
CHAPTER II

P A T H  IN T E G R A L S  A N D  P R O P A G A T O R S  IN  Q U A N T U M  A N D  IN

S T A T IS T IC A L  M E C H A N IC S

2.1 IN T R O D U C T IO N

W e firs t discuss the genera] concept o f  the superposition o f  probab i­

lity  am plitudes in quantum mechanics. W e then show how  th is conceptual be d irec tly  

extended to  define a p robab ility  am plitude fo r any m otion  o r path (pos ition  vs 

tim e) in  space - time. The ord ina ry  quantum  mechanics IS show  to result from  

the postulate that th is probability ' am plitude has a phase proportiona l to  the action, 

computed classica lly, fo r th is path. Th is IS true when the action IS the tim e 

integral o f  a quadratic function o f  ve loc ity . The re lation to  m atrix  and operator 

algebra is discussed in  a w ay fo rm u la tion  as possible. There IS no practical 

advantage to th is, but the form ulae are ve ry  suggestive i f  a generalization to a 

w ide r class o f  action functiona ls IS contemplated. F in a lly , we discuss applications 

o f  the fo rm u la tion .

2.1.1 T he  S u p e rp o s itio n  o f  P ro b a b il i ty  A m p litu d e s

The fo rm u la tion  to  be presented contains as Its essential idea the 

concept o f  a p robab ility  am plitude associated w ith  a com ple te ly  specified m otion 

as a function  o f  time. It is, therefore, w o rthw h ile  to  rev iew  in deta il the quantum -

mechanical concept o f  the superposition o f  p robab ility  am plitudes. W e shall exam ine 

the essential change- in physical outlook required by the trans ition  from  classical 

to quantum physics.1
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F or th is purpose, consider an im aginary expenm ent in  w h ich  we can 

make three measurements successive in time: f irs t o f  a q uan tity  A  , then o f  B . 

and then o f  c .  There is rea lly  no need fo r these to  be o f  d iffe re n t quantities 

o f  three successive position  measurements is kept in  m ind. Suppose that a  is one 

o f  a num ber o f  possible results w h ich  could come from  measurement A  , b  is a  

result that cou ld  arise from  B ,  and c  is a  result possible from  the th ird  measure - 

ments c .  W e shall assume that the measurements A  , B , and c  are the type o f  

measurements that com ple te ly  spec ify  a state in  the quantum - m echanical case. That 

IS , fo r  example, the state fo r  w h ich  B  has the value b  is not degenerate.

I t  is w e ll know n that quantum mechanics deals w ith  p robab ilities , 

but na tu ra lly  th is  is not the w hole  picture. In  order to  exh ib it, even more c learly , 

the reationship between classical and quantum th e o ry , we cou ld  suppose that 

c lass ica lly  we are also dealing w ith  p robab ilities but that a ll p robab ilitie s  e ither 

are zero o r one. A  better alternative is to  im agine in  the classical case tha t the 

probab ilities are in  the sense o f  classical statistical mechanics (where, poss ib ly , 

in ternal coordinates are not com ple te ly  specified).

W e define as the p robab ility  that i f  measurm ent A  gave the 

result a ,  then measurement B  w i l l  g ive the result b . S im ila r ly , Pbc is the p ro b a b ility  

that i f  measurement B  gives the result b , then measurement A  g ives a ,  then c  

gives c . Further, le t Pac be the chance that i f  A  gives a ,  then c  g ive  c . f in a lly , 

denote by  P ibc the p ro b a b ility  o f  a ll three, i .e . , i f  A  g ives a, then B  gives b ,  and 

c  gives c . I f  the events between a  and b  are independent o f  those between b  and 

c,

p  =  P p
abc ab be

(2.0.1)
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This IS  truc accord ing to  quantum  mechanics when the statement that B  IS  b  is 

a  complete specifica tion  o f  the state.

In  any event, we expect the relation

p  = y p 1 .
o c  i~ ‘ a b c

b  (2 .0 .2)

Th is is because, i f  in it ia lly  m easurement A  g ive a  and the system IS  la ter found 

to  give the result c  to  measurement c ,  the quantity B  m ust have had some value 

at the tim e interm ediate to  A  and c .  The p ro b a b ility  that it  was b  is P abc 

W e sum, o r integrate, ove r a ll the m u tu a lly  exclusive alternatives fo r  b  (sym bo­

lizes by Z b ).

