor β signaling	18
6. Epithelial-to-Mesenchymal Transition (EMT)	20
7. Inhibitor of differentiation/DNA binding (Id)	20
8. Cell cycle regulation	22
III. Materials and Methods	23
1. Isolation and cultivation of limbal epithelial cells	23
2. Isolation and cultivation of limbal stromal cells	23
3. Preparation of 3T3 fibroblast	24
4. Preparation of BMP and BMP antagonist (Noggin) overexpression	
in 3T3	24
5. Colony forming assay	25
6. RNA extraction	25
7. Complementary DNA (cDNA) synthesis	26
8. Semi-quantitative RT-PCR analysis	26
9. Quantitative Real-Time PCR analysis	26
10. Western blot	27
11. Immunofluorescence staining	27
12. Statistical analysis	28
IV. Results	29
V. Discussion and Conclusion	54
References	59
Appendices	68
Appendix A Table of primer sequences	69
Appendix B Western blot reagents	71
Biography	73

LIST OF TABLES

Table		Page
1	Clonal morphology and clonogenic capacity of LESCs	30
2	Colony forming efficiency (%CFE) of LESCs cultured in TGF- β 1	
	and TGFβ inhibitor (SB431542) treatment conditions	. 31
3	Determination of the clonogenic capacity and an average diameter of	
	limbal colonies on each 3T3 feeder type	. 40
4	Morphology and an average size of human LESCs colony formation on	
	each 3T3 feeder type	. 41
5	Colony forming efficiency (%CFE) of secondary limbal epithelial cells	
	from primary clones on 3T3 and 3T3-Noggin	43
6	The morphology and an average diameter of human limbal colonies	
	cultured with and without BMP2 treatments	. 49
7	Colony forming efficiency (%CFE) of human limbal epithelial cells	
	in each culture condition	. 50
8	Determination of clonal morphology and clonogenic capacity of	
	the cultured limbal colonies in with and without noggin treatment	
	conditions	. 51

LIST OF FIGURES

Figure		Page
1	Location of the limbus	6
2	Light microscopic overview of the limbal explants	7
3	Limbal epithelial stem cells are normally located in the basal layers of	
	the limbus	8
4	Hypothetical scheme of limbal stem cell niche	12
5	BMP signaling through Smad proteins	16
6	The correlation of colony number and colony diameter of LESC colonies	
	cultured in untreated and SB431542-treated conditions	32
7	Expression of $\Delta \text{Np63}\alpha$ in the culture LESC colonies	33
8	Quantitative Real-time PCR analysis of relative mRNA levels of EMT-	
	related genes expression	34
9	Quantitative Real-time PCR analysis of relative mRNA levels of ABCG2,	
	p21 ^{Cip1} , Id-1 and Id-2 in the cultured limbal colonies	35
10	Quantitative Real-time PCR analysis of relative mRNA levels of BMP	
	antagonists	37
11	Immunofluorescent staining for proposed BMP antagonist (noggin) on	
	paraffin sections of fresh (A) and cultured (B) limbal tissues	38
12	Western blot analysis of the expression of human Noggin in protein	
	extracts prepared from 3T3 and 3T3-Noggin	39
13	The correlation of colony number and colony diameter of LESC colonies	
	cultured on each 3T3 feeder type	42
14	Morphology of primary limbal colony on 3T3-Noggin subcultivated into	
	normal 3T3 feeders for secondary colony forming	43
15	Immunofluorescent staining of LESC-associated marker, $\Delta Np63\alpha$	44

Figure		Page
16	Quantitative Real-time PCR analysis of relative mRNA levels of	
	EMT-related genes such as N-cadherin, vimentin and fibronectin	
	in the cultured limbal colonies	. 45
17	Quantitative Real-time PCR analysis of relative mRNA levels of ABCG2,	
	Integrin α 9, Id-1, Id-2, p57 and p16 in the cultured limbal colonies	
	on each feeder type	. 47
18	Quantitative Real-time PCR analysis of relative mRNA levels of ABCG2,	
	p27 ^{Kip1} , p57 ^{Kip2} and p16 ^{Ink4a} in the cultured limbal colonies in with and	
	without BMP2 treatments	. 53
19	A model of TGF- $\!\beta$ and BMP signaling in limbal epithelial stem cells and their	
	niche during injury	. 57
20	Mechanisms of TGF- β and BMPs in limbal epithelial stem cell fate	
	regulation	58

LIST OF ABBREVIATIONS

SCs = Stem cells

LESCs = Limbal epithelial stem cells

HSCs = Hematopoietic stem cells

NSCs = Neural stem cells

TACs = Transient amplifying cells

BMPs = Bone morphogenesis proteins

 $TGF-\beta$ = Transforming growth factor- β

ECM = Extracellular matrix

EMT = Epithelial to mesenchymal transition

MET = Mesenchymal to epithelial transition

CFE = Colony forming efficiency