
Chapter 3
Literature Review

3.1 Evolvable Hardware (EHW)

In 1992, the idea of applying genetic algorithms (GA) (Goldberg, 1989) to the de­
sign of electronic circuits was first investigated by T. Higuchi (Higuchi, 1992). The first 
experiment was to evolve the configuration bits of GAL16V8, which is a programmable 
logic device (PLD), to perform 6-multiplexor function (see Figure 3.1 for example). The 
fitness evaluation was done in GAL16V8 simulator by comparing the outputs of evolved 
circuit and the required outputs.

c

c = AB + AB
A B

Position 1 2 3 4 5 6 7 8  
Configuration bits ( l |  p| p[ l |  p| l |  1 I 0 )

Figure 3.1: An example of PLD.

The experiment on GAL16V8 was continued by evolving sequential circuits (Higuc­
hi, 1993; 1994). The target circuit was set at 4-state, 1-input, 1-output finite-state machine 
(FSM). The configuration bits were 157 bits in length. The fitness was calculated by 
comparing the output sequence of evolved circuit, generated by random inputs, with the 
required output sequence. The result showed that the evolved circuit can perform a given 
input/output sequence; however, the circuit function was different from the target circuit. 
The result implied that the input/output sequence cannot completely describe the behavior 
of the target circuit.



1 0

Next I w ill show the three categories of EHW combined with the promising works 
in recent years. The classification of EHW is slightly different from (Sipper, 1997a).

3.1.1 Evolutionary Design of Electronic Circuits

In this category, the common property is the off-line process. The GA is applied to 
automated circuit design, and the fitness is evaluated in the circuit simulator. Following 
that, the evolved solution could be further implemented in the actual circuit. This ap­
proach is named as off-line EHW or sometimes called evolutionary circuit design since 
the key idea is applying the evolutionary algorithms such as GA to circuit design. For a 
particular problem (e.g. analog circuit), the off-line EHW has potential to be competitive 
to human design. The difference of EHWs in this category is the circuit representation. A 
number of various representations are presented as follows.

Sakanashi applied genetic programming (GP) to search for a binary decision dia­
gram (BDD) representing a desired circuit (Sakanashi, 1996). It is clear that the BDD 
is a standard representation since it represents a logical structure in unique and compact 
form. Moreover, the BDD can be verified quickly. In this work, GP is more suitable than 
GA because GP searches an infinite set of tree structures (Koza, 1992). The logic func­
tions, used in the experiment, were Even {3,4,5,6}-Parity, {6-11}-Multiplexer, {4,5,6}- 
Symmetry, and 6-bit random. The goal was to find the compact BDDs expressing the 
logic functions. The result showed that GP was able to search for the optimal BDDs for 8 
functions, and 2 functions was not successful.

Mizoguchi introduced hardware description language (HDL) for circuit represen­
tation (Mizoguchi, 1994). An individual represented a derivation tree of HDL grammar. 
The derivation tree consisted of a start symbol, non-terminal symbols, and terminal sym­
bols. With this representation, the crossver and mutation produced only grammatically 
correct HDL program. The fitness of an HDL program was evaluated in a commercial 
HDL simulator. The goal was to generate HDL program controlling an artificial ant to 
follow a trail in a 32x32 block-world. The ant had one sensory input for determining 
whether the trail in front of it was exist or not. The ant had two outputs for three actions, 
move forward, turn left, and turn right. The result showed that the ant controller was 
achievable.

T. Higuchi suggested that evolving a very large circuit from the gate-level such as



11

A N D  gates, O R  gates, and N O T  gates is impractical for industrial applications (Higuchi, 
1997). The size of circuit generated at gate-level was not very large because GA execution 
took a long time to evolve large circuit. In contrast, the function-level EHW, of which the 
basic components were A d d e r s ,  S u b t r a c t o r s ,  and S i n e  generators, was proposed. 
The applications of function-level EHW w ill be presented later in the last category.

