Chapter 6
The Hardware Organisation

This chapter presented the hardware organisation mainly consisting of two parts: a
custom microprocessor and a fitness evaluator. The remaining sections are organised as
follows. Section 6.1 presents the top-level design. Section 6.2 presents the microprocessor
in detail. Section 6.3 presents the fitness evaluator.

6.1 Top-level Design

The department of computer engineering provided US plenty of prototyping boards
for Xilinx XC4010 FPGAs (Figure 6.1). A prototyping board consisted of a small-size
FPGA permanently connected to an EEPROM and a static RAM. There were four in-
put/output ports for connecting the FPGA to other devices. Because the overall design
was too large to synthesise in one FPGA, it was necessary to split the design into two
parts: the microprocessor and the fitness evaluator. The top-level design is shown in
Figure 6.2.

Microprocessor: The 16-bit, load/store architecture microprocessor was used to execute
the GA. The processor was connected to aprogram memory (EEPROM) and a data
memory (RAM). The processor was able to write data to the BUFFER and ,art/stop
the fitness evaluator (EV).

EEPROM(l): The (32k X 8-bit) EEPROM was used as program memory storing the
machine code of GA. The object code was about 2k bytes. The first 512 bytes were
used to store the constant values used by the program. The memory organisation
was shown in Figure 6.3.

RAM: The (32k x 8-bit) RAM was used as data memaory storing a population, program
variables, and CPU stack. The population was stored at address oxooo o Upto
oxorFF. The program variables began at address ox1o 0o UPt0 oxsrrr. The

3

EEPROM RAM

Port 1 we—p i

Figure 6.1: The prototyping board.

CPU stack hegan at address 0x3FFF downto 0x0000. Note that the CPU stack
possibly collided with the program variables. The memory organisation was shown
in Figure 6.4,

BUFFER: The BUFFER was a dual-port memory used to stored an individual while
it was being evaluated. The processor wrote an individual to the BUFFER, then
started the EV to evaluate the individual.

EEPROM(2): The (32k x 8-bit) EEPROM was used to stored the input/output sequences
collected from the target circuit. The maximum size of input and output were set at
4 bits, and thus the EEPROM was able to store 32k input/output pairs.

EV: The evaluator was used to speedup the fitness evaluation. The fitness evaluator used
the input/output sequences stored in the EEPROM(2) to calculate the fitness of an
individual stored in the BUFFER.

6.2 The Microprocessor

The 16-bit, load/store architecture microprocessor was customised to the execution
of GA. At the design stage, the number of registers was set at 8. It was later reduced to 4
because the processor was too large to be implemented in single FPGA. The instruction set

40

consisted of load/store instructions and arithmetic instructions. The load/store instructions
were used to performed loading and storing data between data memory and registers.
The arithmetic instructions were used to performed arithmetic operations between the
registers, then the result was stored in aregister.

All instructions were 16 bits in length. The operand can be an address or a register
number. The instruction will be further described in this format:

LDC (4) rl(3) addr(9) REGI[rl] = Pmemo[addr];

In the example, LDC is an opcode. The r| and addr are operands. The number in the
braces is the number of used bits, for example, the opcode is 4 bits. The result of an

execution is shown in the right-hand side.

There were 4 conditional jump instructions: JEQ, JNE, JGR, and JLE. The jump
action was determined by 3 flags: eq, gr, and le.

JEQ(4) addr(12) if eq flag was setto “ T then PC = PC + addr;
JNE (4) addr(12) if eq flag was setto “0: then PC = PC + addr,
JGR(4) addr(12) if gr flag was setto “T then PC = PC + addr;
JLE(4) addr(12) if le flag was setto“T then PC = PC + addr,

There was one unconditional jump instruction.

JMP (4) addr (12) PC = PC + addr;

The jump-to-subroutine instruction saved the program counter (PC) to CPU stack
before jumping into subroutine. The Dmemo [SP] denoted the data memory pointed by

the stack pointer.