N o w , the essential d iffe rence  between classical and quantum  physics 

in  eq. (2 .0 .2 ). In  classical m echanics it  is always true. In  quantum  mechanics 

it  is often false. W e shall denote the quantum  - mechanical p ro b a b ility  tha t a 

measurement o f  c  results in  c  when i t  fo llo w s  a measurement o f  A  g iv in g  a  

b y  P1C . E quation (2 .0 .2 ) is replaced in  quantum mechanics b y  th is  rem arkable 

law  : There exist com p lex num bers V/ ab>V/ bC’ V/ ac such that

2 2

= f ' a b ’ P b c  = V h c ’ and P q c  =
¥ a c

The classical law , obtained by com b in ing  and,

(2.0.3)

p  =  ^ p ^ÛC ao be
b (2.0,1)
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IS replaced by

r . ^  = ^ , kc
(2.0.5)

H owever, It seems w orth  w h ile  to  emphasize the fact that they are all s im p ly  

d irect consequences o f  eq. (2 .0 .5 ), fo r  i t  is essentia lly eq. (2.0.5) that IS funda­

mental in the fo rm u la tion  o f  quantum mechanics.

The generalization o f  eqs. (2 .0 .4) and (2.0.5) to  alarge num ber 

o f  measurements, say A  , B , c , D,..., K , IS, o f  course, that the p ro b a b ility  o f  the 

sequence a , b , c , d k  is

^abcd...k

The p robab ility  o f  the resu lt a ,c , k 1 fo r  exam ple , i f  b , d 1... are measured, IS the 

classical form ula:

^abcd...k abcd...k
b d (2.0.6)

p
a b c d . . . k

w h ile  the p robab ility  o f  the same sequence a ,  c , k i f  no measurements are 

made between A  and c  and between c  and K  IS

(2 .0 .7)

The quantity  ty  1ibcd..k we can call the p ro b a b ility  am plitude fo r  the cond ition  

A =  a ,  B  -  b ,  C  -  c , D  -  d  1..., À =  k  ( i t  IS, o f  course, expressible as a product
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2.1.2 M e a su re m e n t o f  P ro b a b il i ty  A m p litu d e s  V ia  Y o u n g  - s lits  E x p e r im e n t.

In  his lectures on quantum  mechanics, Feynm an (1965) introduces a basic 

concept o f  the subject, that o f  p r o b a b i l i t y  a m p l i t u d e s ,  by  considenng a Y o u n g -s lits  

interference experim ent perform ed w ith  electrons. In  th is  experim ent, electrons emitted 

by a source A  arrive at a (variab le ) target po in t B  on a screen ร '  , having f irs t passed 

through another screen ร pierced by tw o  s ilts  (1 ) and (2). T o  the tw o  possible trajectories 

there correspond respectively tw o  p ro b a b ility  am plitudes a \ and a 2 , g iven by the 

fo llo w in g  rules (in  a selfexphanatory notation: see F ig  2.1 ) :4

^1 = aBlalA ’ a2 ^  aB2a2A

The p ro b a b ility  am plitude a fo r  observing an electron at B  is the sum o f  a \ and a 2

a = a i +a2= 1 1% ° jA

L e t us now  com plicate the experim ent som ewhat by in troduc ing  several interm ediate 

screen J ,K ,L ,  each pierced by  several s lits  numbered j ,  k , and 1. Then the p robab ility  

am plitude a reads

a  =  £  1 a B l a l K a K j a j A

I t  IS a sum over a ll paths leading fro m  A  to  B : in  F ig . 2.2 fo r  instance we have drawn the 

-> K(2) --> L (l) —> B.path



16

F ig . 2.1 The yo u n g ’ s s lits  experim ent

F ig . 2.2 A  com plicated va rian t o f  the Y o u n g ’s s lits  experim ent

One can now  replace the screens by  a potentia l in  w h ich  the electrons 

move, and associate w ith  every path [c ] leading fro m  A  to  B  a p ro b a b ility  am plitude a  [c ], 

the total am plitude a  being the sum (see F ig. 2.3)

0 = V 4 e ].

