
ttOffUftnrni flm u w jn tiin m j
ง m tû m rn u tn ao

Chapter 2
Simple Genetic Algorithms

In this chapter, I w ill show the simple genetic algorithms (SGA) (Goldberg, 1989).
The GA is a powerful search and optimisation algorithm. It is used in many EHW appli­
cations because the solution representation, which is a binary string, exactly matches to
the configuration bits of programmable logic device (PLD). Therefore the GA can search
for the configuration bits which satisfy the design constraints (e.g. circuit function, sil­
icon area, power consumption). The following sections describe how to apply GA to a
particular problem.

2.1 Solution Representation

The GA is applied to an optimisation problem in which the solution can be repre­
sented by a fixed-length binary string. Since everything in computer is stored in binary,
most optimisation problems can be solved by GA (Ronald, 1997). I w ill give an example
of applying GA to solve one-max problem. The goal is simply finding a binary string
composed of all 1-bits. In this example, the string length is set at 8, and therefore the
number of possible solutions is 28. In practice, the string length may be longer than 100
bits, resulting more than 2100 possible solutions. The exhaustive search on a state-of-the-
art computer is relatively impossible. For that reason, the GA has been used because it
performs effectively in a large search space.

2.2 Fitness Function

The fitness function is a function to be optimised. The fitness means the quality of
solution, or how much the solution is close to the optimum. In this example, the fitness
function is defined as / (x) where X is a binary string and / (x) returns the number of
1-bits in X . For example, / (01101011) = 5, / (10010000) = 2, and / (00000000) = 0.

6

2.3 Initialisation

The GA starts with a random population, which is a set of possible solutions. A
solution, in the population, is called individual. Each bit of an individual is created by
flipping an unbiased coin. The initial population, of which the size is 4, is shown in Figure
2.1.

No. Individual Fitness
1 11001000 3
2 00100010 2
3 01000100 2
4 00001000 1

Figure 2.1: Initial population.

2.3 Selection

The GA explores a large number of solutions in the search space simultaneously
by reproducing the population. The genetic operators, namely crossover and mutation,
are employed to produce the offspring. By simulating the natural selection, the fitter
individuals have more chance to survive to the next generation. This causes the fitness
improvement because the fitter individuals seem to reproduce the more fitter ones.

The individuals are probabilistically selected to be performed genetic operators.
This method, in simple GA, is called roulette-wheel selection. The n-hole roulette, where
ท is the number of individuals, is constructed. A hole size is proportional to the fitness
of an individual. The roulette wheel, built from the population in Figure 2.1, is shown in
Figure 2.2. The fitter individuals have more chance to be selected.

2.4 Reproduction
A pair of individuals, called parents, is selected using the roulette wheel. With

the probability o f pc, the crossover operation is performed to produce a pair of children,
otherwise two parents are copied to be children. The crossover is shown in Figure 2.3.

7

Figure 2.2: Roulette-wheel selection.

The cut point is randomly selected, then the children are produced by the recombination
of partial solutions. Following that, the mutation operator is applied to the children. Each
bit of a child is flipped with the probability Pm. The mutation operator is shown in Figure
2.4. In general, Pc and Pm are set at 0.06 and 0.001 respectively. A pair of parents
are selected by the roulette wheel until the number of children equals to parents. The
next generation begins. A ll parents are discarded, then the children become parents. The
reproduction is repeated until the optimal solution is found or the maximum number of
generations is reached. The reproduction is shown in Figure 2.5. With this artificial
evolution, the optimal solution emerges after a number of generations.

2.5 Theory of Genetic Algorithms

The theory of GA is based on the schema - a template representing a set of fixed-
length strings. The schema H consists of symbols “0” , “ 1” , and “ * ” , where “0” and “ 1”
are the fixed characters and is don’t care symbol (similar to a wildcard character).
Thus a schema H = 10 * 0 represents strings 1000 and 1010. The order of schema,
o(H), is defined as the number of “0” and “ 1” in schema H, for example, o(*0 * 1) = 2.
The defining length, 0{H), is the distance between the first and the last fixed characters in
schema H, for example, 5(0 * 1*) = 3 — 1 = 2.

It can be shown that short, low-order, above-average fitness schemata increase ex­
ponentially from generation to generation. This is named as Schemata Theorem or Fun­
damental Theorem of Genetic Algorithms. It can also be shown that the GA processes

8

0 (ท3) schemata, where ท is the population size. This important property is named as
implicit parallelism. Thus GA finds the optima effectively in a large search space. A l­
though the Schemata Theorem is now being debated, the success of GA over the past
years guarantees that it is a powerful optimisation algorithm.

Parent 1 Parent 2
010 I 11110 110 I 01011

Child 1 Child 2

Figure 2.3: Single-point crossover.

Parent 1 0 0 1 0 1 1 1

Child 1 J L 0 1 0 _ 0 1 1

Figure 2.4: Mutation.

Figure 2.5: Reproduction.

	Chapter 2 Simple Genetic Algorithms
	2.1 Solution Representation
	2.2 Fitness Function
	2.3 Initialisation
	2.4 Selection
	2.5 Reproduction
	2.6 Theory of Genetic Algorithms

