CHAPTER |

FEYNMAN PATH INTEGRAL AND SOME TECHNIQUES OF
PATH INTEGRATION

11 INTRODUCTION

Itlis a curious historical fact that modem quantum mechanics
began with two quite different mathematical formulations : the differentail equation
of Schrodinger, and the matrix algebra of Heisenberg. The two, apparently
dissimilar approaches, were proved to be mathematically equivalent. These two points
ofview were destined to complement one another and to be ultimately synthesized

in Dirac’ transformation theory.

This thesis will describe what is essentially a third formulation of
non -relativistic quantum theory. This formulation was suggested by some of
Dirac '’ remarks concerning the relation of classical action to quantum mechanics.
A probability amplitude is associated with an entire motion of a particle as a

function oftime, rather than simply with a position ofthe particle at a particular time .

In chapter I -m ,we review the theory concerning the path Integral

and derivation of the Baker- Haudroff lemma for our the practical work

For chapter IV -V ,we use the Baker-Haudroff lemma for finding
the coordinate operators for the several different Hamiltonians. Then ,we can find
the propagators of the systems, particularly the hamiltonian has hbeen composed



with quadratic and cubic potential terms. And finally , we discuss and
conclude the propagator for potential with quadratic and cubic terms.

12 FEYNMAN"  FORMULATION

The2 basic difference between classical mechanics and quantum
mechanics should now be apparent. In classical mechanics a definite path in the
Xt - plane IS associated with the particle motion ; in contrast, in quantum mechanics
all possible paths must play roles including those which do not bear any
resemblance to the classical path. Yet we must somehow be able to reproduce

classical mechanics in a smooth manner in the limit h —0.

As ayoung graduate studentat Princeton University, R.p. Feynman tried
to attack this problem. In looking for a possible clue, he was said to be intrigued by a
mysterious remark in Dirac’ book which, in our notation amounts, to the following

statement :
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Feynman attempted to make sense out of this remark. Is “corresponds” to the same
thing as -1s equal to” or “is proportional to” ? In so doing he was led to formulate

a space - time approach to quantum mechanics based on path intégrais.

In Feynman’'s formulation the classical action plays a yen' important

role . For compactness, we introduce a new notation:



(«-1) =5/ Im n2n

Because Lcwldl is a functon of X and x S( ,n-1) is defined only after a definite
path 1s specified along which the integration I1s to be earned out. So even though
the path dependence I1s not explicit in this notation. It Is understood that we are
considenng a particular path in evaluating the integral. Imagine now that we
are following some prescribed path. We concentrate our attention on a small
segment along that path, say between (xnl1,1111) and (x ,t1 According
to Dirac, we are instructed to associate exp[iS( , - 1)/h] with that segment.

Going along the definite path we are set to follow, we successively multiply

expressions of this type to obtain
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This does not yet give \x” ,IN rather, this equation is the contribution
/ I \

to \ N° NIl i’ 1/ arising from the particular path we have considered we must
still integrate over Xx™ X3 ..., Xnl. At the same time, exploiting the composition

property, we let the time interval between tnl and tn be infinitesimally small.

Thus our candidate expression for \XN' .V[{[l' s/ may be written, in some loose

sense, as
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where the sura IS to be taken over an innumerably infinite set of paths!

Before presenting a more precise formulation, let US see whether
considerations along this line make sense in the classical Ilim it. h ->0, the
exponential in (1.2.3) oscillates very violently , so there is atendency for cancellation
among various contributions from neighboring paths. This is because exp[/5'/ n]
for definite path and expjVS / h] for a slightly different path have very
different because of the smallness of h . So most paths do not contribute when

h is regarded as a small quantity. However, there is an important exception.

Suppose that we consider a path that satisfies

<5$(AU) = 0, (1.2.4)

where the change in is due to a slight deformation of the path with the

end points fixed. This is precisely the classical path by virtue of Hamilton’

principle. We denote the that satisfies (1.2.4) by ™ . We now attempt to
deform the path a little bit from the classical path. The resulting IS still
equalto ~ to first order in deformation. This means that the phase of exp[/S7A]
does not vary very much as we deviate slightly from the classical path even
if h issmall. As a result, as long as we stay near the classical path, constructive
interference between neighboring path is possible. In the nh ->0 limit, the major

contributions must then arise from a very narrow strip (or a tube in higher
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dimensions) containing the classical path, as shown in Figure 1.1. Our (or
Feynman’ ) guess based on Dirac’s mysterious remark makes good sense because

the classical path gets singled out in the h-» 0 limit.