(2.1.1)



Fig. 2 J  Paths from A to B

I t  remains o f  course to  g ive  a prescrip tion  fo r  a  [c ], and fo r  sum m ing over

the paths. T h is  w i l l  be done in  Section 2.2; there, starting from  the properties o f  the 

evo lu tion  operator exp ( - iH t ) ,  w e shall show  that the statistical w e igh t o f  each path, 

nam ely a  [c ], is g iven by

where ~  s im p ly  denotes p ro p o rtio n a lity , and where ร ( ร ,  A )  is the classical action 

evaluated along the path leading fro m  A  to  B  in  a g iven time. C onverse ly, one can adopt 

(2.1.1) and (2 .1 .2) as fundam ental postulates, and derive a ll the results o f  quantum  

mechanics from  them: in  o ther w ords  one can adopt, as one’s quantization postulate, 

equation (2 .1 .2) instead o f  the canonica l com m utation  ru le (C C R ) \ q , p \  -

(2.1.2)
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In  quantum  mechanics, an im po rtan t ro le  is  o ften played b y  the classical 

path from  A  to  B , i.e. by  the path w h ich  makes the action stationary. In  the corresponding 

problem  o f  classical statistica l m echanics, the con figu ra tio n  analogous to the classical path 

is the ‘Landau con figu ra tio n ’ , nam ely  tha t co n fig u ra tio n  fo r  w h ich  the H am ilton ian  is 

stationary. To the quantum  fluctua tions around the classical path there correspond the 

statistical fluctuations around the Landau con figu ra tion . Such fluctuations are stadied by  

means o f  perturbation theory, and i t  is no t su rp ris ing  that one should meet the same 

techniques in  both types o f  problem .

In  Section 2.2 we establish the d ic tio n a ry  fo r  trasla ting the Schroediger 

equation in to  the language o f  the path in tegra ls, b y  g iv in g  a precise meaning to  the sum  in  

(2.. 1.1).
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2.2 PARTICLE IN POTENTIAL

Envisage now  a quantum system s lig h tly  more com plicated than a spin V l ,

nam ely a (non re la tiv is tic ) partic le o f  mass m ov ing  on a stra ight line  in  a potentia l

V (q ). W e denote the operatore fo r  position  and m om entum  by q  and p  respec­

t iv e ly ,  and the ir eigenstates in the Schroedinger p icture by เ ^  and

เ^ ' .  W e choose the norm alization [ p \ p  ) ~  à ( p - p  \ ( q \ q  ) -  â { q  q  \  anc[

\ p \ q ) - { ^ n ) ~ exP{iq p ) -  <?(0and เ^, *) stand fo r the position  operator and 

fo r its eigenvectors in  the Heisenberg picture.

n( t\ = pHtlhf. -iHt/h

๒ 1 ) = ^ % ) .  ( , 2, ,

2.2.1 T h e  re p re se n ta tio n  o f  p ro b a b il i ty  a m p litu d e s  b y  p a th  in te g ra ls

Le t ^ ( y  f t  i q > 0  be the p ro b a b ility  am plitude that a partic le  in it ia lly  at 

q tim e  t  be found at Q at tim e t '  (so that the boundary cond ition  are

q ( 0  =  q , q ( t ' )  =  q ' :

K { q ' , t ' \ q , t )  =  ( q ' , t ' \ q , t  ) =  { q ' \  e h (t f)\q) (2 2 2 )

D riv id e  the in te rva l 1 ] in to  (ท) subinterva ls each o f  length

8  =  ( / ' - / ) / ( ท ) , w i t h  8  —» 0:

--------- ------------------ M --------- *
l0 = 1 t1 \  น  = t
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and let US w rite

e xp  =

f (  „2  \
exp

1

»
|5

;

£ 1-+ V (q )

W e now  use T ro tte r ’ s (o r the L ie  product) theorem

l im
«->00

eA/ngB /n y  _  ^ + £

(2 .2 .3)

One can fin d  in  the tw o  references ju s t quoted heuristic and rigorous proofs 

o f  th is  fo rm u la , as w e ll as the necessary cond itions on the operators A  and B  . 