JSR(4) addr(12) SP=SP- I
DmemofSP] = PC;
PC = PC + addr;

The CI J instruction was acombination of 3 instructions: CMP, INC, and JNE.

ClJ@) rl (2) r2(2) addr (8) eq=gr=1le=0;
if (REGjrl] == REG[r2]) eq= L

41

if (REG]rl] > REG[r2]) gr= 1,

if (REG]rl]] < REGJ[r2]) le = 1;

REG[rl] = REG[rl] + 1

if eq flag was setto “0” then PC = PC + addr;

The return-from-subroutine instruction had no operand. The PC was restored from
the CPU stack to continue the execution.

RES (4) PC = DmemofSP];
SP =SP+ 1,

The LDC instruction was used to load a constant value to aregister. The addr in
the operand pointed to the constant value stored in the program memory (EEPROM).

LDC (4) rl(3) addr(9) REGI[rl] = Pmemo[addr];

The LDD and STD instructions were used to load/store directly to a specified ad-
dress. These instructions always performed with the register number O.

LDD (4) addr (12) REGI[0] = Dmemo[addr];
STD (4) addr (12) Dmemo[addr] = REGIO0];

The LDR and STR instructions were used to load/store to an address pointed by a

register.
LDR (4) rl(3) r2(3) REGI[r2] = Dmemo[REGIr]];
STR(4) rl (3) r2 (3) Dmemo[REG[r2]] = REG]rl];

The LDX and STX instructions were used to load/store to an address pointed by the
sum of two registers.

LDX (4) rl (3)r2(3) r3(3) REG[r3] = Dmemo[REG][rl] + REG[r2]];
STX (4) r1(3)r2 (3) r3(3) Dmemo[REG][r2] + REG[r3]] = REG]rl];

The SEV, REV, LFH, and LFN instructions were used to control the fitness evalu-
ator. The EV was operated by the following steps. First, the EV was reset using REV
instruction. Second, the EV was started using SEV instruction. Next, the EV evaluated
the fitness of an individual stored in the BUFFER. While the individual was being eval-

uated, the LFN instruction gave a value 0x0 00 0. Once the evaluation was finished, the

42

LFN instruction gave avalue 0x0 001. Finally, the LFH insfruction was used to read the

fitness value from the EV.

SEV(10)
REV(10)
LFH (10)
LFN(10)

rl(3)
rl(3)

start the evaluator;
reset the evaluator;
REGI(rl] = fitness value (from the evaluator);
REGIrl] = finish signal (from the evaluator);

The HLT instruction was used to halt the microprocessor.

HLT (10:

halt processor;

The SED instruction was used to seed the random number generator.

SED (10)

ri1(3)

seed = REG[rl];

The MOV instruction was used to duplicate aregister value.

MOV (10)

ri (3) r2(3]

REG[r2] = REG]rl];

The CMP instruction was used to compare the values between two registers, then the

flags were set according to the comparison.

CMP(10)

ri (3) r2 (3)

eq=gr=1le=0;

if (REG][rl] == REG[r2]) eq= 1,
if (REG]rl] > REG][r2]) gr=1;
if (REG[rl] < REG[r2]) =1

The following instructions were used to performed the arithmetic operations: 1’

complement, shifting left, shifting right, increment, decrement, and clearing.

REG][rl] = ~REG]rl];
REGI[rl] = REGIrl] < L
REG[rl] = REGIrl] » 1
REG][rl] = REG[r]] + 1;
REG[rl] = REGIrl] - §
REGIrl] = 0;

The POT instruction was used to display aregister to the output port.

43

POT (10) rl (3) output port = REGIrl];
The PSH and POP instructions were used to push and pop CPU stack.
PSH (10) rl (3) SP=SP-1L
Dmemo[SP] = REG]];
POP (10) rl (3) REG]rl] = DmemofSP];
SP=§P+ L

The following instructions were used to perform the arithmetic and logical opera-
tions: add, and, or, exclusive or. The result was stored in REG[r].

