CHAPTER I

PATH INTEGRALS AND PROPAGATORS IN QUANTUM AND IN

STATISTICAL MECHANICS

21 INTRODUCTION

We first discuss the genera] concept of the superposition of probabi-
lity amplitudes in quantum mechanics. We then show how this conceptual be directly
extended to define a probability amplitude for any motion or path (position vs
time) in space - time. The ordinary quantum mechanics IS show to result from
the postulate that this probability’ amplitude has a phase proportional to the action,
computed classically, for this path. This IS true when the action IS the time
integral of a quadratic function of velocity. The relation to matrix and operator
algebra is discussed in a way formulation as possible. There IS no practical
advantage to this, but the formulae are very suggestive if a generalization to a
wider class of action functionals IS contemplated. Finally, we discuss applications

of the formulation.

211 The Superposition of Probability Amplitudes

The formulation to be presented contains as Its essential idea the
concept of a probability amplitude associated with a completely specified motion
as a function of time. It is, therefore, worthwhile to review in detail the quantum-
mechanical concept of the superposition of probability amplitudes. We shall examine
the essential change- in physical outlook required by the transition from classical

to quantum physics.1



For this purpose, consider an imaginary expenment in which we can
make three measurements successive in time: first of a quantity A , then of B.
and then of c. There is really no need for these to be of different quantities
of three successive position measurements is kept in mind. Suppose that a is one
of a number of possible results which could come from measurement A ,b is a
result that could arise from B, and c¢ is a result possible from the third measure -
ments c¢c. We shall assume that the measurements A ,B , and c¢ are the type of
measurements that completely specify astate in the quantum - mechanical case. That

1s, for example, the state for which B has the value b is not degenerate.

It is well known that quantum mechanics deals with probabilities,
but naturally this is not the whole picture. In order to exhibit, even more clearly,
the reationship between classical and quantum theory, we could suppose that
classically we are also dealing with probabilities but that all probabilities either
are zero or one. A better alternative is to imagine in the classical case that the
probabilities are in the sense of classical statistical mechanics (where, possibly,

internal coordinates are not completely specified).

We define as the probability that if measurment A gave the
result a, then measurement B will give the result b. Similarly, Pbc is the probability
that if measurement B gives the result b, then measurement A gives a, then ¢
gives c. Further, let Pa be the chance that if A gives a, then ¢ give c. finally,
denote by Pibc the probability of all three, i.e., if A gives a, then B gives b, and
¢ gives c. If the events between a and b are independent of those between b and
C,

abc  ab' be

(2.0.1)



This 1s truc according to quantum mechanics when the statement that B I1s b is

a complete specification of the state.

In any event, we expect the relation

b (2.0.2)

This is because, if initially measurement A give a and the system s later found
to give the result ¢ to measurement c, the quantity B must have had some value
at the time intermediate to A and c. The probability that it was b is Pdr
We sum, or integrate, over all the mutually exclusive alternatives for b (symbo-

lizes by Zb).

Now, the essential difference between classical and quantum physics
in eg. (2.0.2). In classical mechanics it is always true. In quantum mechanics
it is often false. We shall denote the quantum - mechanical probability that a
measurement of c¢ results in ¢ when it follows a measurement of A giving a
by PX . Equation (2.0.2) is replaced in quantum mechanics by this remarkable

law : There exist complex numbers WV ab>V/bC'Vac such that

ab = fapb 'Pbc= vhe o and Pqc = ¥ac

(2.0.3)

The classical law, obtained by combining and,

POC= " Pad be
(2.0,1)
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IS replaced by

(2.0.5)

However, It seems worth while to emphasize the fact that they are all simply
direct consequences of eq. (2.0.5), for it is essentially eq. (2.0.5) that IS funda-

mental in the formulation of quantum mechanics.