J. Koza proposed an automatic design of analog circuit by means of genetic pro­
gramming (Koza, 1997). The tree represented a program used to construct both topology 
and components of analog circuit. Next the circuit was constructed and translated into a 
netlist simplified by removing wires, dangling components, isolated subcircuits, and con­
solidating series and parallel combinations of like components. Following that, the sim­
plified netlist was evaluated in the SPICE (Simulation Program with Integrated Circuit 
Emphasis) (Quarles, 1994). A number of analog circuits were experimented: lowpass 
filter, crossover filter, source identification circuit, computational circuit, time-optimal 
controller circuit, amplifier, temperature-sensing circuit, and voltage reference circuit. It 
can be seen that the evolved circuits met the elementary requirements. Koza suggested 
that the commercial requirements could be reached by adding more constraints to fitness 
function and increasing more computational power.

J. Lohn introduced a circuit representation technique for analog circuits (Lohn, 
1999). The analog circuit was constructed from an abstract machine composed of five 
instructions. It can be shown that any sequence of instructions produced a synthesisable 
analog circuit. This helpfully reduced the time to translate the circuit to a valid netlist. 
An individual represented a sequence of instructions generating an analog circuit. The 
crossover operator was modified to manipulate the variable-length strings resulted by the 
unfixed number of instructions. The fitness was evaluated in the public domain Berkeley 
SPICE running on a cluster of workstations. The result showed that three analog filters 
and two amplifiers that met the specifications can be achieved.

3.1.2 Intrinsic Hardware Evolution

A. Thompson introduced the terms intrinsic hardware evolution which means eval­
uating the fitness of an individual in the actual circuit (Thompson, 1998). This is contrary 
to the extrinsic hardware evolution in which the behavior of the circuit can be perfectly 
simulated. In tradition, the design is based on an abstract model which guarantees the



1 2

behavior of physical components. For example, the digital circuit design is based on ba­
sic gates such as A N D ,  O R ,  and N O T  gates. Thompson hypothesised that removing those 
constraints w ill ฟ๒ พ more exploitation of the physical medium, increasing the chance 
that the better circuit which is beyond the scope of conventional design could be found. 
The framework of intrinsic EHW, shown in Figure 3.2, consists of an ordinary PC and a 
fitness evaluator connected to the PC. The PC executes the GA, except the fitness calcu­
lation done in the actual circuit.

Figure 3.2: A framework of intrinsic EHW.

A robot controller was presented as an example of intrinsic EHW (Thompson, 1998: 
48-56; 1999). A two-wheeled mobile robot was placed in a 2.9mX4.2m area. The 
task was to evolve a robot controller performing wall-avoidance/room-centering behavior. 
There were two sonar sensors and two DC motors on the robot. The sonars fired five times 
a second. When the sonar fired, its output switched from logic “ 0” to logic “ 1” . Until the 
first echo was sensed, the output returned to logic “ 0” . The controller, shown in Figure
3.3, was a RAM-based FSM of which two inputs were the pulses from sonar sensors 
without signal preprocessing, and the two outputs controlling the motors. The G.L. de­
noted a bank of genetic latches determining whether synchronous or asynchronous signal 
passing. This architecture, combining synchronous and asynchronous circuits, was called 
Dynamic State Machine (DSM). In addition, the global clock was also evolved by GA. 
The fitness was evaluated in the actual circuit. After the final solution was downloaded 
into the real robot, the robot was able to perform wall-avoidance behavior.

Another demonstration is a frequency discriminator implemented on an FPGA with­
out external clock signal (Thompson, 1998: 73-85; 1999). The task was to evolve a circuit 
in a 10x10 comer of an XC6216 X ilinx FPGA to discriminate 1 kHz and 10 kHz square 
waves. The output was “ 1”  when the input frequency was 1 kHz, and the output became 
“ 0”  when the input frequency was 10 kHz. To setup the experiment, the GA was exe­
cuted on a personal computer in which an ISA card was directly plugged. The ISA card 
contained an FPGA employed to evaluate the fitness of an individual. Since there was



13

Figure 3.3: Robot controller.

no external clock, the evolved circuit exploited the gate delays to discriminate two fre­
quencies. This resulted in an unconventional circuit; however, it showed the design space 
which was not yet explored.

Due to the fabrication variation, downloading the configuration bits to the other 
areas or the same area on the other chips degraded the performance of the frequency dis­
criminator. In addition, the range of operational temperature was relatively narrow. It was 
said that the evolved circuit was brittle. To improve the robustness of evolved circuit, the 
fitness was actually evaluated in five operational environments differing in temperature, 
voltage source, fabrication factory, and configured area on the chip (Thompson, 1999). 
After 8,000 generations, the robust solution was emerged. This implied that there was a 
robust structure for a particular circuit.

