
CHAPTER I

FEYNMAN PATH INTEGRAL AND SOME TECHNIQUES OF
PATH INTEGRATION

1.1 INTRODUCTION

I t 1 is a curious h is to rica l fact that m odem  quantum  mechanics 

began w ith  tw o  quite d iffe ren t mathem atical fo rm u la tions  : the d iffe re n ta il equation

o f  S ch rod ing e r, and the m a trix  algebra o f  Heisenberg. The t w o , apparently 

d iss im ila r approaches, were proved to  be m athem atica lly equivalent. These tw o  points 

o f  v iew  were destined to com plem ent one another and to  be u ltim a te ly  synthesized 

in D ira c ’ ร transform ation theory.

Th is thesis w i l l  describe w ha t is essentia lly  a th ird  fo rm u la tio n  o f  

non -re la tiv is tic  quantum theory. Th is  fo rm u la tion  was suggested b y  some o f  

D irac  ’ ร remarks concerning the re la tion o f  classical action to  quantum  mechanics. 

A  p ro b a b ility  am plitude is associated w ith  an entire m otion  o f  a partic le  as a 

func tion  o f  tim e, rather than s im p ly  w ith  a pos ition  o f  the partic le  at a pa rticu la r tim e .

In  chapter I  - m , we rev iew  the theory concern ing the path In tegra l 

and deriva tion  o f  the B aker - H a u d ro ff lemma fo r  o u r the practica l w o rk  .

For chapter IV  - V , we use the Baker - Haudroff lemma for finding
the coordinate operators for the several different Hamiltonians. Then , we can find
the propagators o f the systems, particularly the hamiltonian has been composed
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with quadratic and cubic potential terms. And finally , we discuss and
conclude the propagator for potential with quadratic and cubic terms.

1.2 FEYNMAN’ ร FORMULATION

The2 basic d ifference between classical mechanics and quantum

mechanics should now  be apparent. In  classical mechanics a de fin ite  path in  the 

x t - plane IS associated w ith  the particle m otion ; in contrast, in  quantum  mechanics 

a ll possible paths must p lay roles inc lud ing  those w h ich  do not bear any 

resemblance to  the classical p a th . Y e t we must som ehow be able to  reproduce 

classical mechanics in  a sm ooth m anner in the lim it  h  —> 0.

to attack th is  problem . In  lo o k in g  fo r a possible clue, he was said to  be in trigued  b y  a 

m ysterious rem ark in  D ira c ’ ร book w h ich , in  our notation amounts, to  the fo llo w in g  

statement :

Feynm an attempted to make sense out o f  th is  remark. Is  “ corresponds”  to  the same 

th ing  as " I S  equal to ”  o r “ is p roportiona l to ”  ? In  so do ing  he was led to fo rm u la te  

a space - tim e approach to  quantum mechanics based on p a t h  in té g r a is .

As a young graduate student at Princeton U n ive rs ity , R .p. Feynm an tried

exp i j j 2

In  Feynm an’ s fo rm u la tion  the classical action plays a y e n ' im portant

role . For compactness, we introduce a new notation:
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ร (ท,« - ! )  = ;/» 11m  ^  2 ^

Because L c 1as.1JC.11 is a functon  o f  X and X  S( ท,n -1) is defined o n ly  a fter a de fin ite  

path IS specified a long w h ich  the in tegration IS to be earned out. So even though 

the path dependence IS not e x p lic it in  th is notation. It IS understood that we are 

considenng a particu lar path in  eva luating the integral. Im agine now  that we 

are fo llo w in g  some prescribed path. W e concentrate our attention on a sm all 

segment along that path, say between (x n 1, 1111) and (x  , t  11) A cco rd ing

to D irac, we are instructed to associate e x p [ iS (ท , ท -  l )  /' h ]  w ith  that segment. 

G oing along the de fin ite  path we are set to  fo llo w , we successively m u ltip ly  

expressions o f  th is type to  obta in

n  exp
iS (n ,ท - 1) = e xp

r n ๅ [ 'ร (ท ,ท -1) =  exp
i s  ( N , \ ) ไ

ท -  2 L  ̂ J UJ ท = 2 L fl J
(1.2.2)

This does not ye t g ive  \ x ^ , l N  rather, th is equation is the con tribu tion

/ I \
to \ N ’ N i i ’ 1/' a ris ing  fro m  the particu lar path we have considered we m ust 

s till integrate over x^ X 3 . . . ,  xn.1 . A t the same tim e, exp lo itin g  the com position  

property, we let the tim e in te rva l between tn.1 and tn be in fin ite s im a lly  small.

