Chapter 5

The Execution of Genetic Algorithms In
the Prototyping Boara

This chapter provides the pseudocode of genetic algorithms (GA) executing in the
prototyping board. It was necessary to design a custom microprocessor performing GA
efficiently with a minimum number of instructions. The GA presented here has a strong
impact on the design of the instruction set. The first version of GA was written in C lan-
guage which can be executed and debugged on a conventional workstation. Then the C
version was manually rewritten in assembly language. An assembler for the micropro-
cessor was implemented. The high-level language compiler was not implemented since it
required a lot of time and the microprocessor was not intended for general purpose. Fi-
nally, the assembly version was compiled to machine code downloaded into an EEPROM
on the prototyping board,

The main algorithm is shown in Algorithm 5.1. First, the initial population, con-
sisting of p individuals, was created at random. The generation began with producing Q
offspring using crossover. Next, the mutation was employed to produce R offspring. The
p individuals were selected from (P + Q + R) individuals to survive in the next genera-
tion. The while loop (Algorithm 5.1, line 3-8) was repeated until the optimal solution was
found or the number of generations reached the maximum value set at 50,000. The p, Q,
and R were set at 128, 256, 128 respectively. Note that the 2"-numbers were intended for
simple random number generation.

The input/output sequences, used in fitness evaluation, were generated using the
Algorithm 5.2. A random input sequence was fed to the target circuit to get the corre-
sponding output sequence. Each sequence always began at the start state of the target
circuit. Then the input/output sequences were stored in an EEPROM placed on the proto-
typing board.

The first population was initialised using Algorithm 5.3. The p individuals were

33

created at random. Each bit had an identical probability to be “0” or “1”. An individual
was assigned its fitness calculated using Algorithm 5.4. The individual executed one
input, then gave one output (Algorithm 5.4, line 5) and changed to next state (Algorithm
5.4, line 6). The output, in line 5, was compared to the desired output, then the fitness
was increased by the number of similar output bits (Algorithm 5.4, line 7).

The generation began with employing crossover to produce Q offspring (Algorithm
5.5). Two parents were selected randomly from p individuals surviving from the previous
generation. The selected parents were performed single-point crossover using Algorithm
5.6, then the new offspring were assigned their fitness (Algorithm 5.5, line 6-7).

Next, R individuals were produced using mutation (Algorithm 5.7). The R individ-
uals were randomly selected from p individuals surviving from the previous generation,
then the selected individuals were mutated (Algorithm 5.8). Each hit of an individual
was changed with the probability pm = 0.01. Following that, the new individuals were
assigned their fitness (Algorithm 5.7, line 3).

After reproduction, there were (P + Q + R) individuals. Next, the p individuals
were selected to the next generation while the (Q 4- R) individuals were discarded. The
selection was presented in Algorithm 5.9. First, the fittest individual was selected (Al-
gorithm 5.9, line 1-4). The loop (Algorithm 5.9, line 6-40) was repeated p — 1 times
to select the individuals which were fit and different from the others which had been se-
lected. The individuals were sorted by fitness to create f rank (Algorithm 5.9, line 8-15).
The diversity of an individual was defined as the different bits between the individual and
the selected individuals (Algorithm 5.9, line 17-20). Then the individuals were sorted
by diversity to create d_rank (Algorithm 5.9, line 22-29). The ¢_rank was the sum of
f rank and d_rank (Algorithm 5.9, line 31-32). The best individual in ¢_rank was selected
(Algorithm 5.9, line 37-39).

Algorithm 5.1 Main.

line 1 generation = 0;

line 2 initialise p individuals;

line 3 while termination conditions not met do

line 4 produce Q individuals using crossover,

line 5 produce R individuals using mutation;

line 6 select p individuals from (P+Q+R) individuals;
line 7 generation = generation + 1/

line 8 endwhile

34

Algorithm 5.2 Generating input/output Sequences.

Generating (m x) input/output sequences, where m is the number of
sequences and is sequence length.
target denotes for the target circuit, which is an FSM.

inp[m][] denotes for input sequences,
out[m][] denotes for output sequences.

randj) returns an integer random number between 0 and 2*31 - 1

fl(fsm, state, input) is a state-transition function of the fsm.
f2(fsm, state, input) is an output-mapping function of the fsm.

line 1: for (i = 1; i <= m i++)

line 2: current_state = start_state,;

line 3: for (j = 1; j <= ; j++)

line 4 inp[i] [j] = randO ;

line 5: out[i][j] = f2(target, current_state, inp [i][j]);
line 6: current_state = fl(target, current_state, inpl[il[j]);
line 7 endfor

line 8 endfor

Algorithm 5.3 Initialising population.

individual[l mP][1..N] denotes for p individuals of which the lengths

equal N.
fitness[l..p denotes for the fithess of p individuals.
rand () returns an integer random number between

0 and 2*31 - 1.

line 1 for (i = 1; i <= P; i++)

line 2 for (j =1, | < N; j+4)

line 3 individualli] [j] =rand() % 2;

line 4 endfor

line 5 fitness [i] :EvaIuateFitness(individual[i]),
line 6 endfor

Algorithm 5.4 Fitness evaluation.