A real world application of EHW in this category is a microwave circuit (Kasai, 
2000). Since the operational frequency is higher than i GHz, the parasitic capacitances 
and inductances are unpredictable in the design stage. In conventional design, a calibra­
tion circuit is included in the microwave circuit in Oder to adjust the performance to an 
acceptable level after the fabrication. Engineers have to balance the tradeoff between the 
size of calibration circuit and the adjustment complexity. The small calibration circuit 
causes the complex adjustment while the large calibration circuit causes the high-priced 
products. The circuit adjustment is a labor task and requires experienced engineers. It is 
obvious that to apply GA to this task, it is necessary to evaluate the fitness in the actual 
circuit because it is impossible to simulate the parasitic components. An image-rejection



14

mixer processing the received signal to an intermediate frequency and suppressing the 
mirror-image frequency was experimented. The result showed that GA was more effec­
tive than the iterated hill-climbing method and the manual adjustment. This profitably 
reduced the size of calibration circuit and the cost of experienced engineers.

The fabrication variation also causes a low yield rate in digital circuits, especially 
the high-speed VLSI such as Pentium III (500 MHz) or DEC Alpha (600 MHz). About 
90% of total chips are discarded due to the reason that the timing delays are not met 
the design specification (this problem is called clock skew). This causes the high-priced 
products. To increase the yield rate, the delay-adjustable components should be included 
in the circuits in order to adjust the delay values by GA (Higuchi, 1999). The experiment 
was set as follows. After the fabrication stage, a binary string represented the delay values 
was loaded into a chip to perform conventional chip test. Following that, the fitness was 
calculated by extracting all flip-flop values from the chip to compare with the required 
values. The simulation of memory test pattern generator showed that GA can improve 
the yield rate by 50% at 800 MHz. Higuchi believed that the clock-timing adjusting 
architecture w ill be an important technology for high-speed digital systems.

3.1.3 On-line Evolvable Hardware

The EHW in this category is able to change its structure to suit the operational 
environment. This property is indispensable for an application of which the function 
cannot be predefined or the function needs to be changed during its lifetime. The on­
line EHW consists of 2 parts: a GA-engine and a functional unit (see Figure 3.4). The 
GA-engine, executing GA, searches for a solution which performs effectively in current 
environment by evaluating the candidate solutions in the evaluator unit. The functional 
unit is periodically updated with the best solution. M.

M. Sipper demonstrated the on-line EHW called Firefly Machine (Sipper, 1997b). 
The firefly machine is based on cellular automata (CA). The cellular automaton is com­
posed of an array of cells. The array is n-dimensional, where ท = 1, 2, 3 is used in 
practice. Each cell holds a state in which the number of states is finite. The state of a 
cell is updated synchronously by a rule. In uniform CA, the rules of each cell are similar, 
but the rules can be different in non-uniform CA. The rule is a combinational logic of 
which the inputs are the states of neighbouring cells and the state of itself. The number of



15

neighbours on each side (left/right) is determined by a parameter r. An one-dimensional,
2-state, non-uniform, r= l CA is shown in Figure 3.5A.

Figure 3.4: On-line EHW.

R= Right state 
N= Next state

Cell

Example Rule 0 0 0 0 0 0 0 0
L ท P N 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0
บ บ บ บ 1 1 1 1 1 1 1 1
0 0 1 1
0 1 0 0 4 4 4 4 4 4 4 4
0 1 1 0
1 0 0 1
1 0 1 0 1 0 1 0 0 0 0 0
1 1 0 1 0 1 0 1 0 0 0 0
1 1 1 1 , 0 1 0 1 0 0 0 1

0 1 0 0 1 1 0 1
1 m ๐ O J 0 0 1 0 1 0 0 1

One-dimensional CA Synchronisation task

t = T
t = T - 1
t = T - 2
t = T - 3

t = 5 
t = 4 
t = 3 
t = 2 
t = 1

(A ) (B)

Figure 3.5: An one-dimensional, 2-state, non-uniform, r= l cellular automata (CA).