I t  is an instructive  (and elem entary) exercise to  carry th rough the p ro o f when 

[A  ,B ] is a c-num ber; i t  is also easy to  prove (2 .2.3) i f  A  and B  are bounded 

operators (see the references ju s t quoted). L e t US now  insert at tim es 

complete sets o f  eigenstates o f  the pos ition  operator q ,

K ( q ' , t ' : q , t )  =  I  n d q L n ( q  1 exp
i s  p  

2m1
exp  { ^ - ( q )

L -  1

and evaluate the m a trix  element

( .  . 1 \
exp

is p _
h 2m

V
exp f - ~  (? ) 2-1

1-,) ) (*1
(

e x p
is  p 1

V ^ 2  พ 2 - 1
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In  order to  com pute the last m a trix  elem ent we use

These results a llow  US to  w rite  K  ( q ' , t ' ' , q , t )  in  the fo rm  o f  a path integral:

classical variables as was the variab le  ร  in  the previous section. W e have 

taken as the argum ent o f  V  fo r  pu re ly  aesthetic reasons, since q o r w o u ld  also 

be correct. H ow ever, fo r  reasons to  be discussed below , it  is im portan t to

choose */2 ( q L +  q L - \ )  as the argum ent o f  the vector potentia l i f  one wants to 

w rite  path integrals fo r  propagation in  a magnetic fie ld . As V  is a func tion

on ly  o fq ,  it  is possible to  pe rfo rm  the p-in tegra l in  (2 .2 .4 ).

K ( q ' , t ’ \ q , t )  =

(2.2.4)

I t  is im portan t to notice that in  equation (2 .2 .4) qL and qL_1 and
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and equation (2 .2,4) becomes

พ - 1' * - , ) - MâïSs) J9 y ^ h j d q i

(2.2.6)

Here we introduce the com pact sym bo l D q  fo r in tegration over the q 5 and note 

that

พ

q + a  1

h 1=1 2£2fi

then as the fin a l fo rm  o f  the path in tegra l one finds

/ โ ( q \ t ' \ q j ) =  P ? e x p ^ j /  j

JD9 6 x p ( is ) ,
(2.2.7)

subject to  the boundary cond itions q ( t )  =  q , q ( t ' ) =  q ' .

In  equation (2 .2 .7 ) we have reinstated P lanck 's  constant h  and set

q = dp/dt ;
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L { q , q )  =  - m q 2  - V ( q )  
2 (2.2.8)

IS the Lagrangean o f  the partic le : and ร  IS the corresponding a c tio n

ร  =  j/ L ( q , q  ) d t " .
(2.2.9)

In  quantum mechanics, it IS d if fc u lt  to  go fu rthe r in to  the mathematical

discussion o f  the paths, since It has not been possible to  g ive  a satisfactory 

m athem ati-cal meaning to  the measure exp(z.S') D q .

U sing  the totations o f  (2 .2 .7) one can transfo rm  (2.2.4) and 

obtain the H um ilton ian  fo rm  o f  the path integral, nam ely

T h is  equation must be used when the H am ilton ian  IS not quadratic in  p; 

however. It must be handled w ith  care. C on tran ' to  its appearance. It IS not 

invariant under canonical transform ations.

C onsider eq. (2.2.7) the path from  A : ( q . t ) t o B :  น ่’บ ,)’’ to  it there correspond

a certain action ร. Equation (2.2.7) can be interpreted as assigning to each path a
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statistical weight exp(/1S' / h), and asserting that the probability amplitude is 
obtained by summing over all such paths. In the procedure we have followed, 
the sum over paths has been defined thus. The paths are zigzags whose 
straight portions jo in  the positions q, q 1. . . ,  q '  o f  the particle at times t , t x . .  X  

respectively (Fig. 2.4). Summing over the paths consists o f  integrating, w ith fixed  
q and q ' , over all the qL corresponding to intermediate times t , w ith the integration 
measure

'  m

y2i7 ish
—> D q .

Here, as already emphasized, the symbol Dq means nothing more than is implied 
by (2.2.6).

Fig. 2.4 Trajectories used in evaluating (2.2.6)
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