Thus our candidate expression fo r  \ X N '  .V | X 1  ’ J /• m a y  be w ritten , in some loose

sense, as
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a ll paths (1 .2 .3)

where the sura IS to  be taken over an innum erab ly in fin ite  set o f  paths!

considerations along th is line make sense in the classical l im i t . h  ->  0, the 

exponential in  (1.2.3) oscillates ve ry  v io le n tly  , so there is a tendency fo r cancellation 

among various con tribu tions from  ne ighboring  paths. Th is is because exp[/5' /  h ]  

fo r defin ite path and expjVS / h ]  fo r  a s lig h tly  d iffe ren t path have ve ry  

d iffe ren t because o f  the smallness o f  h . So most paths do n o t  contribu te  when 

h  is regarded as a sm all quantity. H ow ever, there is an im portant exception.

where the change in  ร  is due to  a s lig h t deform ation o f  the path w ith  the 

end points fixed. Th is is prec ise ly  the classical path by  v irtue  o f  H a m ilto n ’ ร 

principle. W e denote the ร  that satisfies (1 .2 .4) by ร 11̂  . W e now  attempt to  

deform  the path a litt le  b it fro m  the classical path. The resu lting  ร  IS s t il l 

equal to ร ^  to firs t order in  deform ation. Th is  means that the phase o f  exp[/S7A] 

does not va ry  ve ry  much as we deviate s lig h tly  from  the classical path even 

i f  h  is small. As a result, as long as we stay near the classical path, constructive  

interference between ne ighboring  path is possible. In  the h  -> 0 lim it,  the m a jo r 

contributions must then arise from  a ve ry  narrow  strip  (o r a tube in h igher

B efore  presenting a m ore precise fo rm u la tion , let US see whether

Suppose that we consider a path that satisfies

<5$(AU) =  0, (1 .2 .4)
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dim ensions) conta in ing  the classical path, as shown in  F igure  1.1. O ur (o r 

Feynm an’ร) guess based on D ira c ’s m ysterious rem ark makes good sense because 

the classical path gets singled ou t in  the h  -»  0 lim it.

To form ulate Feynm an’s conjecture m ore precise ly, le t US go

\
n - l ^ n - l )  , there the tim e d ifference tn - 111.1 =  B  IS  assumed

to  be in fin ite s im a lly  small. W e w rite

back to \ x ท , *ท

น  , t  X  1, /  1 ' ) =\ ท ท ท- 1 ท -\เ พ(^ )
exp

i S  { ท , พ - 1)

(1.2.5)

where we evaluate ร ( ท , ท - 1) in  a m om ent in  the £ • - * ( )  lim it. N o tice  that we 

have inserted a w e igh t factor, 1 / w ( f ) ,  w h ich  is assumed to  depend o n ly  on 

the tim e in te rva l t  -  t  1 and not on v (x ). That such a facto r is needed is clear 

from  d im ensiona l considera tions; accord ing to  the w a y  we

(xN, tjj)

( * 1 , t ,)

F ig  1.1 Paths im portant in the h  —> 0 lim it.



6

normalized our position eigenkets, \ x ท '1ท \x ท - \ ytท - 1) must have the dimension
o f l/'length.

W e now  lo o k  at the exponentia l in  (1.2.5). O ur task is to  evaluate 

the £ --> 0  lim it  o f  ร(ท. ท - 1). Because the tim e in terva l is so sm all, it  is legitmate 

to make a stra ight - line approxim ation to the path jo in in g  (x n 1 51 1 ) and

(x n , tn ) as fo llow s:

ร{ท ,ท -1) = - n x )

พ
a

1 Vi
a 1 f—* __

_1 า

พ

น  \Y1 
( พ  i)

U J ร 2
k y (1.2.6)

A s an example, we consider spec ifica lly  the free - partic le  case , V  = 0. Equation 

(1.2.5) now  becomes

lx  , t  X  t  )  =\ ท ท ท- 1 ท -\เ พ{£)
exp " < xท - * n - j

2 h s

(1 .2 .7)

W e see that the exponent appearing here IS  com ple te ly  identical to  the one 

in the expression fo r the free - partic le propagator. The reader m ay w o rk  out 

a s im ila r comparison fo r the s im ple  harm onic oscilla tor.

W e remarked earlier that the w e igh t facto r 1 / พ’(£ )  appearing in 

(1.2.5) IS assumed to be independent o f  V (x ), so we m ay as w e ll evaluate It
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for the free particle. Noting the orthonormality, in the sense o f ร - function, o f
Heisenberg - picture position eigenkets at equal times,

Î  น- t  )ท' ท- 1 ท- 1/ - X
7 7 - 1 (1.2.8)

we obtain

1 I m 

\\’{ e ) V 2 m % E (1.2.9)

where we have used

c , a { e x p
'im e ;

2he
\2mtiE

m
(1.2.10)

and

2 โahs
exp

( .  ,2 ไ
im e

2 He
= * (£ ) .

(1.2.11)

This w e igh t facto r is, o f  course, anticipated from  the expression fo r  the free - 

particle propagator

To summarize, as 77-x O  we are led to

X  J  1X
, 77 77 77

1,/
77/

V 2 m t u ;
exp

i S  ( ท  J I - Ï )

= S (Z).
(1.2.12)
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The fina l expression fo r  the transition  am plitude w ith  t j j - t j  fin ite  is

/
\V N V i

= lim
N

m \ (« - l) /2

00K2mti£,

XJ . . . ) d x  n  exp
ท = 2

i S  ( ท , ท - 1)