Given an initial configuration (initial states, where t — 1), the task was to syn­
chronise the states to a sequence o f O —> 1 —> 0 —» 1 0 —>1 (see Figure 3.5B
for example). The synchronisation task is a hard problem. In nature, the fireflies come 
together and gradually blink synchronously. There is no clear answer how the synchroni­
sation can be occurred. The cellular programming - an algorithm used to program the CA 
to perform a task - was prototyping in FPGA technology. The firefly machine was able to 
evolve a set of rules performing synchronisation task from an initial configuration. It can 
be seen that the rules was not designed in advance. The rules was adapted to the current 
initial configuration which was manually changeable.



16

The myoelectric prosthetic hand controller is a prominent application of on-line E- 
HW (Higuchi, 1999). The artificial hand is designed for a disabled person. The prosthetic 
hand is used to capture a signal (electromyography signal, EMG) generated from the mus­
cular movements, then perform a hand action according to the received signal. Usually 
the disabled persons have to train with the prosthetic hand at least one month before they 
skilfully control the muscular movements generating the desired hand actions. The EMG 
signals vary greatly from person to person. Moreover, for a particular person, the EMG 
signal may change over a short period due to the physical conditions. Thus a design of 
prosthetic hand in advance causes the burdensome training. In contrast, the on-line EHW 
is able to adapt the translation of EMG signal to a desired hand action. The use of pros­
thetic hand was carried out by the following steps. First, the EMG signal for six actions 
were collected as training data. Second, the hand controller, translating EMG signal to a 
desired action, was evolved by GA. A ll steps was done in a single VLSI chip embedded 
in the prosthetic hand.

Next I w ill show the applications of function-level EHW. The adaptive equalization, 
used in digital mobile communication, was evolved (Higuchi, 1997). Normally the lin­
ear transversal filter is employed to improve the received signal corrupted by the channel 
distortion and noise. In digital mobile communication, the topography of the operational 
area (e.g. buildings) differently influences the channel. Accordingly, the adaptive equal­
izer is preferable. To establish a communication, the transmitter sent a known training 
sequence to the receiver, then the EHW-based equalizer adapted itself to minimise the bit 
error rate for the current environment. Another application of function-level EHW is a 
lossy compression based on non-linear predictive coding (Higuchi, 1997). A template, 
used for pixel prediction of a particular image, was evolved using GA. The compression 
circuit and decompression circuit were reconfigured according to the evolved template. 
I suppose this work was further developed to a lossless compression chip used in elec­
trophotographic printer (Tanaka, 1998; Higuchi, 1999).

3.2 Hardware-based Genetic Algorithms
Due to tne extensive computation of GA (Goldberg, 1989), a myriad of hardware- 

based GAs has been put forward. Here we cite only the more recent works.

In 1995, Scott introduced an implementation of simple G A on field-programmable 
gate array (FPGA) (Scott, 1995). Scott proposed the hardware framework to speedup GA.



17

The implementation by means of FPGAs allowed the changeability which was necessary 
for the fitness evaluation module. The hardware-based genetic algorithm (HGA) was pre­
sented as a proof-of-concept system. It was designed using VHSIC hardware description 
language (VHDL) for the scalability. The HGA was experimented on linear, quadrat­
ic, and cubic functions. In terms of clock cycles, the speedup achieved was 2-3 orders 
of magnitude compared to software-based GA running on Silicon Graphics 4D/440 with 
four MIPS R3000 CPUs. The full details, included VHDL code, can be seen in his master 
thesis (Scott, 1994).

Graham used the Splash 2, a reconfigurable computer, to solve a 24-city TSP (Gra­
ham, 1995). The Splash2 consisted of a collection of processor array boards connected 
to รนท Sparc via an interface card. The workstation supported reconfiguration, control, 
and data exchange with the Splash 2 board. The simple GA, using 4 FGPAs and 4 sepa­
rated memories, was 10.6 times faster than software running on 125 MHz HP PA-RISC 
workstation. The island model - distributed version of GA - was investigated. Four sim­
ple versions of GA were conducted simultaneously with periodic migration of solutions 
among the islands. The result showed that the island model converged to the optimum 
solution quicker than the other configurations.