Given (m x) input/output sequences, where m is the number of
sequences and is sequence length.
idv denotes for an individual which is being evaluate.

inp[M][N] denotes for input sequences.
out[M][N] denotes for output sequences.
fitness denotes for the fitness of the individual.

flI(fsm, state, input) is a state-transition function of the fsm.

f2(fsm, state, input) 1is an output-mapping function of the fsm.

diff(strl, Str2) returns the number of similar bits between
strl and Str2.

line 1 fitness = 0;

line 2 for (i = 1;, i <= M i+4)

line 3 current_state = start_state;

line 4 for (j = 1; j <= N; j++)

line 5 output = f2(idv, current_state, inp [il[j]);

line 6 current_state = fl(idv, current._state, xnp[i][j]);
line 7 fitness = fithess + diff(out[i][j], output);

line 8 endfor

line 9 endfor

Algorithmb5.5 Reproduction (crossover).

individual[l..p] denotes for p individuals surviving from the
previous generation.

individual[P+1..P+Q] denotes for Q individuals produced by crossover,

fitness[P +1. .P+Q] denotes for the fitness of Q individuals.
randO returns an integer random number between
0 and 2*31 - 1.

line 1 for (i = P+1; i <= P+Q; i =i + 2)

line 2 Crossover (individual [1 + (randO % P)],

line 3 individual [L + (randO % P)],

line 4 individuall[i],

line 5 individual[i+1]);

line 6 fitness [i] = EvaluateFitness(individual[i]);

line 7 fitness[i + 1] = EvaluateFitness(individual[i + 1])
line 8 endfor

149q 5

3

Algorithm 5.6 Single-point crossover.

Given two parent selected randomly from p individuals surviving from
the previous generation, the crossover produces two children.

parif[l..] denotes for parentl, which is a n-bit string.

par2[1..] denotes for parent2, which is a n-bit string.

chdl[1l..] denotes for childl, which is a n-bit string.

chd2[1..] denotes for child2, which is a n-bit string.

rand() returns an integer random number between 0 and 2~31 - 1.
line 1 cut_point = 1 + (rand() %);

line 2 chdl[1l..cut_point] = pari[l..cut_point];

line 3 chdl[(cut_point + 1)..] = par2[(cut_point + 1).. 1];

line 4 chd2[1..cut_point] = par2[1l..cut_point];

line 5 chd2[(cut_point + 1)..] = pari[(cut_point + 1).. 1;

Algorithm 5.7 Reproduction (mutation).

individual[l..p] denotes for p individuals surviving from
the previous generation.

individual[(P+Q+I]) .. (P+Q+R)] denotes for R individuals produced by

mutation.
fitness[(P+Q+l).. (P+Q+R)] denotes for the fitness of R individuals,
rando returns an integer random number between

0 and 2~31 - 1.

line 1 for (i = (P+Q+l); i <= (P+Q+R); i++)

line 2 Mutation(individual[l + (rando %wp)], individual[il]);
line 3 fitness[i] = EvaluateFitness(individual[i]);

line 4 endfor

Algorithm 5.8 M utation.

Given a parent selected randomly from p individuals surviving
from the previous generation, the mutation produces a child.

par[l..] denotes for parent, which is a n-bit string,
chd[1..] denotes for child, which is a n-bit string,

drando returns floating-point values uniformly
distributed between [0.0, 1.0).

Pm denotes for mutation probability, set at 0.01.

line 1 for (i = 1; i <= ; i++)

line 2: if (drando < Pm)

line 3: chd[i] = not parl[i];

line 4 else

line 5 chd[il] = parli];

line 6 endfor

37

Algorithm 5.9 Selection.

individual[l..(P+Q+R)] denotes for (P+Q+R) individuals
fitness[1..(P+Q+R)] denotes for fitness,
diversity[1..P+Q+R] denotes for diversity,
f_rank[1l..(P+Q+R)] denotes for fitness rank,
d_rank[1l..(P+Q+R)] denotes for diversity rank,
c_rank[1l..(P+Q+R)5 denotes for combined rank.

initialise diversity[1l..(P+Q+R)] to zero.

line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line

O 0O ~NOOUDS WNBE

WWWWWWWWWNNNNRNNNNNNRRPRRERRRERRR R
3800\ICﬂU‘IbOOI\)I—‘O(QOO\ICDU‘Iwal—‘OLOOO\Im(J'I-b(.OI\)I—‘O

find , where is an integer number between 1 and (P+Q+R)
and fitness[] is maximum;

swap(individual[], individual[1]);

swap(fitness[], fithess [1]);

for (i = 2; i <= P; i++)

sort individual, fithess, diversity, f_rank, d_rank, c_rank
from i to (P+Q+R) by fitness;

= l,

for (j = i; j <= (P+Q+R); j++)

f_rank[jl = ;

= + 1;

endfor
for (j =1i; j <= (P+Q+R); j++)

diversity[j] += number of different bits between

individual[i - 1] and individual[j];

endfor

sort individual, fitness, diversity, f_rank, d_rank, c_rank
- from i to (P+Q+R) by diversity;

= l,
for (j =1i; j <= (P+Q+R); j++)
d_rank[j]] = ;
= + l,
endfor
for (j = 1i; | <= (P+Q+R); j++)
c_rank[j] = f_rank[j] + d_rank[j];
find , where is an integer number between i and (P+Q+R)

and c_rank[] is minimum;

swap (individual[], individuall[il]);

swap (fitness[], fitness [i]);

swap (diversity[], diversity][i]);
endfor

	Chapter 5 The Execution of Genetic Algorithms in the Prototyping Board