To formulate Feynman’s conjecture more precisely, let us go

\

back to \x ,* n-1~n-1) , there the time difference tn-1M1 = B 1I1s assumed

to be infinitesimally small. We write

X Y e exp
\ A ") .

where we evaluate ( , -1) in a moment in the £+-*() limit. Notice that we
have inserted a weight factor, 1/w (f), which is assumed to depend only on
the time interval t -t 1 and not on V(X). That such a factor is needed is clear

from dimensional considerations; according to the way we

(xN, tjj)

(*1,t)

Fig 1.1 Paths important in the h — 0 limit.



normalized our position eigenkets, v« 1 w -\t -1) must have the dimension
of Ilength.

We now look at the exponential in (1.2.5). Our task is to evaluate
the £-->0 limit of ( . - 1). Because the time interval is sosmall, it is legitmate

to make a straight-line approximation to the path joining (xn151 1) and

(xn ,tn) as follows:
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As an example, we consider specifically the free - particle case, V = 0. Equation

(1.2.5) now becomes
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We see that the exponent appearing here I1s completely identical to the one

in the expression for the free - particle propagator. The reader may work out

a similar comparison for the simple harmonic oscillator.

We remarked earlier that the weight factor 1/ '(E) appearing in

(1.2.5) IS assumed to be independent of V(x), so we may as well evaluate It



for the free particle. Noting the orthonormality, in the sense of - function, of
Heisenberg - picture position eigenkets at equal times,

(x 1, - t = Sf
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we obtain
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and
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This weight factor is, of course, anticipated from the expression for the free -

(1.2.11)

particle propagator

To summarize, as 7/-xO we are led to

77/ is (3 1-1)
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The final expression for the transition amplitude with tjj-tj finite is
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where the N -»o00 limit is taken with XN and tjjfixed. It is customary here
to define a new kind of multidimensional (in fact, infinite - dimensional) integral

operator

O \ -2
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and write (1.2.13) as
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This expression 1I1s known as Feynman’S path mtegral Its meaning as the

sum over all possible paths should be apparent from (1.2.13). The formulation
Is mathematically equivalent to the more usual formulations. There are, therfore,
no fundamentally new results. However, there is a pleasure in recognizing old
things from a new point of view. Also, there are problem for which the new

point of view offers a distinct advantage.



13 somE TECHNIQUES OF PATH INTEGRATION

The Feynman path integral provides an elegant approach towards
solving a quantum mechanical problem once the classical Lagrangian is know. The
concept of a path integral is natural generalization of the Young’s double slit experi-
ment. This experiment involves the principle of superposition of two states corres-
ponding tothe option an electron has of going through eitherof the two slits
which we have presented and shown up the substance inthe chapter Il
In Feynman approach the basic quantity7 is the propagator which represents
physically the probability amplitude for a particle to travel from one space-time
point to another. In quantum mechanics a panicle moving from one pointto another
may follow different paths. The propagator IS thus given by the sum of the
amplitudes corresponding to all the paths connecting the two points. The
contribution of each path has a phase proportional to the classical action for
that path. The propagator IS thus a "sum over paths” or a path integral. This
geometrical way of expressing the quantum superposition principle is intuitively
appealing since It allows US to visualize the constructive and destructive interference

arising from many different paths.3

The last five decades It has been shown the growth of path
integral asa powerful tool for solving problems in diverse areasofphysics.
Apart from its aesthetic appeal the paths approach easily lends itself to new
approximation techniques. The well-know approximation schemes Ilike the
semi - classical or WKB method and perturbation expansion may be naturally
incorporated within the frame- work of a path integral with added advantages of

great formal simplicity and physical insight.
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Despite the great success of the path integral as a metheraatical
tool in physical applications, the summability o f paths into a closed analytical form for the
propagator has ofter been a difficult task. Feynman’s original time - slicing scheme
whereby the propagator is defined as the limit (as N ->s( )of an N - dimensional
Riemann integral provides exact answers only for the cases of the free particle,
harmonic oscillator and the more general quadratic potentials. We may well agrue that the
harmonic oscillator and other related quadratic potentials are the only cases ofinterest in
most applications Also a rigorous mathematical justification ofthe path integral exists
only for quadratic actions. Extending the path integral approach beyond this though
difficult IS a worthwhile exercise. Ajn example in the hydrogen atom problem which
can be treated easily in the Schrodinger approach yielding the energy eigenvalues
and eigenfunctions. But Feynman’s path integral failed to provide solutions to
these standard problems in quantum mechanics. Breakthroughs have been made
and the difficulties posed by nontrivial (non - quadratic) path integrals are now
slowly begin surmounted. New techniques in path integral calculus have been

discovered and are being developed.

In this thesis we have developed and extended the new techniques
which we have called that the commutator techniques for finding the propagator
for potential of an oscillator with quadratic and cubic terms. We expound proudly
this new techniques in the chapter IV. For chapter IIl we indicate to derivation

of Baker-Hausdorff Rule which has been played important role in this new

techniques.
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