Graham subsequently analysed the different performance between hardware and 
software version of GA (Graham, 1996). It can be seen that the hardware was more effi­
cient because it employed the benefits of fine-grained parallelism, custom address gener­
ation, and well-organised memory hierarchy. In addition, the random number generator 
in software dominated the execution time of crossover and mutation, and therefore only 
hardware contributed to produce the random numbers can remarkably improve the per­
formance.

Sitkoff used the Armstrong III Machine to solve a 500-component chip partitioning 
problem (Sitkoff, 1995). The Armstrong III was a MIMD multicomputer with reconfig­
urable resources. It was composed of an array of processor boards. Each processor board 
consisted o f a 33MHz AMD AM29050, 32 Mbytes DRAM, and three X ilinx XC4010 
FPGAs. The software profiling indicated that 95% of the execution time was spent on fit­
ness evaluation. For that reason, the reconfigurable resources were contributed to speedup 
the fitness evaluation. The result showed that Armstrong III was 2.98 times faster than 
the software executing on 60MHz SPARC 20 Model 61. In addition, 8.32x speedup was 
reported in case of the distributed GA.



18

Salami investigated an implementation of simple GA on FPGAs (Salami, 1996). 
This work was similar to Scott’s hardware-based GA. The GA processor (GAP) was de­
signed using VHDL, and therefore synthesised on X ilinx XC4013 FPGAs. The GAP was 
tested with De Jong test suites and adaptive HR filter.

Shackleford proposed a high-performance genetic algorithm machine (Shackleford,
1997) . The survival-based GA was proposed because it was more suitable for pipelining. 
The design was exactly matched to a benchmark problem. A powerful pipeline and an 
evaluator calculating the fitness in one clock delivered an extreme speedup compared to 
software. A t 1 MHz, the hardware produced an evaluated individual every clock cycle. 
In other words, one million solutions were explored in one second. Testing with the set 
coverage problem indicated a 2,200 X speedup over software on a 100 MHz workstation.

Kajitani proposed an evolvable hardware chip running steady-state GA (Kajitani,
1998) . The steady-state G A, which was similar to survival-based GA, was preferable 
because it was more suitable for pipelining than generational GA. The chip consisted of 
16-bit CPU (NEC V30) executing GA and two programmable logic devices (PLDs) used 
for fitness evaluation. This paper pointed out that the compactness was a key to realise 
the on-line EHW. The EHW chip was applied to the myoelectric artificial hand used for 
disable person. The 62 X speedup compared to software running on Ultra Sparc 2 (200 
MHz) was reported.

Yoshida introduced a VLSI implementation of steady-state GA, called genetic al­
gorithm processor (GAP) (Yoshida, 1999). The experiment was set into three configura­
tions: mono-GAP with single fitness evaluation processor (FEP), GAP with dual FEPs, 
and multi-GAP with dual FEP’s. The design was realised using hardware description lan­
guage (HDL). The HDL simulator was used to optimise the Royal Road function. The 
design is now fabricating in FGPA technology.

Most of the cited works achieved their speedup because of pipelining and dedicated 
function customised to the problems. The initial works were solely to speedup the GA. 
The tremendous resources were used to attain the high performance, for example, (Gra­
ham, 1995; Sitkoff, 1995). A group of researches used hardware description language 
which can be changed and scalable, for example, (Scott, 1995; Salami, 1996; Yoshida,
1999) . However, the designs were not practical because the number of transistors in­
creased with the problem size. The tradeoff between cost and performance should be



19

trimmed. In the later works, the goal was to realise the EHW in practice. The compact­
ness was an essential whereas the speed was less significant. A modest microprocessor 
combined with a fitness evaluator was favourably effective to perform GA function, for 
example, (Kajitani, 1998).

Our work is similar to (Kajitani, 1998) using the microprocessor and the fitness 
evaluator. The design techniques are acquired from the previous works, for example, the 
random number generator. The difference is our custom microprocessor of which the 
instruction set is customised to an execution of GA. With this aim, we hope to achieve a 
design that is simple and effective to demonstrate the mimetic EHW.


	Chapter 3 Literature Review
	3.1 Evolvable Hardware (EHW)
	3.2 Hardware-Based Genetic Algorithms