ADD(10) 1 (3) 2 (3) REGI/I] = REG[/] + REG[r2]:
AND(10) 11 (3) 12 (3) REGfl] = REGr] & REG[]
ORR(10) 11 (3) r2 (3) REGI(I] = REG[rl] 1REG[12]
XOR(I0) 11 (3) 12 (3) REG(/l] = REG[rI] ® REG[12]

The STI instruction was used to store a value to the BUFFER of which the address
was pointed by a register.

STI(10) rl (3) r2 (3) BUFFER[REG[r2]] = REGII];
The rno instruction was used to produce a random number.
RND(10) r1(3) REG]rI] = random number;

The AD3 instruction was used to store the sum of two registers to another register.
apd (7) rl(3) r2(3) r3(3) REG[r3] = REG[rl] + REG]r2];

The instruction set was summarised in Table 6.1. We designed the microproces-
sor that was capable of executing those instructions. The design of the microprocessor
is shown in Figure 6.6 and Figure 6.7. The microprocessor consisted of the following
components: LATCH, REG, ALU, MUX, IR, PC, SP, MIM, PORT OUT, CONTROL
UNIT.

LATCH
The latch was used to block a signal sent to the bus. If the signal was blocked, the

output will be high impedance. The signal pins of latch(l) and latch(2) were presented as
follows.

4

LATCH(I)

Pin name Type Width Description

reg.outl in 16 signal sent to data bus

Ldata out 16 Ldata = (Il ena==17reg outl 2
|l_ena in 1

LATCH(2)

Pin name Type Width Description

alu.out in 16 signal sent to address bus

Laddr out 16 Laddr =(12 ena==17alu_out : Z)
12_€Nd In 1

REG

The register bank consisted of 4 16-hit registers. The selected registers were sent to the
arithmetic unit (ALU). The value sent from MUX was stored in a specified register when
the reg.load was positive edge (posedge denoted positive edge).

Pin name Type Width Description

reg_sell in 2 register number (0-3)

req_sel2 in 2 register number (0-3)

reg.outl out 16 reg.outl = REG[reg_sell]
reg_out2 out 16 reg_out2 = REG[reg_sel?]
mux_out in 16 a value to be stored in a register
regJoad in 1 if (posedge regJoad)

REG[reg_sell] = mux_out;

ALU

The ALU was used to perform the arithmetic and logical operations of the selected regis-
ters. When the alu_load was positive edge, the ALU performed the arithmetic operation
according to the opcode sent from IR.

Pin name Type Width Description
reg_outl in 16 register value

45

reg_out2 in 16 register value
aluJoad in 1 if (posedge aluJoad)

do arithmetic operation;
alu_out out 16 result of the arithmetic operation
irnstr in 10 opcode sent from IR

The 16-bit random number generator (Hortensius, 1989), embedded in the ALU,
was an one-dimensional, 2-state cellular automata (CA) in which the rule was 150-150-
90-150-90-150- . mrvn -90-150 (see Figure 6.5). The CA consisted of 16 cells updated
synchronously according to the rule. The rule 90 and rule 150 were defined as:

Rule 90: Si- Sj_i © St
Rule 150: Si- Sjie Si® Sj:
where
Si is a state of cellj

11 is astate of the left neighbor of cell]
11 s a state of the right neighbor of cellj

The CA with the rule 150-150-90-150-... -90-150 can produce a random number between
0x0001 and OXFFFF. We choosed the CA instead of linear feedback shift registers
(LFSR) because CA used a small numhber of gates and produced a random number in one
clock.

MUX

The multiplexor was used to selected the data to be stored in a register. For load in-
structions, the data was selected from i_data. For arithmetic instructions, the data was
selected from alu_out.