The generalization of egs. (2.0.4) and (2.0.5) to alarge number

of measurements, say A ,8 , ¢ ,D,..., K, IS, of course, that the probability of the

sequence a,b,C,dk is

pabcd...k Nabced.. .k

The probability of the result a,C,klfor example | if b,dl.. are measured, IS the

classical formula:

Nabced.. .k b d abcd.. .k (2.06)

while the probability of the same sequence a.c,k if no measurements are

made between A and ¢ and between ¢ and K IS

P y B 22
ack b.d

(2.0.7)
The quantity tyibcd..k we can call the probability amplitude for the condition

A =a,B - b, C - ¢ D - dl.,,A = k (it 1S, of course, expressible asa product



2.1.2 Measurement of Probability Amplitudes Via Young - slits Experiment.

In his lectures on quantum mechanics, Feynman (1965) introduces a basic
concept of the subject,thatofprobability amplitudes, by considenng a Young-slits
interference experiment performed with electrons. In this experiment, electrons emitted
by a source A arrive at a (variable) target point B on ascreen ' , having first passed
through another screen pierced by two silts (1) and (2). To the two possible trajectories
there correspond respectively two probahility amplitudes a\ and a2 , given by the

following rules (in a selfexphanatory notation: see Fig 2.1):4

A = aBlalA’a2 » aB2a2A

The probability amplitude afor observing an electron at B is the sum of a\ and a2

a=ai+ta2= 11% °JA

Let us now complicate the experiment somewhat by introducing several intermediate
screen J,K,L, each pierced by several slits numbered j, k, and 1L Then the probability

amplitude a reads

a = £ 1aBlalk akK jajA

It IS a sum over all paths leading from A to B: in Fig. 2.2 for instance we have drawn the

ath >K(2) >L(l) —B.
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Fig. 2.1 The young’s slits experiment
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Fig. 2.2 A complicated variant ofthe Young’s slits experiment

One can now replace the screens by a potential in which the electrons
move, and associate with every path [c] leading from A to B a probability amplitude a [c],

the total amplitude a being the sum (see Fig. 2.3)

0=V4el]
(2.1.2)



Fig. 2J Paths from Ato B

It remains ofcourse to give a prescription for a [c], and for summing over

the paths. This will be done in Section 2.2; there, starting from the properties ofthe

evolution operator exp (-iHt), we shall show that the statistical weight ofeach path,

namely a [c], is given by

olc]~exp{ £.5(5,4))

(2.1.2)

where ~ simply denotes proportionality, and where ( , A) is the classical action

evaluated along the path leading from A to B in a given time. Conversely, one can adopt

(2.1.1) and (2.1.2) as fundamental postulates, and derive all the results of quantum

mechanics from them: in otherwords one can adopt, as one’s quantization postulate,

equation (2.1.2) instead ofthe canonical commutation rule (CCR) \q,p\ -



In quantum mechanics, an important role is often played by the classical
path from A to B, i.e. by the path which makes the action stationary. In the corresponding
problem o fclassical statistical mechanics, the configuration analogous to the classical path
is the ‘Landau configuration’, namely thatconfiguration for which the Hamiltonian is
stationary. To the quantum fluctuations around the classical path there correspond the
statistical fluctuations around the Landau configuration. Such fluctuations are stadied by
means of perturbation theory, and it is not surprising that oneshould meet the same

techniques in both types o f problem.

In Section 2.2 we establish the dictionary for traslating the Schroediger

equation into the language o fthe path integrals, by giving a precise meaning to the sum in

2..1.1).



22 PARTICLE IN POTENTIAL

Envisage now a quantum system slightly more complicated than a spin Vv I,
namely a (nonrelativistic) particle of mass moving on astraight line in a potential
V(q). We denote the operatore for position and momentum by g and p respec-

tively, and their eigenstates in the Schroedinger picture by A and
~'. We choose the normalization [p\p )~ a(p-p \(g\g )- a{gq g\ anc[

\pl\g)-{"n) ~ exP{iq p)- <?(0and ", *) stand for the position operator and

for its eigenvectors in the Heisenberg picture.

n(t\ = pHthf. -iHrh

)=""% ). (1211

221 The representation of probability amplitudes by path integrals
Let ~ (y ft ig>0 be the probability amplitude that a particle initially at

q time t be found at Q at time t (SO that the boundary condition are

a(0 =q.q9(t)=q"

K{g't\q,t) = (q'.t"\g,t )={ g\ e h (t f)\q) (222)