ท

(1 .2 .13)

where the N  - » 00 l im it  is taken w ith  XN and tjj fixed. I t  is custom ary here

to define a new k ind  o f  m u ltid im ensiona l (in  fact, in fin ite  - d im ensiona l) in tegra l 

operator

j ^ N  ป ี [ x ( t ) ]  =
(

lim
N  —> 00'

m \ พ - 1)/2

2 m t i e j

(1 .2 .14)

and w rite  (1 .2 .13) as

*1.'1) = WO] exp
(1 .2 .15)

Th is expression IS  know n as Feynman’s path integral. Its  m eaning as the 

sum over a ll possible paths should be apparent from  (1.2.13). The fo rm u la tio n  

IS m athem atically equivalent to  the more usual form ulations. There are, therfore , 

no fundam enta lly new results. H owever, there is a pleasure in  recogn iz ing  o ld  

th ings from  a new po in t o f  v iew . A lso , there are problem  fo r  w h ich  the new 

point o f  v iew  o ffe rs  a d is tinc t advantage.
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13 SOME TECHNIQUES OF PATH INTEGRATION

The Feynm an path integral provides an elegant approach towards 

so lv ing  a quantum mechanical prob lem  once the classical Lagrangian is know . The 

concept o f  a path integral is natural generalization o f  the Y o u n g ’s double s lit experi­

ment. This experim ent invo lves the p rinc ip le  o f  superposition o f  tw o states corres­

ponding to the option an electron has o f  go ing  through either o f  the tw o  s lits

w h ich  we have presented and shown up the substance in the chapter I I

In  Feynman approach the basic quantity7 is the propagator w h ich  represents 

phys ica lly  the p robab ility  am plitude fo r a partic le to travel from  one space-time 

point to  another. In  quantum mechanics a pan ic le  m ov ing  from  one po in t to  another 

m ay fo llo w  d iffe ren t paths. The propagator IS thus g iven by the sum o f  the 

am plitudes corresponding to  all the paths connecting the tw o  points. The

contribu tion  o f  each path has a phase proportiona l to the classical action fo r 

that path. The propagator IS thus a "sum  over paths”  o r a path integral. Th is 

geometrical w ay o f  expressing the quantum  superposition p rinc ip le  is in tu it iv e ly  

appealing since It a llow s US to  v isua lize  the constructive  and destructive interference 

arising from  many d iffe ren t paths.3

The last five  decades I t  has been shown the g row th  o f  path

integral as a pow erfu l too l fo r  so lv ing  problem s in  diverse areas o f  p h y s ic s .

A part from  its aesthetic appeal the paths approach easily lends its e lf  to new 

approxim ation techniques. The w e ll -  know  approxim ation schemes lik e  the 

semi - classical or W K B  method and perturbation expansion m ay be na tu ra lly  

incorporated w ith in  the fram e- w o rk  o f  a path integral w ith  added advantages o f  

great form al s im p lic ity  and physica l insight.
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Despite the great success o f  the path integra l as a metheraatical 

too l in  physica l applications, the su m m a b ility  o f  paths in to  a closed analytica l fo rm  fo r  the 

propagator has o fte r been a d if f ic u lt  task. Feynm an ’s o rig in a l tim e - s lic in g  scheme 

w hereby the propagator is defined as the l im it  (as N  ->■ 00 ) o f  an N  - d im ensiona l 

R iem ann integral provides exact answers o n ly  fo r the cases o f  the free partic le , 

harm onic osc illa to r and the more general quadratic potentials. W e m ay w e ll agrue tha t the 

harm onic osc illa to r and other related quadratic potentia ls are the o n ly  cases o f  in terest in 

most applications A lso  a rigorous m athem atical ju s tif ica tio n  o f  the path in tegra l exists 

o n ly  fo r  quadratic actions. E x tend ing  the path integra l approach beyond th is though 

d iff ic u lt  IS a w o rth w h ile  exercise. Ajn exam ple in  the hydrogen atom problem  w h ich

can be treated easily in  the Schrod inger approach y ie ld in g  the energy eigenvalues 

and eigenfunctions. B u t Feynm an ’ s path integral fa iled  to  p rov ide  so lu tions to  

these standard problem s in  quantum  mechanics. B reakthroughs have been made 

and the d iff icu ltie s  posed by n o n tr iv ia l (non  - quadratic) path integrals are now  

s lo w ly  begin surm ounted. N ew  techniques in  path in tegra l calculus have been 

discovered and are be ing developed.

In  th is thesis we have developed and extended the new  techniques 

w h ich  we have called that the com m uta to r techniques fo r fin d in g  the propagator 

fo r  potentia l o f  an osc illa to r w ith  quadratic and cub ic terms. W e expound p ro u d ly  

th is new techniques in  the chapter IV . F o r  chapter I I I  we indicate to  de riva tion  

o f  B aker - H a u sd o rff R u le  w h ich  has been played im portan t role in  th is  new  

techniques.
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