Pin name Type Width Description

alu.out in 16 data to be selected

Ldata in 16 data to be selected

mux_sel in 1 select pin

mux-0ut out 16 mux_out = (mux_sel ==0?

alu_out : Ldata);

‘ubi1sap 1ans|-do L :z'9 ainfbi4

ce oe we cs oe we

* ‘ * ‘ * ‘ (Prototyping board 1) ',' @rOtOtyping boah dﬂ

A ‘} A y // .
e_addr[15:0] % <
Y { Y e_data[7:0] B J & %
A A Dz $(< (2 |: 9..
Y | 2 Tl =
| | = < " 2 wn .
2 |8 .~" bf_load =02
. 20 L
reset — _g g ,,’ i
GBpcs: | ' i_addr{4:0]
7 = - Ce, Oe, we -
oe, we CPU / BUFFER | i data[7:0] -
1 - EV s_addr[15:0]
bf_load v . —
ev_reset : |= fitness[7:0] <s_data[7.o]

port_out[15:0]

[0:1]o8)8s A
| 44

!
!
!
!
1
1
1
1
|
!
|
|

EE]

0x0000
Constants

0x01 FF

0x0200
Object code

OX3FFF

Figure 6.3: EEPROM().

0x0000
Population

OxOFFF

0x1000
Variables i
CPU stack I

Ox3FFF

Figure 6.4: RAM.

Rule

State of acell V

~ 150150 9O 150 ©
|

LORH>O [T11]o]l |

150 O 150 0V 10 0V 150 DO
o1] 0 0 0

T ool

Figure 6.5: Random number generator.

47

IR

The instruction register (IR) was used to stored an instruction while it was being executed.
The opcode and the operand were extracted from the instruction, then sent to the ALU

and the control unit.

Pin name Type
Ir_ena in
irJoad in
Ldata in
irdnstr out
ir_mg out
Laddr out
ir_rel out
PC

Width

1
1
16

10

9
16

12

Description

enable pin

load pin

instruction

if (posedge irJoad) IR = Ldata;

opcode extracted from IR

register numbers extracted from IR

direct address extracted from IR

Laddr = (ir_ena== 17
direct_address Z);

relative address extracted from IR

The program counter (PC) was initialised at address 0x0200. Every executing an instruc-
tion, the PC was increased by one. Forjump instruction, the PC was added to the relative
address sent from IR. The PC involved the CPU stack when jumping into subroutine.

Pin name Type
ir_rel in
pc_enal in
pc_ena2 in
pc_mode in
pcload in
Laddr out
Ldata inout

Width
12

N NC N

16
16

Description
relative address
enable pin 1
enable pin 2
operational mode
iIf (posedge pcload)
if (mode == 00) PC = 0x0200;
if (mode == 01) PC = PC + L
if (mode ==10) PC = PC + ir_rel;
if (mode == 11) PC = Ldata;
endif
Laddr = (pc.enal == 1? PC :2)
Ldata = (pc_ena2 == 1?7 PC : 2)

49

SP

The stack pointer (SP) was used to stored the top-of-stack address. The SP was initialised

at 0x4 000. For push operation, the SP was decreased by one. For pop operation, the SP
was increased by one.

Pin name Type Width Description
sp_ena in 1 enable pin

sp_mode in 2 operational mode
sp.load in 1 if (posedge spJoad)

if (mode == 00) SP = 0x4000;
if (mode ==01)SP = SP+ I,
if (mode == 10)SP = SP - 1
endif
Laddr out 16 Laddr = (sp_ena== 1?7 SP :2);

MIM

The memory interface module (MIM) was used to connect to the memory devices (EEP-
ROM, RAM, and BUFFER) of which the data width was 8 bits. In read mode, the MIM
read a value from an external device, then the value was placed on i_data. In write
mode, the MIM wrote a value from i_data to an external device using the address on
i-addr. The bf load signal was used to write the BUFFER. Once the bf-load was
positive edge, the data on e_data and the address on e_addr were used to write the
BUFFER. The ev_select signal was used to select 3 signals from the EV to e_data.
The three signals were fitness[15:8], fitness[7:0], and finish value.