Drivide the interval 1] into () subintervals each of length

8=(/"-1)1( )with 8 —»0:



and let US write

exp - exp B £ 14V(q)

We now use Trotter's (orthe Lie product) theorem

lim eA/ngB/ny _ "+ £
«->00

(2.2.3)
One can find in the two references just quoted heuristic and rigorous proofs
of this formula, as well as the necessary conditions on the operators A and B .
Itis an instructive (and elementary) exercise to carry through the proof when
[A ,B] is a c-number; it isalso easy to prove (2.2.3) if A and B are bounded
operators (see the references just quoted). Let US now insert at times

complete sets of eigenstates ofthe position operator q ,

is p
K(g',t':q,t)y = | ndgtLn (qg 1€EXP eXp{A - (q)
2m1 L-1

and evaluate the matrix element

. *1exp(is pl
=))( yag 21
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In order to compute the lastmatrix element we use

a

P’ |q> = Jdp.(g. AV AALEN,

0
= J dpL 2eiPL(41,"qL-1)/"
o0

g
2 2mmtt
These results allow US to write K (q',t",q,t) in the form of apath integral:

K(gq',t'\q,t) =

2
o P o g4, o
2m 2

lny |

-0 L=1

n i —-ig
qupl _w——ex %(qL—qL~l))xexp 7

(2.2.4)

It is important to notice that in equation (2.2.4) gLand glL1land
classical variables as was the variable in the previous section. We have
taken asthe argument of V for purely aesthetic reasons, since q or would also
be correct. However, for reasons to be discussed below, it is important to
choose */2 (qL+ qL-\) as the argument of the vector potential if one wants to
write path integrals for propagation in a magnetic field. As V is a function

only ofqg, it is possible to perform the p-integral in  (2.2.4).

© ; 1/2 srcs 2o
A o B :(_f"_) expl 74" |
o 27h h h2m| \2insh 2¢ch 2.2.5)
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and equation (2.2,4) becomes

-1'*-,)-Mé.|'SS) D y A h jdqi

(2.2.6)

Here we introduce the compactsymbol Dgqg for integration over the g 5and note

that

g+al

h 1=1 2 £ 2

then as the final form of the path integral one finds

[ (g\t'\gj)= P?2exp?nijl i

JD96x p (is),
(2.2.7)

subject to the boundary conditions q(t) = q,q(t)= q"

In equation (2.2.7) we have reinstated Planck's constant h and set

g = dp/dt;



2 2.2.8)
IS the Lagrangean of the particle : and IS the corresponding action
=) tqq )ar.
) tig.q) (2.2.9)

In quantum mechanics, it IS diffcult to go further into the mathematical

discussion of the paths, since It has not been possible to give a satisfactory

mathemati-cal meaning to the measure exp(z.S') Dq.

Using the totations of (2.2.7) one can transform (2.2.4) and

obtain the Humiltonian form of the path integral, namely

LALON BT "
K(q ,f;q,f)=ijqu><p(—Jt [pg' —H(p.q)dt )
h (2.2.10)

This equation must be used when the Hamiltonian IS not quadratic in p;

however. It must be handled with care. Contran' to its appearance. It IS not

invariant under canonical transformations.

Consider eq. (2.2.7) the path from A: (q.t)toB: ')y to it there correspond

a certain action . Equation (2.2.7) can be interpreted as assigning to each path a
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statistical weight exp(/B/n), and asserting that the probability amplitude is
obtained by summing over all such paths. In the procedure we have followed,
the sum over paths has been defined thus. The paths are  zigzags whose
straight portions join the positions @, q1..., ¢ of the particle at times t,tx.. x
respectively  (Fig. 2.4). Summing over the paths consists of integrating, with fixed

gand q,over all the gLcorresponding to intermediate times t ,with the integration
measure

- 1/2n-1 m 1/2
— —>Dq.
y2|7|sh) LI;Il(ziﬂgh) @L

Here, as already emphasized, the symbol Dq means nothing more than is implied
by (2.2.6).

q(r) =yq qu’) =g’

Fig. 24 Trajectories used in evaluating (2.2.6)
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