Pin name Type Width ~ Description

Laddr in 16 internal address bus
Ldata inout 16 internal data bus
elk in 1 clock
mim_mode in 3 if (mim_mode == 000) reset;
if (mim_mode == 001) read EEPROM;
if (mim_mode ==010) read RAM;
if (mim_mode ==011) write RAM;
if (mim_mode == 100) write BUFFER,;
if (mim_mode == 101) read fitness from EV;

if (mim_mode == 110) read finish from EV;

ce, CS, oe, we out 4 EEPROM, RAM control signals
bfJoad out 1 if (posedge bfjoad) write BUFFER;
ev.select out 2 if (ev.select ==01) EV gave high impedance

01)
if (ev.select == 10) EV gave fitness[15:8];
if (ev.select ==01) EV gave fitness[7:0];
if (ev.select ==11) EV gave finish value;

e.addr out 16 external address bus
e.data inout 1 external data bus
Port.Out

The port.out was used to display a register value.

Pin name Type Width Description

polJoad in 1 if (posedge poJoad) po.out = i.data;
po.out out 16 output port (connected to LED)
Control Unit

The control unitwas a 16-state FSM used to control the processor. The control unit simply
fetched and executed the instructions in sequence.

Pin name Type Width Description
elk in 1 clock

reset in 1 reset signal

eq, gr, le in 3 flags

irnstr in 10 opcode

ir-rgn in 9 operand (register numbers)
ir.ena out 1 IR enable
irJoad out 1 IR load

pc.enal out 1 PC enablel
pc_ena2 out 1 PC enable2
pc_mode out 2 PC mode
pcload out 1 PC load

sp.ena out 1 SP enable

sp_mode out 2 SP mode
spJoad out 1 SP load
poJoad out 1 Port.0ut load
11 ena out 1 latch 1 enable
12 ena out 1 latch2 enable
mux_sel out 1 MUX select
regJoad out 1 REG load
reg_sell out 2 REG selectl
reg_sel2 out 2 REG select2
alujoad out 1 ALU load
mim_mode out 3 MIM mode
ev.reset out 1 EV reset

The microprocessor consumed about 90% of the total chip area. Due to the place-
and-route method of the synthesis tools, the FPGA cannot be fully utilised. The processor
was able to operate at 6 MHz (the bottleneck of the memory was 8 MHz).

6.3 The Fitness Evaluator

The fitness evaluator consumed a half area of the chip. The evaluator was able to
operate at 20 MHz (higher than the bottleneck of the memory). It can be seen that the
design yielded a satisfactory result. Therefore it was not necessary to put more effort
for optimising area and clock speed. Since the fitness evaluator was designed as single
behavioral module, we did not know the inside structure of the actual circuit synthesised
by the Xilinx tool.

The behavioral description of the fitness evaluator is shown in Algorithm 6.1, The
fitness evaluator performed a 4-stage pipeline. At first stage, the evaluator fetched an
input/output from the EEPROM(2). At second stage, the current state and the input read
from the EEPROM(2) were used to clock the individual stored in the BUFFER, then
the BUFFER gave a next state and an output. At third stage, the output read from the
EEPROM(2) was compared to the output read from the BUFFER. The number of similar
output hits was recorded. At fourth stage, the fitness was increased by the number of
similar output hits. 1fend of the sequence, the current state was reset to the start state.

Algorithm 6.1 Fitness evaluation.

m denoted number of sequences.
denoted sequence

inp[1..m][1..] denoted the

length.

next_sta denoted next state
next_out denoted next output

BUFFER[state][input]

line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line

PR R ERPRPPRPPRPPE
~No o0 h 0w NP, O

©O© 0N O WDN PR

i = 0;
j =0
fitness
next_sta

stage
stage

stage

stage

enddo

1:
2.
3:

4

0;

returned
stored

input sequences stored in EEPROM(2).
out[1l..m]J[1..] denoted the output sequences stored in EEPROM(2).

read from the BUFFER.
read from the BUFFER.

in

the next
the BUFFER.

start_state;
do in pipeline
read inp[i][j], out[i]l[j] from EEPROM(2);
(next_sta,
sim = number of similar bits between
out[i][j] and next_out;

= fitness + sim;

fitness
o=
if (]
3
i
i f
endif

0;
i

(i

next_out) = BUFFER[next_stal][inp[i]l

+ 1;
eq m) stop pipeline;

52

state and the output of an FSM

11

Table 6.1: The instruction set.

Instruction Opcode Description
JEQ 0000 jump if equal
INE 0001 jump if not equal
JGR 0010 jump if greater than
JLE 0011 jump if less than
JMP 0100 jump

JSR 0101 jump subroutine
ClJ 0110 compare, increment and jump
RES 0111 return subroutine
LDC 1000 load constant
LDD 1001 load direct

STD 1010 store direct

LDR 1011 load register
STR 1100 store register
LDX 1101 load x

STX 1110 store x

SEV 1111 0000 00 start evaluator
REV 1111 0000 01 stop evaluator
LFH 1111 0000 10 load fitness
LFN 1111 0001 00 load finish

HLT 1111 0001 01 halt

SED 1111 0001 10 seed

MOV 1111 0001 11 move

CMP 1111 0010 00 compare

COM 1111 0010 01 complement
SFL 1111 0010 10 shift left

SFR 1111 0010 11 shiftright

PSH 1111 0011 00 push

POP 1111 0011 01 pop

POT 1111 0011 11 portout

INC 1111 0100 00 increment

DEC 1111 0100 01 decrement '
CLR 1111 0100 10 clear

ADD 1111 0100 11 add

AND 1111 0101 00 and

ORR 1111 0101 01 or

XOR 1111 0101 10 exclusive or
STI 1111 0110 00 store individual
RND 1111 0110 01 randomise

AD3 1111 111 add three

Clocks

—

—

—
O W WWOVOWWOVWOWOODOWOWOW O OO0 10O JJOOWOO0 WWLW WWOD o0 O 0O o o

—

53

54

L —

7

8 eepa
‘91 Jppe @
no od -
108|8S A ~—r’—,
peo| 1q l.% WIN .luxml spow” wiw
a—._o.lu._On_ UNO_IOQ oM '80 ‘s? ‘80 ‘ud\V| * o |0
91 eep |
‘91 Jppe’l
| (DHOLYT eus|
s T %IO._.jl_ _ dS _ FO& _ dl _.\n||':u..l‘= U‘II ._|
* * ” 21 _ 6 3 2les Bes |jes bes
peoj ds L peo| sﬁa 1o : N\ﬁ N\ﬁ
spow”ds epow od g peO| It -
eus ds 2'1eus od BUS I ;
B 2ino|bes _q
2 I =)
91 o npe M i o34 no xnw | =
1ino bas 7

*

peo| Bai

1es xnw

Figure 6.6: 16-bit microprocessor.

elk —
reset — »

eq, gr, le 4 -
irjnstr -7~

ir_rgn %

Control
Unit

AR RR SRR SRR

Figure 6.7: Control unit.

ir_ena
irjoad
pc_enal
pc_ena2
pc_mode
pcjoad
Sp_ena
Sp_mode
spjoad
pojoad
I11_ena
12_ena
mux_sel
regjoad
reg_sell

reg_sel2
alujoad
mim_mode
ev reset

55

	Chapter 6 The Hardware Organisation
	6.1 Top-level Design
	6.2 The Microprocessor
	6.3 The Fitness Evaluator

